Show simple item record

dc.contributor.advisorRoman Campos, Francisco José
dc.contributor.advisorGallego Garces, Andres
dc.creatorRangel Retavisca, John Alejandro
dc.date.accessioned2020-08-27T21:55:19Z
dc.date.available2020-08-27T21:55:19Z
dc.date.created2019-07-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78298
dc.descriptionEn un esfuerzo por caracterizar el comportamiento del canal entre dos antenas parabólicas cercanas en función de diferentes parámetros del sistema (distancia, ángulo de acimut y polarización) como un modelo paramétrico es abordado en esta tesis. Las antenas se consideraron como un sistema lineal invariante en el tiempo (LTI) y su acoplamiento se representó mediante el parámetro S de transmisión, que se obtuvo para varios escenarios por medio de simulación. El Método Cauchy se aplica para extraer los polos del Método de Expansión de Singularidad (SEM) en el dominio de la frecuencia. Se obtiene un modelo racional para cada configuración de parámetros. Las resonancias extraídas de los datos del parámetro S se validaron comparando la respuesta del sistema y su reconstrucción.
dc.description.abstractIn an effort to characterize the behavior of the channel between two nearby parabolic antennas as a function of different system parameters (distance, azimuth angle and polarization) as a parametric model is presented. The antennas were considered as a Linear Time Invariant (LTI) System and its coupling was represented by the transmission S-parameter, which was obtained for several scenarios by simulation mean. The Cauchy Method is applied to extract the Singularity Expansion Method (SEM) poles in frequency domain. A rational model is obtained for each parameter configuration. The resonances extracted of the S-parameter data was validated comparing the system response and its reconstruction
dc.format.extent93
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.subjectMétodo cauchy
dc.subjectAntena parabólica
dc.subjectSistema lineal invariante en el tiempo (LTI)
dc.subjectMétodo de expansión de singularidad (SEM)
dc.subjectModelo paramétrico
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc621 - Física aplicada
dc.subject.ddc006 - Métodos especiales de computación
dc.titleDesarrollo de un modelo paramétrico para determinar el comportamiento del canal entre dos antenas parabólicas en emplazamientos próximos usando el método de Cauchy
dc.typeOther
dc.rights.spaAcceso abierto
dc.contributor.institutionUniversidad Nacional de Colombia - Sede Bogotá
dc.subject.keywordCauchy method
dc.subject.keywordParabolic antenna
dc.subject.keywordLinear time invariant (LTI) System
dc.subject.keywordsingularity expansion method (SEM)
dc.subject.keywordParametric model
dc.type.spaOtro
dc.type.hasversionAccepted Version
dc.contributor.gruplacGrupo de Investigación EMC-UN
dc.description.additionalLínea de Investigación: Compatibilidad Electromagnética
dc.coverage.modalityMaestria
dc.rights.accessRightsOpen Access
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.identifier.bibliographicCitation[1] E.I. Muehldorf, “The phase center of horn antennas,” IEEE Transactions on Antennas and Propagation, Vol. AP-18, Nov. 1970, pp. 753-760.
dc.identifier.bibliographicCitation[2] D. Carter, “Phase centers of microwave antennas,” IRE Transactions on Antennas and Propagation, Vol. AP-4, Oct. 1956, pp. 597-600.
dc.identifier.bibliographicCitation[3] L. Slama, R. Galuscak and P. Hazdra, “Design of a prime-focus feed with backward radiation,” DUBUS Magazine 3/2008, pp. 51-57.
dc.identifier.bibliographicCitation[4] G. L. James, D. P. S. Malik, “Towards the theorical design of splash-plate feeds,” Electronics Letters, Vol. 11, Nov. 1975, pp. 593-594.
dc.identifier.bibliographicCitation[5] G. L. James, D. P. S. Malik, “Splash plate feed design,” European Microwave conference, 1975.
dc.identifier.bibliographicCitation[6] A. Kumar, “performance of reflector antenna with splash plate feed,” Antennas and Propagation Society International Symposium, Vol. 22, 1984.
dc.identifier.bibliographicCitation[7] P. Tang, “A design of high performance splash-plate feed for parabolic reflector antenna,” Pacific conference on antennas and propagation, 2017.
dc.identifier.bibliographicCitation[8] C.A. Balanis, “Antenna Theory Analysis and Design,” 2nd Edition, Section 12.9, pp. 808-806.
dc.identifier.bibliographicCitation9] A. Cardama, “Antennas”, 2nd Edition, Section 6.4.
