Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRamírez Osorio, Jorge Mario
dc.contributor.advisorPoveda Jaramillo, Germán
dc.contributor.authorVallejo Bernal, Sara María
dc.date.accessioned2020-09-02T13:54:50Z
dc.date.available2020-09-02T13:54:50Z
dc.date.issued2020-06-25
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78356
dc.description.abstractWe derive and solve a linear stochastic model for the evolution of discharge and runoff in an order-one watershed. The system is forced by a statistically stationary compound Poisson process of instantaneous rainfall events. The relevant time scales are hourly or larger, and for large times, we show that the discharge approaches a limiting invariant distribution. Hence any of its properties are with regard to a rainfall-runoff system in hydrological equilibrium. We give an explicit formula for the Laplace transform of the invariant density of discharge in terms of the catchment area, the residence times of water in the channel and the hillslopes, and the mean frequency and the probability distribution of rainfall inputs. As a study case, we consider a watershed under a stationary rainfall regime in the tropical Andes and test the probability distribution predicted by the model against the corresponding seasonal statistics. A mathematical analysis of the invariant distribution is performed yielding formulas for the invariant moments of discharge in terms of those of the rainfall. The asymptotic behavior of probabilities of extreme events of discharge is explicitly derived for heavy-tailed and light-tailed families of distributions of rainfall inputs. The scaling structure of discharge is asymptotically characterized in terms of the parameters of the model and under the assumption of wide sense scaling for the precipitation amounts and the inverse of the residence time in the channel. The results give insights into the conversion of uncertainty inherent to the rainfall-runoff dynamics, and the roles played by different geophysical variables. The ratio between the mean frequency of rainfall events to the residence time along the hillslopes is shown to largely determine the qualitative properties of the distribution of discharge. Finally, a purely theoretical approach is proposed to reinterpret the hydrological concept of return period in the context of time-continuous Markov processes.
dc.description.abstractEn este trabajo derivamos y resolvemos un modelo estocástico lineal para la evolución del caudal y la escorrentía en una cuenca hidrográfica de orden uno. El sistema es forzado por un proceso de Poisson compuesto, estadísticamente estacionario, de eventos de lluvia instantáneos. Las escalas de tiempo relevantes son horarias o mayores, y cuando el tiempo tiende a infinito, mostramos que el caudal se acerca a una distribución invariante límite. Por tanto, cualquiera de sus propiedades está relacionada con un sistema de lluvia-escorrentía en equilibrio hidrológico. Damos una fórmula explícita para la transformada de Laplace de la densidad invariante del caudal en términos del área de la cuenca, los tiempos de residencia del agua en el canal y las laderas, y la frecuencia media y la distribución de probabilidad de los eventos de lluvia. Como caso de estudio, consideramos una cuenca bajo un régimen de lluvias estacionario en los Andes tropicales y evaluamos la distribución de probabilidad predicha por el modelo con las estadísticas estacionales correspondientes. Realizamos un análisis matemático de la distribución invariante obteniendo fórmulas para los momentos invariantes del caudal en términos de los de la precipitación. El comportamiento asintótico de las probabilidades de los eventos extremos del caudal se deriva explícitamente para familias de distribuciones de lluvia de cola pesada y cola ligera. La estructura de escalamiento del caudal se caracteriza asintóticamente en términos de los parámetros del modelo y bajo el supuesto de escalamiento simple para la precipitación y el inverso del tiempo de residencia en el canal. Los resultados dan una idea de la conversión de la incertidumbre inherente a la dinámica lluvia-escorrentía y los roles que juegan las diferentes variables geofísicas. Mostramos que la relación entre la frecuencia media de los eventos de lluvia y el tiempo de residencia en las laderas determina en gran medida las propiedades cualitativas de la distribución del caudal. Finalmente, proponemos un enfoque puramente teórico para reinterpretar el concepto hidrológico de período de retorno en el contexto de procesos de Markov continuos en el tiempo.
dc.format.extent66
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.titleA conceptual stochastic rainfall-runoff model applied to tropical watersheds
dc.typeOtro
dc.rights.spaAcceso abierto
authorProfile.contributor.emailsmvallejob@unal.edu.co
dc.description.additionalÁrea de investigación: Hidrología estocástica
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemática Aplicada
dc.description.degreelevelMaestría
dc.publisher.departmentEscuela de matemáticas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAldous, D. (1989). Probability Approximations via the Poisson Clumping Heuristic. Applied Mathematical Sciences. Springer-Verlag.
dc.relation.referencesÁlvarez-Villa, O. D., Vélez, J. I., and Poveda, G. (2011). Improved long-term mean annual rainfall fields for Colombia. International Journal of Climatology, 31(14):2194–2212.
dc.relation.referencesBasso, S., Frascati, A., Marani, M., Schirmer, M., and Botter, G. (2015). Climatic and landscape controls on effective discharge. Geophysical Research Letters, 42(20):8441–8447.
dc.relation.referencesBeerends, R., Morsche, H., van den Berg, J., and van de Vrie, E. (2003). Fourier and Laplace Transforms. Fourier and Laplace Transforms. Cambridge University Press.
dc.relation.referencesBeven, K. J. (2011). Rainfall-runoff modelling: the primer. John Wiley & Sons.
dc.relation.referencesBhattacharya, R. N. and Waymire, E. C. (2009). Stochastic processes with applications, volume 61. Siam.
dc.relation.referencesBhunya, P., Panda, S., and Goel, M. (2011). Synthetic unit hydrograph methods: a critical review. The Open Hydrology Journal, 5(1).
dc.relation.referencesBingham, N., Goldie, C., and Teugels, J. (1989). Regular Variation. Number no. 1 in Encyclopedia of Mathematics and its Applications. Cambridge University Press.
dc.relation.referencesBotter, G. (2010). Stochastic recession rates and the probabilistic structure of stream flows. Water Resources Research, 46(12).
dc.relation.referencesBotter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A. (2013). Resilience of river flow regimes. Proceedings of the National Academy of Sciences, 110(32):12925–12930.
dc.relation.referencesBotter, G., Porporato, A., Daly, E., Rodriguez-Iturbe, I., and Rinaldo, A. (2007a). Probabilistic characterization of base flows in river basins: Roles of soil, vegetation, and geomorphology. Water resources research, 43(6).
dc.relation.referencesBotter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A. (2007b). Basin-scale soil moisture dynamics and the probabilistic characterization of carrier hydrologic flows: Slow, leaching-prone components of the hydrologic response. Water resources research, 43(2).
dc.relation.referencesBotter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A. (2009). Nonlinear storage-discharge relations and catchment streamflow regimes. Water resources research, 45(10).
dc.relation.referencesBotter, G., Zanardo, S., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A. (2008). Ecohydrological model of flow duration curves and annual minima. Water Resources Research, 44(8).
dc.relation.referencesCho, H.-K., Bowman, K. P., and North, G. R. (2004). A comparison of gamma and lognormal distributions for characterizing satellite rain rates from the tropical rainfall measuring mission. Journal of Applied meteorology, 43(11):1586–1597.
dc.relation.referencesChung, K. L. (2001). A course in probability theory. Academic press.
dc.relation.referencesClaps, P., Giordano, A., and Laio, F. (2005). Advances in shot noise modeling of daily streamflows. Advances in Water Resources, 28(9):992–1000.
dc.relation.referencesDavis, M. H. (1984). Piecewise-deterministic Markov processes: A general class of non-diffusion stochastic models. Journal of the Royal Statistical Society. Series B (Methodological), pages 353–388.
dc.relation.referencesDooge, J. C. (1959). A general theory of the unit hydrograph. Journal of geophysical research, 64(2):241–256.
dc.relation.referencesDurrett, R. (1999). Essentials of stochastic processes, volume 1. Springer.
dc.relation.referencesEagleson, P. S. (1972). Dynamics of flood frequency. Water Resources Research, 8(4):878–898.
dc.relation.referencesGupta, V. K., Troutman, B. M., and Dawdy, D. R. (2007). Towards a nonlinear geophysical theory of floods in river networks: an overview of 20 years of progress. In Nonlinear dynamics in geosciences, pages 121–151. Springer New York, New York, NY.
dc.relation.referencesGupta, V. K. and Waymire, E. (1990). Multiscaling properties of spatial rainfall and river flow distributions. Journal of Geophysical Research: Atmospheres, 95(D3):1999–2009.
dc.relation.referencesGupta, V. K. and Waymire, E. (1998). Spatial variability and scale invariance in hydrologic regionalization. Scale dependence and scale invariance in hydrology, pages 88–135.
dc.relation.referencesGupta, V. K., Waymire, E., and Wang, C. (1980). A representation of an instantaneous unit hydrograph from geomorphology. Water resources research, 16(5):855–862.
dc.relation.referencesHrachowitz, M. and Clark, M. P. (2017). Hess opinions: The complementary merits of competing modelling philosophies in hydrology. Hydrology and Earth System Sciences, 21(8):3953–3973.
dc.relation.referencesJacobsen, M. (2006). Point process theory and applications. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA.
dc.relation.referencesJames, W. P., Winsor, P. W., and Williams, J. R. (1987). Synthetic unit hydrograph. Journal of Water Resources Planning and Management, 113(1):70–81.
dc.relation.referencesKallenberg, O. (2002). Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, second edition.
dc.relation.referencesKoch, R. W. (1985). A stochastic streamflow model based on physical principles. Water Resources Research, 21(4):545–553.
dc.relation.referencesKonecny, F. (1992). On the shot-noise streamflow model and its applications. Stochastic Hydrology and Hydraulics, pages 1–15.
dc.relation.referencesLeopold, L. B. and Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications, volume 252. US Government Printing Office.
dc.relation.referencesLindgren, G. (2006). Lectures on stationary stochastic processes. PhD course of Lund’s University.
dc.relation.referencesMcGuire, K., McDonnell, J. J., Weiler, M., Kendall, C., McGlynn, B., Welker, J., and Seibert, J. (2005). The role of topography on catchment-scale water residence time. Water Resources Research, 41(5).
dc.relation.referencesMenabde, M. and Sivapalan, M. (2001). Linking space–time variability of river runoff and rainfall fields: a dynamic approach. Advances in Water Resources, 24(9-10):1001–1014.
dc.relation.referencesMoradkhani, H. and Sorooshian, S. (2009). General review of rainfall-runoff modeling: model calibration, data assimilation, and uncertainty analysis. In Hydrological modelling and the water cycle, pages 1–24. Springer.
dc.relation.referencesMorlando, F., Cimorelli, L., Cozzolino, L., Mancini, G., Pianese, D., and Garofalo, F. (2016). Shot noise modeling of daily streamflows: A hybrid spectral-and time-domain calibration approach. Water Resources Research, 52(6):4730–4744.
dc.relation.referencesNakagawa, K. (2005). Tail probability of random variable and laplace transform. Applicable Analysis, 84(5):499–522.
dc.relation.referencesNash, J. (1957). The form of the instantaneous unit hydrograph. International Association of Scientific Hydrology, Publ, 3:114–121.
dc.relation.referencesNash, J. (1959). Systematic determination of unit hydrograph parameters. Journal of Geophysical Research, 64(1):111–115.
dc.relation.referencesNguyen, P., Thorstensen, A., Sorooshian, S., Hsu, K., and AghaKouchak, A. (2015). Flood forecasting and inundation mapping using hiresflood-uci and near-real-time satellite precipitation data: The 2008 iowa flood. Journal of Hydrometeorology, 16(3):1171–1183.
dc.relation.referencesPeckham, S. D. and Gupta, V. K. (1999). A reformulation of horton’s laws for large river networks in terms of statistical self-similarity. Water Resources Research, 35(9):2763–2777.
dc.relation.referencesQuintero, F., Krajewski, W. F., Mantilla, R., Small, S., and Seo, B.-C. (2016). A spatial–dynamical framework for evaluation of satellite rainfall products for flood prediction. Journal of Hydrometeorology, 17(8):2137–2154.
dc.relation.referencesRamirez, J. M. and Constantinescu, C. (2020). Dynamics of drainage under stochastic rainfall in river networks. Stochastics and Dynamics, page 2050042.
dc.relation.referencesReggiani, P., Sivapalan, M., and Hassanizadeh, S. M. (1998). A unifying framework for watershed thermodynamics: balance equations for mass, momentum, energy and entropy, and the second law of thermodynamics. Advances in Water Resources, 22(4):367–398.
dc.relation.referencesRice, S. O. (1944). Mathematical analysis of random noise. Bell System Technical Journal, 23(3):282–332.
dc.relation.referencesRinaldo, A., Marani, A., and Rigon, R. (1991). Geomorphological dispersion. Water Resources Research, 27(4):513–525.
dc.relation.referencesRodriguez-Iturbe, I., Porporato, A., Ridolfi, L., Isham, V., and Coxi, D. (1999). Probabilistic modelling of water balance at a point: the role of climate, soil and vegetation. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 455, pages 3789–3805. The Royal Society.
dc.relation.referencesRodríguez-Iturbe, I. and Valdes, J. B. (1979). The geomorphologic structure of hydrologic response. Water resources research, 15(6):1409–1420.
dc.relation.referencesSaco, P. M. and Kumar, P. (2002). Kinematic dispersion in stream networks 1. coupling hydraulic and network geometry. Water Resources Research, 38(11).
dc.relation.referencesSalisu, D., Supiah, S., Azmi, A., et al. (2010). Modeling the distribution of rainfall intensity using hourly data. American Journal of Environmental Sciences, 6(3):238–243.
dc.relation.referencesSato, K. and Yamazato, M. (1984). Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type. Stochastic processes and their applications, 17(1):73–100.
dc.relation.referencesSnyder, F. F. (1938). Synthetic unit-graphs. Eos, Transactions American Geophysical Union, 19(1):447–454.
dc.relation.referencesSuweis, S., Bertuzzo, E., Botter, G., Porporato, A., Rodriguez-Iturbe, I., and Rinaldo, A. (2010). Impact of stochastic fluctuations in storage-discharge relations on streamflow distributions. Water resources research, 46(3).
dc.relation.referencesTe Chow, V., Maidment, D. R., and Mays, L. W. (1962). Applied hydrology. Journal of Engineering Education, 308:1959.
dc.relation.referencesUrrea, V., Ochoa, A., and Mesa, O. (2019). Seasonality of rainfall in colombia. Water Resources Research.
dc.relation.referencesVan der Tak, L. D., Bras, R. L., et al. (1989). Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph. In Hydrology and Water Resources Symposium 1989: Comparisons in Austral Hydrology; Preprints of Papers, page 399. Institution of Engineers, Australia.
dc.relation.referencesWalsh, J. B. (2012). Knowing the odds: an introduction to probability, volume 139. American Mathematical Soc.
dc.relation.referencesZakian, V. (1969). Numerical inversion of laplace transform. Electronics Letters, 5(6):120–121.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalhidrología estocástica
dc.subject.proposalstochastic hydrology
dc.subject.proposalrainfall-runoff modeling
dc.subject.proposalmodelo de lluvia-escorrentía
dc.subject.proposalPoisson precipitation
dc.subject.proposalPrecipitación de Poisson
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
authorProfile.contributor.genderFemenino


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit