Show simple item record

dc.contributor.advisorDe Brito Brandão, Pedro Filipe
dc.creatorRuíz Oviedo, Cory Valeria
dc.date.accessioned2020-08-27T15:13:11Z
dc.date.available2020-08-27T15:13:11Z
dc.date.created2020-06-30
dc.identifier.citationRuíz,C.(2020) Precipitación de carbonatos inducida microbiológicamente como alternativa para remediar entornos naturales contaminados con metales y metaloides tóxicos (Tesis de maestría).Universidad Nacional de Colombia , Bogotá.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78261
dc.descriptionEste documento, muestra de manera detallada, los alcances y limitaciones que tiene el método de precipitación de carbonato de calcio inducida microbiológicamente (MICP) en la remediación de ambientes contaminados con metales (ej.: Cd, Cr, y Pb) y metaloides (As) tóxicos. La MICP se fundamenta en la formación de carbonato de calcio, a partir de células microbianas y actividades bioquímicas. Este proceso puede ser tanto inducido biológicamente como controlado biológicamente, y depende de factores específicos como los sitios de nucleación, la concentración de calcio, la concentración de carbono inorgánico disuelto y el pH. Los estudios más recientes de inmovilización de metales y metaloides tóxicos por MICP en suelos, se han enfocado en aislar y evaluar tanto la capacidad ureolítica de las bacterias, como su resistencia frente a un metal tóxico. En ese sentido, los resultados obtenidos después de aplicar la MICP en la matriz de estudio revelan disminuciones significativas de metales y metaloides biodisponibles. Esto indica una buena perspectiva para que la MICP pueda considerarse como una tecnología viable para aplicaciones a escala de campo
dc.description.abstractThis document shows in depth the scope and limitations of microbiologically induced calcium carbonate precipitation (MICP) in the remediation of environments contaminated with toxic metals (e.g.: Cd, Cr and Pb) and metalloids (As). MICP is based on the formation of calcium carbonate from microbial cells and biochemical activities. This process can be both biologically induced and biologically controlled, and depends on specific factors such as nucleation sites, the concentration of calcium, the concentration of dissolved inorganic carbon and pH. The most recent studies using MICP to immobilize toxic metals and metalloids in soils, have focused on isolating and evaluating both the ureolytic capacity of bacteria, as well as their resistance against toxic metals. Thus, the results obtained after applying MICP in the study matrixes reveal a significant decrease of bioavailable metals and metalloids. This indicates a good perspective for the MICP to be considered as a viable technology for field-scale applications.
dc.format.extent122
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.subjectBacterias Ureolíticas
dc.subjectBiomineralización
dc.subjectMetales
dc.subjectMetaloides
dc.subjectMICP
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.subject.ddc660 - Ingeniería química::669 - Metalurgia
dc.titlePrecipitación de carbonatos inducida microbiológicamente como alternativa para remediar entornos naturales contaminados con metales y metaloides tóxicos
dc.typeOther
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Bogotá
dc.subject.keywordBiomineralization
dc.subject.keywordMetals
dc.subject.keywordMetalloids
dc.subject.keywordMICP
dc.subject.keywordUreolytic Bacteria
dc.type.spaOtro
dc.type.hasversionSent Version
dc.coverage.programDepartamento de Química
dc.contributor.gruplacGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINA
dc.description.additionalLínea de investigación: Microbiología Ambiental y Aplicada
dc.coverage.modalityMaestria
dc.rights.accessRightsOpen Access
dc.identifier.bibliographicCitationAntonowicz, J., Andrzejak, R., Kochel, B., Lucinska, A., & Galary, D. (1996). PRA, ACE, MAO, FEP levels and interactions in humans exposed chronically to heavy metals. IN METAL IONS IN BIOLOGY AND MEDICINE INTERNATIONAL SYMPONSIUM 4, pp. 648-650).
dc.identifier.bibliographicCitationAlonso, D. L., Latorre, S., Castillo, E., & Brandão, P. F. (2014). Environmental occurrence of arsenic in Colombia: A review. Environmental Pollution, 186, 272-281.
dc.identifier.bibliographicCitationAchal, V., Mukherjee, A., Basu, P. C., & Reddy, M. S. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology & Biotechnology, 36(7), 981-988.
dc.identifier.bibliographicCitationAchal, V., Pan, X., & Zhang, D. (2011). Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation. Ecological Engineering, 37(10), 1601-1605.
dc.identifier.bibliographicCitationAchal, V., Pan, X., Fu, Q., & Zhang, D. (2012). Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. Journal of Hazardous Materials, 201, 178-184.
dc.identifier.bibliographicCitationAchal, V., Pan, X., Zhang, D., & Fu, Q. L. (2012). Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol, 22(2), 244-247.
dc.identifier.bibliographicCitationAchal, V., Pan, X., Lee, D. J., Kumari, D., & Zhang, D. (2013). Remediation of Cr (VI) from chromium slag by biocementation. Chemosphere, 93(7), 1352-1358.
dc.identifier.bibliographicCitationAchal, V., & Pan, X. (2014). Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Applied Biochemistry and Biotechnology, 173(1), 307-317.
dc.identifier.bibliographicCitationAnbu, P., Kang, C. H., Shin, Y. J., & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus, 5(1), 1-26.
dc.identifier.bibliographicCitationArias, D., Cisternas, L. A., & Rivas, M. (2017). Biomineralization mediated by ureolytic bacteria applied to water treatment: A review. Crystals, 7(11), 345.
dc.identifier.bibliographicCitationAl Omari, M. M. H., Rashid, I. S., Qinna, N. A., Jaber, A. M., & Badwan, A. A. (2016). Calcium carbonate. In Profiles of drug substances, excipients and related methodology (Vol. 41, pp. 31-132). Academic Press.
dc.identifier.bibliographicCitationAksornchu, P., Prasertsan, P., & Sobhon, V. (2008). Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil. Songklanakarin Journal of Science & Technology, 30.
dc.identifier.bibliographicCitationAkocak, S., & Supuran, C. T. (2019). Activation of α-, β-, γ-δ-, ζ-and η-class of carbonic anhydrases with amines and amino acids: a review. Journal of enzyme inhibition and medicinal chemistry, 34(1), 1652-1659.
dc.identifier.bibliographicCitationAgency for Toxic Substance and Disease Registry. Toxicological Profile for Arsenic U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control, Atlanta, GA, 2003.
dc.identifier.bibliographicCitationBajraktari, D., Bauer, B., Kavrakovski, Z., & Zeneli, L. (2019). Environmental pollution and heavy metals accumulation in Salix alba L.(Fam. Salicaceae), along the river stream of Sitnica. Agriculturae Conspectus Scientificus, 84(1), 95-101.
dc.identifier.bibliographicCitationBayarjargal, L., Fruhner, C. J., Schrodt, N., & Winkler, B. (2018). CaCO3 phase diagram studied with Raman spectroscopy at pressures up to 50 GPa and high temperatures and DFT modeling. Physics of the Earth and Planetary Interiors, 281, 31-45.
dc.identifier.bibliographicCitationBazylinski, D. A., & Frankel, R. B. (2000a). Magnetic iron oxide and iron sulfide minerals within organisms. Biomineralization: From Biology to Biotechnology and Medical Application. Bäuerlein E (ed) Wiley-VCH, Weinheim, Germany, 25-46.
dc.identifier.bibliographicCitationBazylinski, D. A., & Frankel, R. B. (2000). Biologically-controlled mineralization of magnetic iron minerals by magnetotactic bacteria. In: Environmental Microbe-Metal Interactions Editor: Derek R. Lovley. ASM Press, Washington D.C.
dc.identifier.bibliographicCitationBaumgartner, L. K., Reid, R. P., Dupraz, C., Decho, A. W., Buckley, D. H., Spear, J. R., ... & Visscher, P. T. (2006). Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sedimentary Geology, 185(3-4), 131-145.
dc.identifier.bibliographicCitationBaskar, S., Baskar, R., Mauclaire, L., & McKenzie, J. A. (2006). Microbially induced calcite precipitation in culture experiments: possible origin for stalactites in Sahastradhara caves, Dehradun, India. Current Science, 58-64.
dc.identifier.bibliographicCitationBenzerara, K., Miot, J., Morin, G., Ona-Nguema, G., Skouri-Panet, F., & Ferard, C. (2011). Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geoscience, 343(2-3), 160-167.
dc.identifier.bibliographicCitationBetancourth, D., Gómez, J. F., Mosquera, J. C., & Mejía, L. T. (2010). Análisis por difracción de rayos x de rocas provenientes de región esmeraldífera. Scientia et Technica, 1(44), 409-413.
dc.identifier.bibliographicCitationBhuiyan, M. A. H., Suruvi, N. I., Dampare, S. B., Islam, M. A., Quraishi, S. B., Ganyaglo, S., & Suzuki, S. (2011). Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka, Bangladesh. Environmental Monitoring and Assessment, 175(1-4), 633-649.
dc.identifier.bibliographicCitationBoyd, R. S. (2010). Heavy metal pollutants and chemical ecology: exploring new frontiers. Journal of Chemical Ecology, 36(1), 46-58.
dc.identifier.bibliographicCitationBundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., & Cuevas, A. G. (2012). One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Science of the Total Environment, 429, 2-35.
dc.identifier.bibliographicCitationCappuyns, V., Van Herreweghe, S., Swennen, R., Ottenburgs, R., & Deckers, J. (2002). Arsenic pollution at the industrial site of Reppel-Bocholt (north Belgium). Science of the Total Environment, 295(1-3), 217-240.
dc.identifier.bibliographicCitationCastanier, S., Le Metayer-Levrel, G., & Perthuisot, J. P. (2000). Bacterial roles in the precipitation of carbonate minerals. In Microbial sediments (pp. 32-39). Springer, Berlin, Heidelberg.
dc.identifier.bibliographicCitationCapasso, C., & Supuran, C. T. (2013). Anti-infective carbonic anhydrase inhibitors: a patent and literature review. Expert Opinion on Therapeutic Patents, 23(6), 693-704.
dc.identifier.bibliographicCitationCapasso, C., & Supuran, C. T. (2015). An overview of the alpha-, beta-and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria?. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(2), 325-332.
dc.identifier.bibliographicCitationCastro-Alonso, M. J., Montañez-Hernández, L. E., Sanchez-Muñoz, M. A., Franco, M., Rubi, M., Narayanasamy, R., & Balagurusamy, N. (2019). Microbially Induced Calcium carbonate Precipitation (MICP) and its potential in Bioconcrete: Microbiological and molecular concepts. Frontiers in Materials, 6, 126.
dc.identifier.bibliographicCitationChakhmouradian, A. R., Reguir, E. P., Zaitsev, A. N., Couëslan, C., Xu, C., Kynický, J., ... & Yang, P. (2017). Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274, 188-213.
dc.identifier.bibliographicCitationChan, C. M., Wu, J., Li, J. X., & Cheung, Y. K. (2002). Polypropylene/calcium carbonate nanocomposites. Polymer, 43(10), 2981-2992.
dc.identifier.bibliographicCitationChander, K. P. C. B., Brookes, P. C., & Harding, S. A. (1995). Microbial biomass dynamics following addition of metal-enriched sewage sludges to a sandy loam. Soil Biology and Biochemistry, 27(11), 1409-1421.
dc.identifier.bibliographicCitationChen, A., Luo, Z., & Akbulut, M. (2011). Ionic liquid mediated auto-templating assembly of CaCO3–chitosan hybrid nanoboxes and nanoframes. Chemical Communications, 47(8), 2312-2314.
dc.identifier.bibliographicCitationChen, X., & Achal, V. (2019). Biostimulation of carbonate precipitation process in soil for copper immobilization. Journal of Hazardous Materials, 368, 705-713.
dc.identifier.bibliographicCitationCullity, B. D. (1978). Answers to problems: elements of X-ray diffraction. Addison-Wesley Publishing Company.
dc.identifier.bibliographicCitationDas, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals–an overview. Indian Journal of Biotechnology, 7, 159-169.
dc.identifier.bibliographicCitationDhami, N. K., Quirin, M. E. C., & Mukherjee, A. (2017). Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves. Ecological Engineering, 103, 106-117.
dc.identifier.bibliographicCitationDhami, N. K., Reddy, M. S., & Mukherjee, A. (2014). Application of calcifying bacteria for remediation of stones and cultural heritages. Frontiers in Microbiology, 5, 304.
dc.identifier.bibliographicCitationDel Prete, S., Vullo, D., De Luca, V., Supuran, C. T., & Capasso, C. (2014). Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(6), 906-911.
dc.identifier.bibliographicCitationDi Fiore, A., Alterio, V., Monti, S. M., De Simone, G., & D'Ambrosio, K. (2015). Thermostable carbonic anhydrases in biotechnological applications. International Journal of Molecular Sciences, 16(7), 15456-15480.
dc.identifier.bibliographicCitationDizaj, S. M., Barzegar-Jalali, M., Zarrintan, M. H., Adibkia, K., & Lotfipour, F. (2015). Calcium carbonate nanoparticles; potential in bone and tooth disorders. Pharm. Sci, 20, 175-182.
dc.identifier.bibliographicCitationDrasch, G., Wanghofer, E., & Roider, G. (1997). Are blood, urine, hair, and muscle valid biomonitors for the internal burden of men with the heavy metals mercury, lead and cadmium: an investigation on 150 deceased. Trace Elements and Electrolytes, 14(3), 116-123.
dc.identifier.bibliographicCitationDomenech, X. & Peral, J. (2008). Química Ambiental de Sistemas Terrestres. Editorial Reverté. Barcelona. P. 239.
dc.identifier.bibliographicCitationDickens, B., & Brown, W. E. (1970). Crystal structure of calcium carbonate hexahydrate at about-120. deg. Inorganic Chemistry, 9(3), 480-486.
dc.identifier.bibliographicCitationDuffus, J. H. (2002). " Heavy metals" a meaningless term?(IUPAC Technical Report). Pure and Applied Chemistry, 74(5), 793-807.
dc.identifier.bibliographicCitationEdling, C., Kling, H., Flodin, U., & Axelson, O. (1986). Cancer mortality among leather tanners. Occupational and Environmental Medicine, 43(7), 494-496.
dc.identifier.bibliographicCitationElzinga, E. J., & Reeder, R. J. (2002). X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: Implications for site-specific metal incorporation preferences during calcite crystal growth. Geochimica et Cosmochimica Acta, 66(22), 3943-3954.
dc.identifier.bibliographicCitationErşan, Y. Ç., Verbruggen, H., De Graeve, I., Verstraete, W., De Belie, N., & Boon, N. (2016). Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cement and Concrete Research, 83, 19-30.
dc.identifier.bibliographicCitationEhrlich,HL, Newman,DK (2009) Geomicrobiology Fifth CRC Press, Taylor & Francis Group
dc.identifier.bibliographicCitationFerrer, A. (2003). Intoxicación por metales. In Anales del sistema sanitario de Navarra (Vol. 26, pp. 141-153). Gobierno de Navarra. Departamento de Salud.
dc.identifier.bibliographicCitationFerris, F. G., Stehmeier, L. G., Kantzas, A., & Mourits, F. M. (1997). Bacteriogenic mineral plugging. Journal of Canadian Petroleum Technology, 36(09).
dc.identifier.bibliographicCitationFrankel, R. B., & Bazylinski, D. A. (2003). Biologically induced mineralization by bacteria. Reviews in Mineralogy and Geochemistry, 54(1), 95-114.
dc.identifier.bibliographicCitationFortin, D. (1997). Surface-mediated mineral development. Rev Mineral, 35, 162-180.
dc.identifier.bibliographicCitationFortin, D., & Beveridge, T. J. (2000). Mechanistic routes towards biomineral surface development. Biomineralisation: From Biology to Biotechnology and medical Application (E. Baeuerlein Ed.), Wiley-VCH, Verlag, Germany.
dc.identifier.bibliographicCitationFowler, S., Roush, R., Wise, J., & Stronck, D. (2013). Concepts of Biology. OpenStax College, Rice University.
dc.identifier.bibliographicCitationFu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407-418.
dc.identifier.bibliographicCitationGalindo, A. L., & Arias, J. (1996). Struvite and calcite crystallization induced by cellular membranes of Myxococcus xanthus. Journal of Crystal Growth, 163(4), 434-439.
dc.identifier.bibliographicCitationGonzález-Muñoz, M. T., Omar, N. B., Martínez-Cañamero, M., Rodríguez-Gallego, M., Galindo, A. L., & Arias, J. (1996). Struvite and calcite crystallization induced by cellular membranes of Myxococcus xanthus. Journal of Crystal Growth, 163(4), 434-439.
dc.identifier.bibliographicCitationGong, X. B. (2013). Kinetic and equilibrium studies on the adsorption of Pb (II), Cd (II) and Cu (II) by rape straw. Adsorption Science & Technology, 31(6), 559-571.
dc.identifier.bibliographicCitationGottlieb, S. (1998). Sustained fall in UK blood lead levels reported. BMJ: British Medical Journal, 317(7151), 99.
dc.identifier.bibliographicCitationGhosh, P., Mandal, S., Chattopadhyay, B. D., & Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35(10), 1980-1983.
dc.identifier.bibliographicCitationGoldfrank, L. R., Flomenbaum, N. E., HOFFMAN, R. S., Howland, M. A., Lewin, N. A., & WEISMAN, R. S. (1998). Goldfrank's Toxicologic Emergencies. Appleton & Lange.
dc.identifier.bibliographicCitationGuo, W., Liu, X., Liu, Z., & Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang Harbor, Tianjin. Procedia environmental sciences, 2, 729-736.
dc.identifier.bibliographicCitationHa, N. C., Oh, S. T., Sung, J. Y., Cha, K. A., Lee, M. H., & Oh, B. H. (2001). Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nature Structural & Molecular Biology, 8(6), 505.
dc.identifier.bibliographicCitationHammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1(1), 3-7.
dc.identifier.bibliographicCitationHanke, L. D. (2001). Handbook of analytical methods for materials. Materials Evaluation and Engineering, Inc, 15-16.
dc.identifier.bibliographicCitationHarris, D. C., & Bertolucci, M. D. (1989). Symmetry and spectroscopy: an introduction to vibrational and electronic spectroscopy. Courier Corporation.
dc.identifier.bibliographicCitationHead, I. M., Gray, N. D., Babenzien, H. D., and Oliver-Glöckner, F. (2000). Uncultured giant sulfur bacteria of the genus Achromatium. FEMS Microbiol. Ecol. 33, 171–180. doi: 10.1111/j.1574-6941.2000.tb00739.x
dc.identifier.bibliographicCitationHernández Ávila, J., Salinas Rodríguez, E., Blanco Piñón, A., Cerecedo Sáenz, E., & Rodríguez Lugo, V. (2015). Carbonato de Calcio en México. Características geológicas, mineralógicas y aplicaciones. OmniaScience Monographs.
dc.identifier.bibliographicCitationHouston, M. C. (2007). The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med, 13(2), S128-S133.
dc.identifier.bibliographicCitationHuang, D. L., Zeng, G. M., Jiang, X. Y., Feng, C. L., Yu, H. Y., Huang, G. H., & Liu, H. L. (2006). Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw. Journal of Hazardous Materials, 134(1-3), 268-276.
dc.identifier.bibliographicCitationHursh, J. B., Clarkson, T. W., Cherian, M. G., Vostal, J. J., & Mallie, R. V. (1976). Clearance of mercury (Hg-197, Hg-203) vapor inhaled by human subjects. Archives of Environmental Health: An International Journal, 31(6), 302-309.
dc.identifier.bibliographicCitationIbrahim, A. R., Vuningoma, J. B., Huang, Y., Wang, H., & Li, J. (2014). Rapid carbonation for calcite from a solid-liquid-gas system with an imidazolium-based ionic liquid. International journal of molecular sciences, 15(7), 11350-11363.
dc.identifier.bibliographicCitationIDEAM, Estudio Nacional del Agua 2014. Bogotá, D. C., 2015. 496 páginas.
dc.identifier.bibliographicCitationJabri, E., Carr, M. B., Hausinger, R. P., & Karplus, P. A. (1995). The crystal structure of urease from Klebsiella aerogenes. Science, 268(5213), 998-1004.
dc.identifier.bibliographicCitationJärup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201-208
dc.identifier.bibliographicCitationJimoh, O. A., Ariffin, K. S., Hussin, H. B., & Temitope, A. E. (2018). Synthesis of precipitated calcium carbonate: a review. Carbonates and Evaporites, 33(2), 331-346.
dc.identifier.bibliographicCitationJoshi, S., Goyal, S., Mukherjee, A., & Reddy, M. S. (2017). Microbial healing of cracks in concrete: a review. Journal of Industrial Microbiology & Biotechnology, 44(11), 1511-1525.
dc.identifier.bibliographicCitationJonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36(2), 230-235.
dc.identifier.bibliographicCitationKanakis, J., & Dalas, E. (2000). The crystallization of vaterite on fibrin. Journal of Crystal Growth, 219(3), 277-282.
dc.identifier.bibliographicCitationKappaun, K., Piovesan, A. R., Carlini, C. R., & Ligabue-Braun, R. (2018). Ureases: Historical aspects, catalytic, and non-catalytic properties–A review. Journal of Advanced Research, 13, 3-17.
dc.identifier.bibliographicCitationKaratas, I. (2008). Microbiological improvement of the physical properties of soils. Arizona State University.
dc.identifier.bibliographicCitationKarplus, P. A.; Pearson, M. A.; Hausinger, R. P. Acc. Chem. Res. 1997, 30, 330. (b) Ciurli, S.; Benini, S.; Rypniewski, W. R.; Wilson, K. S.
dc.identifier.bibliographicCitationKrajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59-67.
dc.identifier.bibliographicCitationKnittel, K., & Boetius, A. (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63, 311-334.
dc.identifier.bibliographicCitationKonhauser, K. (2007). Introduction to geomicrobiology, microbial weathering (pp. 192–235). UK: Blackwell Publishing.
dc.identifier.bibliographicCitationKumar, P. S., Ramalingam, S., Sathyaselvabala, V., Kirupha, S. D., Murugesan, A., & Sivanesan, S. (2012). Removal of cadmium (II) from aqueous solution by agricultural waste cashew nut shell. Korean Journal of Chemical Engineering, 29(6), 756-768.
dc.identifier.bibliographicCitationKumari, D., Li, M., Pan, X., & Xin-Yi, Q. (2014). Effect of bacterial treatment on Cr (VI) remediation from soil and subsequent plantation of Pisum sativum. Ecological Engineering, 73, 404-408.
dc.identifier.bibliographicCitationKumari, D., Qian, X. Y., Pan, X., Achal, V., Li, Q., & Gadd, G. M. (2016). Microbially-induced carbonate precipitation for immobilization of toxic metals. In Advances in Applied Microbiology (Vol. 94, pp. 79-108). Academic Press.
dc.identifier.bibliographicCitationLi, L., Qian, C., Cheng, L., & Wang, R. (2010). A laboratory investigation of microbe-inducing CdCO 3 precipitate treatment in Cd 2+ contaminated soil. Journal of soils and sediments, 10(2), 248-254.
dc.identifier.bibliographicCitationLi, M., Cheng, X., & Guo, H. (2013). Heavy metal removal by biomineralization of urease producing bacteria isolated from soil. International Biodeterioration & Biodegradation, 76, 81-85.
dc.identifier.bibliographicCitationLi, M., Fu, Q. L., Zhang, Q., Achal, V., & Kawasaki, S. (2015). Bio-grout based on microbially induced sand solidification by means of asparaginase activity. Scientific reports, 5, 16128.
dc.identifier.bibliographicCitationLicona, S. P. V., & Negrete, J. L. M. (2019). Mercurio, metilmercurio y otros metales pesados en peces de Colombia: riesgo por ingesta. Acta Biológica Colombiana, 24(2), 232-242.
dc.identifier.bibliographicCitationLiu, Z., Carbrey, J. M., Agre, P., & Rosen, B. P. (2004). Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochemical and biophysical research communications, 316(4), 1178-1185.
dc.identifier.bibliographicCitationLi, Z. H., Li, P., & Randak, T. (2011). Evaluating the toxicity of environmental concentrations of waterborne chromium (VI) to a model teleost, Oncorhynchus mykiss: a comparative study of in vivo and in vitro. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 153(4), 402-407
dc.identifier.bibliographicCitationLópez, E., Figueroa, S., Oset‐Gasque, M. J., & Gonzalez, M. P. (2003). Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. British journal of pharmacology, 138(5), 901-911.
dc.identifier.bibliographicCitationLoewenthal RE, van Rooyen Marais G (1976) Carbonate chemistry of aquatic systems: theory and application. Ann Arbor Science, Michigan.
dc.identifier.bibliographicCitationLowenstam, H. A. (1981). Minerals formed by organisms. Science, 211(4487), 1126-1131.
dc.identifier.bibliographicCitationLowenstam, H. A., & Weiner, S. (1989). On biomineralization. Oxford University Press on Demand.
dc.identifier.bibliographicCitationManca, D., Ricard, A. C., Trottier, B., & Chevalier, G. (1991). Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology, 67(3), 303-323.
dc.identifier.bibliographicCitationMann, S. (2001). Biomineralization: principles and concepts in bioinorganic materials chemistry (Vol. 5). Oxford University Press on Demand.
dc.identifier.bibliographicCitationMaroney, M. J., & Ciurli, S. (2013). Nonredox nickel enzymes. Chemical reviews, 114(8), 4206-4228.
dc.identifier.bibliographicCitationMartorell, J. J. V. (2010). Biodisponibilidad de metales pesados en dos ecosistemas acuáticos de la costa Suratlántica andaluza afectados por Contaminación difusa (Doctoral dissertation, Universidad de Cádiz).
dc.identifier.bibliographicCitationMarchat, D., Bernache-Assollant, D., & Champion, E. (2007). Cadmium fixation by synthetic hydroxyapatite in aqueous solution—thermal behaviour. Journal of hazardous materials, 139(3), 453-460.
dc.identifier.bibliographicCitationMarchegiani, F., Cibej, E., Vergni, P., Tosi, G., Fermani, S., & Falini, G. (2009). Hydroxyapatite synthesis from biogenic calcite single crystals into phosphate solutions at ambient conditions. Journal of Crystal Growth, 311(17), 4219-4225.
dc.identifier.bibliographicCitationMarrett, L. D., Hartge, P., & Meigs, J. W. (1986). Bladder cancer and occupational exposure to leather. Occupational and Environmental Medicine, 43(2), 96-100.
dc.identifier.bibliographicCitationMartin, D., Dodds, K., Butler, I. B., & Ngwenya, B. T. (2013). Carbonate precipitation under pressure for bioengineering in the anaerobic subsurface via denitrification. Environmental science & technology, 47(15), 8692-8699.
dc.identifier.bibliographicCitationMattia, G. D., Bravi, M. C., Laurenti, O., Luca, O. D., Palmeri, A., Sabatucci, A. . & Ghiselli, A. (2004). Impairment of cell and plasma redox state in subjects professionally exposed to chromium. American journal of industrial medicine, 46(2), 120-125.
dc.identifier.bibliographicCitationMazzei, L., Broll, V., & Ciurli, S. (2018). An evaluation of maleic-itaconic copolymers as urease inhibitors. Soil Science Society of America Journal, 82(4), 994-1003.
dc.identifier.bibliographicCitationMwandira, W., Nakashima, K., Kawasaki, S. et al. Efficacy of biocementation of lead mine waste from the Kabwe Mine site evaluated using Pararhodobacter sp.. Environ Sci Pollut Res 26, 15653–15664 (2019) doi:10.1007/s11356-019-04984-8
dc.identifier.bibliographicCitationMcConnaughey, T. (1989). 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta, 53(1), 151-162.
dc.identifier.bibliographicCitationMeldrum, F. C. (2003). Calcium carbonate in biomineralisation and biomimetic chemistry. International Materials Reviews, 48(3), 187-224.
dc.identifier.bibliographicCitationMogren, C. L., & Trumble, J. T. (2010). The impacts of metals and metalloids on insect behavior. Entomologia Experimentalis et Applicata, 135(1), 1-17.
dc.identifier.bibliographicCitationMondal, S., & Ghosh, A. D. (2019). Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Construction and Building Materials, 225, 67-75.
dc.identifier.bibliographicCitationMontes-Hernandez, G., Daval, D., Chiriac, R., & Renard, F. (2010). Growth of nanosized calcite through gas− solid carbonation of nanosized portlandite under anisobaric conditions. Crystal Growth & Design, 10(11), 4823-4830.
dc.identifier.bibliographicCitationMohseni, K. (2007). Characterization of precipitated calcium carbonate (PCC) compounds on the basis of powder X-ray diffraction data (Doctoral dissertation, Ph. D., Universität Karlsruhe (TH), Iran-Tehran).
dc.identifier.bibliographicCitationMorse, J. W. (1983). The kinetics of calcium carbonate dissolution and precipitation. Reviews in Mineralogy and Geochemistry, 11(1), 227-264.
dc.identifier.bibliographicCitationMulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering geology, 60(1-4), 193-207.
dc.identifier.bibliographicCitationMujah, D., Shahin, M. A., & Cheng, L. (2017). State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiology Journal, 34(6), 524-537.
dc.identifier.bibliographicCitationMüller, W. E. (Ed.). (2011). Molecular biomineralization: aquatic organisms forming extraordinary materials. Springer Science & Business Media.
dc.identifier.bibliographicCitationMulrooney, S. B.; Zakharian, T.; Schaller, R. A.; Hausinger, R. P. Arch. Biochem. Biophys. 2001, 394, 280.
dc.identifier.bibliographicCitationMwandira, W., Nakashima, K., & Kawasaki, S. (2017). Bioremediation of lead-contaminated mine waste by Pararhodobacter sp. based on the microbially induced calcium carbonate precipitation technique and its effects on strength of coarse and fine grained sand. Ecological engineering, 109, 57-64.
dc.identifier.bibliographicCitationNava-Ruiz, C., & Méndez-Armenta, M. (2011). Efectos neurotóxicos de metales pesados (cadmio, plomo, arsénico y talio). Archivos de Neurociencias, 16(3), 140-147.
dc.identifier.bibliographicCitationNational Research Council. (2000). Toxicological effects of methylmercury. National Academies Press.
dc.identifier.bibliographicCitationNeumann, M., & Epple, M. (2007). Monohydrocalcite and its relationship to hydrated amorphous calcium carbonate in biominerals. European Journal of Inorganic Chemistry, 2007(14), 1953-1957.
dc.identifier.bibliographicCitationNelson, D. L., & Cox, M. M. (2009). Lehninger. Principios de Bioquímica. 5ª edición. Ed. Omega.
dc.identifier.bibliographicCitationNg, W. S., Lee, M. L., & Hii, S. L. (2012). An overview of the factors affecting microbial-induced calcite precipitation and its potential application in soil improvement. World Academy of Science, Engineering and Technology, 62(2), 723-729.
dc.identifier.bibliographicCitationNi, M., & Ratner, B. D. (2008). Differentiating calcium carbonate polymorphs by surface analysis techniques—an XPS and TOF‐SIMS study. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 40(10), 1356-1361.
dc.identifier.bibliographicCitationNriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. nature, 333(6169), 134-139.
dc.identifier.bibliographicCitationObst, M., Dynes, J. J., Lawrence, J. R., Swerhone, G. D. W., Benzerara, K., Karunakaran, C., ... & Hitchcock, A. P. (2009). Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta, 73(14), 4180-4198.
dc.identifier.bibliographicCitationO’Connell, D. W., Birkinshaw, C., & O’Dwyer, T. F. (2008). Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresource technology, 99(15), 6709-6724.
dc.identifier.bibliographicCitationO'Connor, T. R., Graves, R. J., De Murcia, G., Castaing, B., & Laval, J. (1993). Fpg protein of Escherichia coli is a zinc finger protein whose cysteine residues have a structural and/or functional role. Journal of Biological Chemistry, 268(12), 9063-9070.
dc.identifier.bibliographicCitationOnder, S., Dursun, S., Gezgin, S., & Demirbas, A. (2007). Determination of Heavy Metal Pollution in Grass and Soil of City Centre Green Areas (Konya, Turkey). Polish Journal of Environmental Studies, 16(1).
dc.identifier.bibliographicCitationPaquette, J., & Reeder, R. J. (1995). Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochimica et Cosmochimica Acta, 59(4), 735-749.
dc.identifier.bibliographicCitationPatrick, L. (2002). Mercury toxicity and antioxidants: part I: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity.(Mercury Toxicity). Alternative Medicine Review, 7(6), 456-472.
dc.identifier.bibliographicCitationPenkowa, M. (2006). Metallothionein I+ II expression and roles during neuropathology in the CNS. Dan. Med. Bull, 53(2), 105-121.
dc.identifier.bibliographicCitationPeretó J. (2011) Anoxygenic Photosynthesis. In: Gargaud M. et al. (eds) Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg
dc.identifier.bibliographicCitationPérez-González, T., Valverde-Tercedor, C., & Jiménez-López, C. (2010). Biomineralización bacteriana de magnetita y aplicaciones. Seminarios de la Sociedad Española de Mineralogía, 7, 58-74.
dc.identifier.bibliographicCitationPerry, R. S., Mcloughlin, N., Lynne, B. Y., Sephton, M. A., Oliver, J. D., Perry, C. C., ... & Staley, J. T. (2007). Defining biominerals and organominerals: direct and indirect indicators of life. Sedimentary Geology, 201(1-2), 157-179.
dc.identifier.bibliographicCitationPhillips, D.J., Rainbow, P.S. 2013. Biomonitoring of Trace Aquatic Contaminants, Vol. 37. Springer Science and Business Media New York, USA.
dc.identifier.bibliographicCitationPhillips, A. J., Gerlach, R., Lauchnor, E., Mitchell, A. C., Cunningham, A. B., & Spangler, L. (2013). Engineered applications of ureolytic biomineralization: a review. Biofouling, 29(6), 715-733.
dc.identifier.bibliographicCitationPrinsloo, L. C. (2007). Rock hyraces: a cause of San rock art deterioration?. Journal of Raman Spectroscopy: an International Journal for Original Work in All Aspects of Raman Spectroscopy, Including Higher Order Processes, and Also Brillouin and Rayleigh Scattering, 38(5), 496-503.
dc.identifier.bibliographicCitationPlummer, L. N., & Busenberg, E. (1982). The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et cosmochimica acta, 46(6), 1011-1040.
dc.identifier.bibliographicCitationPokrovsky, O. S., & Schott, J. (2002). Surface chemistry and dissolution kinetics of divalent metal carbonates. Environmental science & technology, 36(3), 426-432.
dc.identifier.bibliographicCitationRamachandran, S. K., Ramakrishnan, V., & Bang, S. S. (2001). Remediation of concrete using micro-organisms. ACI Materials Journal-American Concrete Institute, 98(1), 3-9.
dc.identifier.bibliographicCitationRaraz Palpán, E. A. (2015). Determinación químico toxicológica de plomo y cadmio en agua para consumo humano proveniente de los reservorios de la zona de San Juan Pampa–distrito de Yanacancha–Pasco.
dc.identifier.bibliographicCitationRamírez, A. V. (2008). Intoxicación ocupacional por mercurio. In Anales de la Facultad de Medicina (Vol. 69, No. 1, pp. 46-51). UNMSM. Facultad de Medicina.
dc.identifier.bibliographicCitationRakovan, J. (2002). Growth and surface properties of apatite. Reviews in Mineralogy and Geochemistry, 48(1), 51-86.
dc.identifier.bibliographicCitationReddy, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: a review. Frontiers in microbiology, 4, 314.
dc.identifier.bibliographicCitationReeder, R. J. (1990). Carbonates: Mineralogy and Chemistry. Reviews in Mineralogy. Mineral. Soc. Amer., 11, 77-96.
dc.identifier.bibliographicCitationReeder, R. J. (1996). Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochimica et Cosmochimica Acta, 60(9), 1543-1552.
dc.identifier.bibliographicCitationRivadeneyra, M. A., Delgado, R., del Moral, A., Ferrer, M. R., & Ramos-Cormenzana, A. (1994). Precipatation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiology Ecology, 13(3), 197-204.
dc.identifier.bibliographicCitationRivadeneyra, M. A., Párraga, J., Delgado, R., Ramos-Cormenzana, A., & Delgado, G. (2004). Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS microbiology ecology, 48(1), 39-46.
dc.identifier.bibliographicCitationRice, K. M., Walker Jr, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of preventive medicine and public health, 47(2), 74.
dc.identifier.bibliographicCitationRodríguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. B., & Gonzalez-Munoz, M. T. (2003). Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl. Environ. Microbiol., 69(4), 2182-2193.
dc.identifier.bibliographicCitationRojas Cáceres, J. P. (2008). Estudio Mineralización de Carbonato de Calcio Usando como Matriz Quitosano y Mezclas de Quitosano con Polímeros Sintéticos Hidrosolubles.
dc.identifier.bibliographicCitationRong, H., Qian, C., & Li, L. (2013). Loose Particles Cemented by Microbially Induced Magnesium Carbonate. Keji Daobao/ Science & Technology Review, 31(2), 18-21.
dc.identifier.bibliographicCitationRowshanbakht, K., Khamehchiyan, M., Sajedi, R. H., & Nikudel, M. R. (2016). Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment. Ecological engineering, 89, 49-55.
dc.identifier.bibliographicCitationRubio, C., Gutiérrez, A. J., Izquierdo, R. M., Revert, C., Lozano, G., & Hardisson, A. (2004). El plomo como contaminante alimentario. Revista de toxicología, 21(2-3), 72-80.
dc.identifier.bibliographicCitationSarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials—a review. Applied biochemistry and biotechnology, 172(5), 2308-2323
dc.identifier.bibliographicCitationSalnikow, K., & Zhitkovich, A. (2008). Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chemical research in toxicology, 21(1), 28-44.
dc.identifier.bibliographicCitationSherwani, S. I., Pabon, S., Patel, R. B., Sayyid, M. M., Hagele, T., Kotha, S. R., .. & Parinandi, N. L. (2013). Eicosanoid signaling and vascular dysfunction: methylmercury-induced phospholipase D activation in vascular endothelial cells. Cell biochemistry and biophysics, 67(2), 317-329.
dc.identifier.bibliographicCitationScott, J. R., & Barnett, T. C. (2006). Surface proteins of gram-positive bacteria and how they get there. Annu. Rev. Microbiol., 60, 397-423.
dc.identifier.bibliographicCitationSeifan, M., Samani, A. K., & Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. Applied microbiology and biotechnology, 100(6), 2591-2602.
dc.identifier.bibliographicCitationSeifan, M., & Berenjian, A. (2018). Application of microbially induced calcium carbonate precipitation in designing bio self-healing concrete. World Journal of Microbiology and Biotechnology, 34(11), 168
dc.identifier.bibliographicCitationSeifan, M., Ebrahiminezhad, A., Ghasemi, Y., Samani, A. K., & Berenjian, A. (2018). The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation. Applied microbiology and biotechnology, 102(8), 3595-3606
dc.identifier.bibliographicCitationSeifan, M., & Berenjian, A. (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. Applied microbiology and biotechnology, 103(12), 4693-4708.
dc.identifier.bibliographicCitationSher, S., & Rehman, A. (2019). Use of heavy metals resistant bacteria—a strategy for arsenic bioremediation. Applied microbiology and biotechnology, 103(15), 6007-6021.
dc.identifier.bibliographicCitationSimkiss, K. (1986) The processes of biomineralization in lower plants and animals- an overview. in: “Biomineralization in lower plants and animals” B. S. C. Leadbeater and R. Riding (eds.). Oliver and Boyd Ltd., Edinburgh. 3-25
dc.identifier.bibliographicCitationSocial, M. (2007). vydt Ministerio de Ambiente. RESOLUCIÓN 2115 DE 2007.Proceedings of the National Academy of Sciences, 99(19), 12043-12048.
dc.identifier.bibliographicCitationSoskine, M., Steiner-Mordoch, S., & Schuldiner, S. (2002). Crosslinking of membrane-embedded cysteines reveals contact points in the EmrE oligomer. Proceedings of the National Academy of Sciences, 99(19), 12043-12048.
dc.identifier.bibliographicCitationSoutham, G. (2000). Bacterial surface-mediated mineral formation. In Environmental microbe-metal interactions (pp. 257-276). American Society of Microbiology
dc.identifier.bibliographicCitationSchuurs, A. H. B. (1999). Reproductive toxicity of occupational mercury. A review of the literature. Journal of Dentistry, 27(4), 249-256.
dc.identifier.bibliographicCitationSkoog DA, West DM, Holler FJ, Crouch SR (2014) Fundamentals of analytical chemistry, 9th edn. Brooks/Cole, Belmont
dc.identifier.bibliographicCitationStumm W., Morgan JJ (1981). Química acuática, 2ª ed. Nueva York, Nueva York: John Wiley
dc.identifier.bibliographicCitationStrock, J. S. (2008). Ammonification. In Encyclopedia of Ecology, Five-Volume Set (pp. 162-165). Elsevier Inc.
dc.identifier.bibliographicCitationSu, C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24.
dc.identifier.bibliographicCitationTamayo-Figueroa, D. P., Castillo, E., & Brandão, P. F. (2019). Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World Journal of Microbiology and Biotechnology, 35(4), 58.
dc.identifier.bibliographicCitationTang, Y., Elzinga, E. J., Lee, Y. J., & Reeder, R. J. (2007). Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 71(6), 1480-1493.
dc.identifier.bibliographicCitationTapia, J., Freer, J., Mansilla, H., Villaseñor, J., Bruhn, C., & Basualto, S. (2002). Estudio de reducción fotocatalizada de cromo hexavalente. Boletín de la Sociedad Chilena de Química, 47(4), 469-476.
dc.identifier.bibliographicCitationTebo, B. M. (1997). Bacterially mediated mineral formation: insights into manganese (II) oxidation from molecular genetic and biochemical studies. Geomicrobiology: interactions between microbes and minerals, 225-266.
dc.identifier.bibliographicCitationTessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), 844-851.
dc.identifier.bibliographicCitationTlili, M. M., Amor, M. B., Gabrielli, C., Joiret, S., Maurin, G., & Rousseau, P. (2002). Characterization of CaCO3 hydrates by micro‐Raman spectroscopy. Journal of Raman spectroscopy, 33(1), 10-16.
dc.identifier.bibliographicCitationTorres-Aravena, Á. E., Duarte-Nass, C., Azócar, L., Mella-Herrera, R., Rivas, M., & Jeison, D. (2018). Can microbially induced calcite precipitation (MICP) through a ureolytic pathway be successfully applied for removing heavy metals from wastewaters?. Crystals, 8(11), 438.
dc.identifier.bibliographicCitationTourney, J., & Ngwenya, B. T. (2009). Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chemical Geology, 262(3-4), 138-146.
dc.identifier.bibliographicCitationUSEPA (2017) Leaching Environmental Assessment Framework (LEAF) how-to guide understanding the LEAF approach and how and when to use it
dc.identifier.bibliographicCitationVan Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of geotechnical and geoenvironmental engineering, 136(12), 1721-1728.
dc.identifier.bibliographicCitationVan Lith, Y., Warthmann, R., Vasconcelos, C., & Mckenzie, J. A. (2003). Sulphate‐reducing bacteria induce low‐temperature Ca‐dolomite and high Mg‐calcite formation. Geobiology, 1(1), 71-79.
dc.identifier.bibliographicCitationVecht, A., & Ireland, T. G. (2000). The role of vaterite and aragonite in the formation of pseudo-biogenic carbonate structures: implications for Martian exobiology. Geochimica et Cosmochimica Acta, 64(15), 2719-2725.
dc.identifier.bibliographicCitationVon Burg, R., & Liu, D. (1993). Chromium and hexavalent chromium. Journal of applied toxicology, 13(3), 225-230.
dc.identifier.bibliographicCitationVullo D, Del Prete S, Osman SM, et al. Sulfonamide inhibition studies of the delta-carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorg Med Chem Lett 2014;24:275–9
dc.identifier.bibliographicCitationWaalkes, M. P., Wahba, Z. Z., & Rodriguez, R. E. (2010). Clinical Environmental Health and Toxic Exposures.
dc.identifier.bibliographicCitationWang, S., & Mulligan, C. N. (2006). Natural attenuation processes for remediation of arsenic contaminated soils and groundwater. Journal of Hazardous Materials, 138(3), 459-470.
dc.identifier.bibliographicCitationWang, X. S. (2013). Cd (II) removal by marine Arthrobacter protophormiae biomass: mechanism characterization and adsorption performance. Desalination and Water Treatment, 51(40-42), 7710-7720.
dc.identifier.bibliographicCitationWang, Y., Moo, Y. X., Chen, C., Gunawan, P., & Xu, R. (2010). Fast precipitation of uniform CaCO3 nanospheres and their transformation to hollow hydroxyapatite nanospheres. Journal of colloid and interface science, 352(2), 393-400.
dc.identifier.bibliographicCitationWang, M., Wu, S., Guo, J., Zhang, X., Yang, Y., Chen, F., & Zhu, R. (2019). Immobilization of cadmium by hydroxyapatite converted from microbial precipitated calcite. Journal of hazardous materials, 366, 684-693.
dc.identifier.bibliographicCitationWarren, L. A., & Haack, E. A. (2001). Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews, 54(4), 261-320.
dc.identifier.bibliographicCitationWilbur, K. M., & Bernhardt, A. M. (1984). Effects of amino acids, magnesium, and molluscan extrapallial fluid on crystallization of calcium carbonate: in vitro experiments. The Biological Bulletin, 166(1), 251-259.
dc.identifier.bibliographicCitationW. H. O. (2007). Health risks of heavy metals from long-range transboundary air pollution. World Health Organization Regional Office Europe. Available: http://www. euro. who. Int/__data/assets/pdf_ file/0007/78649 E, 91044.
dc.identifier.bibliographicCitationWHO (World Health Organization). 2008. Cd. In Guidelines for Drinking-Water Quality, 3rd edn. Incorporating 1st and 2nd addenda. Vol. 1. Recommendations. World Health Organization, Geneva, Switzerland, pp. 317–319. ISBN:978 92 4 154761 1. http://www.who.int/water_sanitation_health/dwq/fulltext.pdf
dc.identifier.bibliographicCitationWeiner, S., & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in mineralogy and geochemistry, 54(1), 1-29.
dc.identifier.bibliographicCitationWeiner, S., Levi-Kalisman, Y., Raz, S., & Addadi, L. (2003). Biologically formed amorphous calcium carbonate. Connective Tissue Research, 44(1), 214-218.
dc.identifier.bibliographicCitationWright, L. P., Zhang, L., Cheng, I., Aherne, J., & Wentworth, G. R. (2018). Impacts and effects indicators of atmospheric deposition of major pollutants to various ecosystems-a review. Aerosol Air Qual. Res, 18(8), 1953-1992.
dc.identifier.bibliographicCitationWright, D. T. (1999). The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126(1-4), 147-157.
dc.identifier.bibliographicCitationWoodward, V. P., Williams, R. C., & Amjad, Z. (2010). 21 Analytical Techniques for Identifying Mineral Scales and Deposits.
dc.identifier.bibliographicCitationXiangliang, P., & Pan, X. L. (2009). Micrologically induced carbonate precipitation as a promising way to in situ immobilize heavy metals in groundwater and sediment.
dc.identifier.bibliographicCitationXiao, J., Wang, Z., Tang, Y., & Yang, S. (2010). Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite. Langmuir, 26(7), 4977-4983.
dc.identifier.bibliographicCitationXu, A. W., Antonietti, M., Cölfen, H., & Fang, Y. P. (2006). Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Advanced Functional Materials, 16(7), 903-908.
dc.identifier.bibliographicCitationXu, H., Peng, X., Bai, S., Ta, K., Yang, S., Liu, S., ... & Guo, Z. (2019). Precipitation of calcium carbonate mineral induced by viral lysis of cyanobacteria: evidence from laboratory experiments. Biogeosciences, 16(4), 949-960.
dc.identifier.bibliographicCitationYang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the total environment, 642, 690-700
dc.identifier.bibliographicCitationYoshida, N., Higashimura, E., & Saeki, Y. (2010). Catalytic biomineralization of fluorescent calcite by the thermophilic bacterium Geobacillus thermoglucosidasius. Appl. Environ. Microbiol., 76(21), 7322-7327.
dc.identifier.bibliographicCitationYongsheng, Q. (2008). Study on the influences of combined pollution of heavy metals Cu and Pb on soil respiration. Journal of Anhui Agricultural Sciences, 36(3), 1117.
dc.identifier.bibliographicCitationYoshimura, M., Sujaridworakun, P., Koh, F., Fujiwara, T., Pongkao, D., & Ahniyaz, A. (2004). Hydrothermal conversion of calcite crystals to hydroxyapatite. Materials Science and Engineering: C, 24(4), 521-525.
dc.identifier.bibliographicCitationZerner, B. (1991). Recent advances in the chemistry of an old enzyme, urease. Bioorganic chemistry, 19(1), 116-131.
dc.identifier.bibliographicCitationZhang, W., Jiang, F., & Ou, J. (2011). Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125.
dc.identifier.bibliographicCitationZhang, Z., Xie, Y., Xu, X., Pan, H., & Tang, R. (2012). Transformation of amorphous calcium carbonate into aragonite. Journal of Crystal Growth, 343(1), 62-67.
dc.identifier.bibliographicCitationZhang, Y., Zhang, S., Wang, R., Cai, J., Zhang, Y., Li, H., ... & Jiang, Y. (2016). Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Soil Science and Plant Nutrition, 62(5-6), 432-439.
dc.identifier.bibliographicCitationZhao, Y., Yao, J., Yuan, Z., Wang, T., Zhang, Y., & Wang, F. (2017). Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research, 24(1), 372-380.
dc.identifier.bibliographicCitationZhou, W., Apkarian, R., Wang, Z. L., & Joy, D. (2006). Fundamentals of scanning electron microscopy (SEM). In Scanning microscopy for nanotechnology (pp. 1-40). Springer, New York, NY.
dc.identifier.bibliographicCitationZhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Frontiers in bioengineering and biotechnology, 4, 4
dc.identifier.bibliographicCitationZimmerman, S. A., Ferry, J. G., & Supuran, C. T. (2007). Inhibition of the archaeal β-class (Cab) and γ-class (Cam) carbonic anhydrases. Current topics in medicinal chemistry, 7(9), 901-908.
dc.identifier.bibliographicCitationZingarelli, J. C. (2005). Detection of residual stress in SiC MEMS using micro-Raman spectroscopy (No. AFIT/GEO/ENP/05-06). AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT/DEPT OF ENGINEERING PHYSICS.
dc.identifier.bibliographicCitationZingarelli, J. C. (2005). Detection of residual stress in SiC MEMS using micro-Raman spectroscopy (No. AFIT/GEO/ENP/05-06). AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING AND MANAGEMENT/DEPT OF ENGINEERING PHYSICS.
dc.identifier.bibliographicCitationZhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Frontiers in bioengineering and biotechnology, 4, 4.
dc.identifier.bibliographicCitationZhu, X., Li, W., Zhan, L., Huang, M., Zhang, Q., & Achal, V. (2016). The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil. Environmental Pollution, 219, 149-155.
dc.identifier.bibliographicCitationAPHA-AWWA-WEF (2012). “Standard Methods for the Examination of Water and Wastewater”. 22th Edition. USA, 3-67 y 3-68, method 3500-Cr B.
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record