dc.identifier.bibliographicCitation[10] I. Wood, D. Johns, “Combining differential/integral methods and time/frequency analysis to solve complex antennas problems,” Wireless and microwave technology conference, April 2012.
dc.identifier.bibliographicCitation[11] D. Montgomery, “Diseño y análisis de experimentos,” Ed. Noriega, 2004
dc.identifier.bibliographicCitation[12] Stat-Ease. Inc, “Two-level factorial tutorial,” Design Expert 10 user’s guide, 2016.
dc.identifier.bibliographicCitation[13] J. Proakis and M. Salehi, Fundamentals of Communication Systems. Pearson Prentice Hall, 2005.
dc.identifier.bibliographicCitation[14] G. Strang, “Introduction to linear algebra,” vol. 4. Wellesley, MA: Wellesley - Cambridge Press, 2016.
dc.identifier.bibliographicCitation[15] C. E. Baum, “On the singularity expansion method for the solution of electromagnetic interaction problems,” EMP Interaction Note 8, Air Force Weapons Laboratory, Kirkland AFB, New Mexico, 1971
dc.identifier.bibliographicCitation[16] F. M. Tesche, “On the singularity expansion method as applied to electromagnetic scat- tering from thin-wires,” AFWL Interaction Note 102, April 1972.
dc.identifier.bibliographicCitation[17] F. Tesche, “On the analysis of scattering and antenna problems using the singularity expansion technique,” IEEE Transactions on Antennas and Propagation, vol. 21, no. 1, pp. 53 – 62, jan 1973.
dc.identifier.bibliographicCitation[18] M. Van Blaricum and R. Mittra, “A technique for extracting the poles and residues of a system directly from its transient response,” IEEE Transactions on Antennas and Propagation, vol. 23, no. 6, pp. 777 – 781, nov 1975.
dc.identifier.bibliographicCitation[19] F. Tesche, “The far-field response of a step-excited linear antenna using sem [singularity expansion method],” IEEE Transactions on Antennas and Propagation, vol. 23, no. 6, pp. 834 – 838, nov 1975.
dc.identifier.bibliographicCitation[20] K. Michalski and L. Pearson, “Equivalent circuit synthesis for a loop antenna based on the singularity expansion method,” IEEE Transactions on Antennas and Propagation, vol. 32, no. 5, pp. 433 – 441, may 1984.
dc.identifier.bibliographicCitation[21] H. Friis, “A note on a simple transmission formula,” Proceedings of the IRE, vol. 34, no. 5, pp. 254 – 256, may 1946.
dc.identifier.bibliographicCitation[22] A. Shlivinski, E. Heyman, and R. Kastner, “Antenna characterization in the time do- main,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 7, pp. 1140 –1149, jul 1997.
dc.identifier.bibliographicCitation[23] N. F. Reginelli, T. K. Sarkar, M. S. Palma, “Interpolation and extrapolation of S-parameter data of a microwave filter in the frequency domain using the Cauchy method,” IEEE Antennas Wirel. Propag. Lett, 2012, pp. 1137-1140.
dc.identifier.bibliographicCitation[24] W. Lee, T. K. Sarkar, H. Moon, and M. Salazar-Palma, “Computation of the natural poles of an object in the frequency domain using the Cauchy method,” IEEE Antennas Wirel. Propag. Lett, 2012, pp. 1137-1140.
dc.identifier.bibliographicCitation[25] K. Kottapalli, T. K. Sarkar, Y. Hua, E. K. Miller, and G. J. Burke, “Accurate computation of wide-band response of electromagnetic systems utilizing narrow-band information,” IEEE Trans. Microw. Theory Tech., vol. 39, Apr. 1991, no. 4, pp. 682-687.
dc.identifier.bibliographicCitation[26] J. Yang and T. K. Sarkar, “Interpolation/extrapolation of radar cross section (RCS) data in the frequency domain using the Cauchy method,” IEEE Trans. Antennas Propag., vol. 55, Oct. 2007, no. 10, pp. 2844-2851.
dc.identifier.bibliographicCitation[27] Pintelon, R., & Schoukens, “System identification: a frequency domain approach,” Book. John Wiley & Sons, 2004.
dc.identifier.bibliographicCitation[28] G. T. Stefano, G., Bjorn, “Passive Macromodeling: Theory and Applications. Wiley, Hoboken,” New Jersey, 2016.
dc.identifier.bibliographicCitation[29] Trauth, Martin H. “Matlab Recipes for Earth Sciences”. New York: Springer, 2006.
dc.contributor.generoMasculino
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/2.5/co/This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit