Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRomero Malagón, Eduard Ricardo
dc.contributor.authorTorres Quezada, Henry
dc.date.accessioned2020-09-03T20:36:02Z
dc.date.available2020-09-03T20:36:02Z
dc.date.issued2020-02-20
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78375
dc.description.abstractCoulometry is one of the analytical techniques used by the National Metrology Institutes as a pure substance analysis tool, and they are being accepted and implemented in chemical analysis laboratories. This document presents a review of the coulometric titration method with emphasis on constant current coulometry, as a technique of special interest for the determination of the amount of substance, recognized by the Consultative Committee for Amount of Substance: Metrology in Chemistry (CCQM) as a potential technique to be considered primary method of measurement. The document is organized in four chapters: in chapter one a description is made of the analytical methods, especially electrochemicals and their usefulness in the metrological area. A comparison is made between chemical and physical measurements and a description of the measurement methods and the importance of the primary measurement methods for the determination of the amount of substance. In chapter two, coulometry is presented as an analytical technique, types of coulometry, characteristics and variants of each. Chapter three documents the constant current coulometry, showing the different instruments used to perform the measurement, such as electronic equipment, indicator electrodes and the titration cell where the electrochemical reaction is carried out. Finally, chapter four is presented, dedicated to the evaluation of the possible sources that can contribute to the estimation of uncertainty in measurement in a coulometric titration at constant current, which can be taken into account in a future implementation of the method of coulometric measurement
dc.description.abstractLa coulometría es una de las técnicas analíticas utilizadas por los Institutos Nacionales de Metrología como herramienta de análisis de sustancias puras, y están siendo aceptada e implementadas en los laboratorios de análisis químico. En el presente documento se presenta una revisión del método de titulación coulométrico haciendo énfasis en coulometría a corriente constante, como técnica de especial interés para la determinación de la cantidad de sustancia, reconocida por el Comité Consultivo para la Cantidad de Sustancia: metrología en química (CCQM por sus siglas en inglés) como técnica potencial para ser considera método primario de medición. El documento está organizado en cuatro capítulos: en el capítulo uno se realiza una descripción de los métodos analíticos, especialmente los electroquímicos y su utilidad en el área metrológica. Se hace una comparación entre las mediciones químicas y físicas y se presenta una descripción de los métodos de medición y la importancia de los métodos primarios de medición para la determinación de la cantidad de sustancia. En el capítulo dos, se presenta la coulometría como técnica analítica, tipos de coulometría, características y variantes de cada una. El capítulo tres documenta la coulometría a corriente constante, mostrando los diferentes instrumentos utilizados para realizar la medición, tales como equipos electrónicos, electrodos indicadores y la celda de valoración donde se lleva a cabo la reacción electroquímica. Por último, se presenta el capítulo cuatro, dedicado a evaluación de las posibles fuentes que puedan aportar a la estimación de la incertidumbre en la medición en una titulación coulométrica a corriente constante, las cuales pueden ser tenidas en cuenta en una futura implementación del método de medición coulométrico.
dc.format.extent74
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleDocumentación de métodos de titulación coulométrico a corriente constante para la determinación de la cantidad de sustancia
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupLABORATORIO DE INVESTIGACIÓN EN COMBUSTIBLES Y ENERGÍA
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesM. Máriássy, K. W. Pratt, and P. Spitzer, “Major applications of electrochemical techniques at national metrology institutes,” Metrologia, vol. 46, pp. 199–213, 2009.
dc.relation.referencesBIPM, “Comité consultatif pour la quantité de matière (CCQM)” Sèvres Cedex, France, 1995.
dc.relation.referencesBureau International des Poinds et Mesures BIPM, “The International System of Units.” International Committee for Weights and Measures CIPM, Paris, pp. 114–115, 2006.
dc.relation.referencesPTB-Mitteilungen, “Experimentos para el nuevo SI, el Sistema Internacional de Unidades,” 2016.
dc.relation.referencesJ. M. L. Romero and R. J. Lazos Martínez, “Constantes fundamentales: lá ultima frontera para el Sistema Internacional de Unidades,” 2011.
dc.relation.referencesM. J. T. Milton and T. J. Quinn, “Primary methods for the measurement of amount of substance,” Metrologia, vol. 38, no. 4, pp. 289–296, 2001.
dc.relation.referencesG. I. Terentiev, A. V Sobina, A. J. Shimolin, and V. M. Zyskin, “Application of Coulometric Titration for the Certification of Primary Reference Materials of Pure Substances,” Am. J. Anal. Chem., vol. 5, no. June, pp. 559–565, 2014.
dc.relation.referencesS. P. Sobral, P. P. Borges, I. Cristina, and S. Fraga, “Determinação Coulométrica Da Pureza Do Hidrogenoftalato De Potássio Para O Desenvolvimento De Material De Referência Certificado De Padrões Primários,” Analysis, pp. 9–11, 2009.
dc.relation.referencesP. P. Borges, I. C. S. Fraga, V. De Souza, S. Pereira Sobral, J. Cesar Dias, and B. S. R. Marques, “Análise da pureza do cloreto de potássio pelo sistema primário de coulometria,” 14o Encontro Nacional de Química Analítica, Joao Pessoa - Brasil, 2007.
dc.relation.referencesM. Máriássy, A. Skutina, and P. P. Borges, “Final report on key comparison CCQM-K34.2: Assay of potassium hydrogen phthalate,” Metrologia, vol. 47, no. 1A, pp. 08003–08003, 2010.
dc.relation.referencesM. Máriássy, L. Vyskočil, and A. Mathiasová, “Link to the SI via primary direct methods,” Accredit. Qual. Assur., no. 5, pp. 437–440, 2000.
dc.relation.referencesW. Richter, “Primary methods of measurement in chemical analysis,” Accredit. Qual. Assur., vol. 2, no. 8, pp. 354–359, 1997.
dc.relation.referencesBIPM, “Report of the 20th meeting. Consultative Committee for Amount of Substance: metrology in chemistry (CCQM).,” 2014.
dc.relation.referencesA. Takatsu, S. Eyama, and M. Saeki, “Preparation and certification of creatinine and urea reference materials with certified purity as a traceability source in clinical chemical measurements,” Accredit. Qual. Assur., vol. 13, no. 7, pp. 409–413, 2008
dc.relation.referencesR. Yanet et al., “Trazabilidad en las mediciones químicas,” Redalyc, pp. 1–20, 2006.
dc.relation.referencesI. Asimov and M. I. Villena, Breve historia de la química: Introducción a las ideas y conceptos de la química. Alianza Editorial, 2010.
dc.relation.referencesS. K. Lower, Electrochemistry a Chem1 Supplement Text. Simon Fraser University, 1994.
dc.relation.referencesK.-H. Lubert and K. Kalcher, “History of Electroanalytical Methods,” Electroanalysis, no. april 26, pp. 1937–1946, 2010.
dc.relation.referencesM. Valcárcel, Principles of Analytical Chemistry, vol. 53. 1989.
dc.relation.referencesM. Valcárcel and S. Cárdenas, Automatización y miniaturización en química analítica - Miguel Valcárcel - Google Libros, Primera Ed. Barcelona: Springer-Verlag Ibérica, 2000.
dc.relation.referencesG. K. Budnikov and V. I. Shirokova, “Electroanalytical Methods, Contents,” J. Anal. Chem., vol. 45, no. 10, pp. 973–984, 2006.
dc.relation.referencesJ. Wang, Analytical Electrochemistry, Third Edition. New York, USA: John Wiley & Sons, 2006.
dc.relation.referencesD. A. Skoog, F. J. Holler, and T. A. Nieman, Principios de Análisis Instrumental, Quinta Edi. Madrid- España: McGraw-Hill, 2001.
dc.relation.referencesK. A. Rubinsun and J. F. Rubinsun, Analisis Instrumental. Madrid- España: Prentice Hall, 2001.
dc.relation.referencesL. S. Horst Czichos, Tetsuya Saito, Springer Handbook of Materials Measurement Methods. Springer Science, 2006.
dc.relation.referencesB. N. Taylor, “The International System of Units (SI) NIST Special Publication 330. 2008 Edition,” 2008.
dc.relation.referencesM. Stock, R. Davis, E. De Mirandés, and M. J. T. Milton, “The revision of the SI - The result of three decades of progress in metrology,” Metrologia, vol. 56, no. 2. Institute of Physics Publishing, 22-Feb-2019.
dc.relation.referencesJ. Fischer and J. Ullrich, “The new system of units,” Nat. Phys., vol. 12, no. 1, pp. 4–7, 2016.
dc.relation.referencesA. P. Castorena, C. N. De Metrología, L. Cués, and E. Marqués, “Trazabilidad en las mediciones químicas,” pp. 1–20, 2006.
dc.relation.referencesP. De Bièvre, R. Dybkaer, A. Fajgelj, and D. B. Hibbert, “Metrological traceability of measurement results in chemistry: Choncepts and implementation (IUPAC Technical Report),” Pure Appl. Chem., vol. 83, no. 10, pp. 1873-1935 (1891), 2011.
dc.relation.referencesP. De Bièvre, R. Kaarls, H. S. Peiser, S. D. Rasberry, and W. P. Reed, “Measurement principles for traceability in chemical analysis,” Accredit. Qual. Assur., vol. 1, no. 1, pp. 3–13, Jan. 1996.
dc.relation.references“CODATA Value: Avogadro constant.” [Online]. Available: https://physics.nist.gov/cgi-bin/cuu/Value?na. [Accessed: 01-Jan-2020].
dc.relation.referencesN. Wheatley, “A sorites paradox in the conventional definition of amount of substance,” Metrologia, vol. 48, no. 3, 2011.
dc.relation.referencesBureau International des Poinds et Mesures (BIPM), “Resolution 1 of the 24th CGPM,” 2011.
dc.relation.references“BIPM - SI base unit (mole).” [Online]. Available: https://www.bipm.org/metrology/chemistry-biology/units.html. [Accessed: 25-Jan-2020].
dc.relation.referencesCCQM, “Mise en pratique - mole - Appendix 2 - SI Brochure,” 2019.
dc.relation.referencesJoint Committee For Guides In Metrology (JCGM), “International vocabulary of metrology — Basic and general concepts and associated terms (VIM),” vol. 3, no. VIM. p. 104, 2008.
dc.relation.references“CODATA Value: Faraday constant.” [Online]. Available: https://physics.nist.gov/cgi-bin/cuu/Value?f. [Accessed: 12-Jan-2020].
dc.relation.referencesB. King, “Review of the potential of titrimetry as a primary method,” Metrologia, vol. 34, no. 1, p. 77, 1997
dc.relation.referencesGoldbook, “Coulometric Detection Method in Electrochemical Analysis,” IUPAC Compend. Chem. Terminol., vol. 62, p. 2186, 2014.
dc.relation.referencesP. C. Hauser, “Coulometry,” Sensors And Actuators, pp. 234–240, 2005.
dc.relation.referencesH. L. Kies, “Coulometry,” J. Electroanal. Chem., vol. 4, pp. 257–286, 1962.
dc.relation.referencesK. W. Pratt, “Automated , high-precision coulometric titrimetry Part I . Engineering and implementation,” Anal. Chim. Acta, vol. 289, pp. 125–134, 1994.
dc.relation.referencesK. W. Pratt, “Automated, high-precision coulometric titrimetry part II. Strong and weak acids and bases,” Anal. Chim. Acta, vol. 289, no. 2, pp. 135–142, 1994.
dc.relation.referencesI. C. Serta Fraga et al., “Certified reference material of bioethanol for metrological traceability in electrochemical parameters analyses,” Talanta, vol. 99, pp. 99–103, 2012.
dc.relation.referencesP. P. Borges and W. B. D. S. Junior, “International comparisons for coulometric determinations of dichromate used to develop certified reference material for oxidation-reduction titration,” J. Braz. Chem. Soc., vol. 25, no. 6, pp. 1101–1107, 2014.
dc.relation.referencesT. L. Frazzini, M. K. Holland, J. R. Weiss, and C. E. Pietri, “A digital integrator for controlled-potential coulometry,” Anal. Chim. Acta, vol. 129, no. C, pp. 125–132, 1981.
dc.relation.referencesK. Kellner, T. Posnicek, J. Ettenauer, K. Zuser, and M. Brandl, “A New, Low-cost Potentiostat for Environmental Measurements with an Easy-to-use PC Interface,” Procedia Eng., vol. 120, pp. 956–960, Jan. 2015.
dc.relation.referencesO. V. Shlyamina, G. K. Ziyatdinova, S. G. Abdullina, and G. K. Budnikov, “Use of galvanostatic coulometry for determining nitroxoline,” J. Anal. Chem., vol. 62, no. 10, pp. 957–959, 2007.
dc.relation.referencesS. G. Abdullina, I. K. Petrova, O. A. Lira, G. K. Ziyatdinova, and H. C. Budnikov, “Use of galvanostatic coulometry in the analysis of arbidol drug,” J. Anal. Chem., vol. 67, no. 3, pp. 269–272, 2012.
dc.relation.referencesA. Siddiqui and D. C. Shelly, “Amperostatic-potentiometric detection for micro high- performance liquid chromatography,” J. Chromatogr., vol. 691, pp. 55–65, 1995.
dc.relation.referencesEdress-Hauser, “Medición del pH en procesos industriales. Guía técnica y de selección para distintas industrias y aplicaciones,” Barcelona (España), 2001.
dc.relation.referencesP. Bruttel and R. Schlink, “Water Determination by Karl Fischer Titration.” Metrhom. 2003.
dc.relation.referencesS. Yazgan, A. Bernreather, F. Ulberth, and H. Isendard, “Water – an important parameter for the preparation and proper use of certified reference materials,” Food Chem., vol. 96, no. 3, pp. 411–417, Jun. 2006.
dc.relation.referencesK. Schöffski, “New Karl Fischer reagents for the water determination in food,” Food Control, vol. 12, no. 7, pp. 427–429, Oct. 2001.
dc.relation.referencesC. C. Chan, H. Lam, Y. C. Lee, and Z. Xue-Ming, Analytical Method Validation and Instrument Performance Verication. New Jersey: Wiley-Intercience, 2004.
dc.relation.referencesH. Wang, K. Ma, W. Zhang, J. Li, G. Sun, and H. Li, “Certification of the reference material of water content in water saturated 1-octanol by Karl Fischer coulometry, Karl Fischer volumetry and quantitative nuclear magnetic resonance,” Food Chem., vol. 134, no. 4, pp. 2362–2366, 2012.
dc.relation.referencesL. M. Schwartz and J. E. Harrar, “Predictive coulometry based on first-order kinetic linearization,” Anal. Chim. Acta, vol. 155, no. C, pp. 66–77, 1983.
dc.relation.referencesA. J. Bard, G. Inzelt, and F. Scholz, “Electrochemical Dictionary,” 2012.
dc.relation.referencesS. Recknagel, M. Breitenbach, J. Pautz, and D. Lück, “Purity of potassium hydrogen phthalate, determination with precision coulometric and volumetric titration-A comparison,” Anal. Chim. Acta, vol. 599, no. 2, pp. 256–263, 2007.
dc.relation.referencesT. Asakai, M. Murayama, and T. Tanaka, “Determination of the purity of acidimetric standards by constant-current coulometry, and the intercomparison between CRMs,” Accredit. Qual. Assur., vol. 12, no. 3–4, pp. 151–155, 2007.
dc.relation.referencesT. Yoshimori, Takayoshi; Tanaka, “Precise Coulometric Titration of the Potassium Hydrogen Phthalate (NBS-SRM 84d). The use of the Faraday Constant as an International standard,” Bull. Chem. Soc. Japa, vol. 52 (5), pp. 1366–1379, 1979.
dc.relation.referencesP. P. Borges, I. C. S. Fraga, S. P. Sobral, B. D. S. R. Marques, J. C. Dias, and V. S. Cunha, “Constant-Current Coulometry Studies for Assay of Primary Reference Materials To Develop Standards for Titrimetric Analysis,” Simposio de Metrología, pp. 1–5, 2008.
dc.relation.referencesP. P. Borges et al., “Caracterizacao de KCl e solucoes de HCl por titulacao coulométrica para o monitoramento da qualidade da água,” Congresso da Qualidade em Metrologia, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial - Inmetro, São Paulo, Brasil CARACTERIZAÇÃO, 2008.
dc.relation.referencesP. P. Borges, I. C. S. Fraga, B. S. R. Marques, and J. C. Dias, “O Sistema Primario de Coulometria e o seu uso na certificacao de materiais de referencia,” Congresso da Qualidade em Metrologia Rede Metrológica do Estado de São Paulo - REMESP, São Paulo, Brasil, pp. 1–3, 2007.
dc.relation.referencesP. P. Borges and W. B. da Silva, “Metrological evaluation of the certification of primary reference materials characterized by high precision constant current coulometry for the reliability of the titration analyses,” J. Appl. Electrochem., vol. 44, no. 12, pp. 1411–1420, 2014.
dc.relation.referencesA. Reyes, G. Moreno, R. Arvizu, and M. Pedrero, “Optimización del sistema primario de titulación coulombimétrica a corriente constante del cenam.,” Simp. Metrol., 2001.
dc.relation.referencesM. Elba Pedrero, “Caracterización De Las Fuentes De Incertidumbre Y Optimización Del Sistema Primario De Titulación Coulombimétrica,” 2002.
dc.relation.referencesE. Kirowa-Eisner, D. Tzur, and V. Dozortsev, “New developments in coulometric titrations non-isolated counter electrodes,” Anal. Chim. Acta, vol. 359, no. 1–2, pp. 115–123, 1998.
dc.relation.referencesH. Parham and B. Zargar, “Simultaneous coulometric determination of iodide, bromide and chloride in a mixture by automated coupling of constant current chronopotentiometry and square wave voltammetry,” Anal. Chim. Acta, vol. 464, no. 1, pp. 115–122, 2002.
dc.relation.referencesS. Carroll, M. M. Marei, T. J. Roussel, R. S. Keynton, and R. P. Baldwin, “Microfabricated electrochemical sensors for exhaustive coulometry applications,” Sensors Actuators, B Chem., vol. 160, no. 1, pp. 318–326, 2011.
dc.relation.referencesR. C. Alkire and D. M. Kolb, Advances in Electrochemical Science and Engineeriing. Vol 7, vol. 7. Wile-VCH Verlang GmbH, 2001.
dc.relation.referencesC. Amendment, “Electrochemical Detection (Amperometry, Voltametry and Coulometry),” in Electrochemical Detection, 2016, pp. 291–321.
dc.relation.referencesKenneth A. Rubinson and J. F. Rubisson, Análisis Instrumental. Madrid, España: Prentice Hall, 2001.
dc.relation.referencesG. J. Hills and D. J. G. Ives, “The hydrogen–calomel cell. Part II. The calomel electrode,” J. Chem. Soc., vol. 0, no. 0, pp. 311–318, 1951.
dc.relation.referencesR. G. Bates and R. A. Robinson, “Standardization of silver-silver chloride electrodes from 0 to 60 °C,” J. Solution Chem., vol. 9, no. 7, pp. 455–456, Jul. 1980.
dc.relation.referencesR. G. Bates and V. E. Bower, “Treasure of the past VI. Standard potential of the silver-silver chloride electrode from 0o to 95o C and the thermodynamic propiesties of dilute hydrochloric acid solution,” J. Res. Natl. Inst. Stand. Technol., vol. 53, no. 2, pp. 471–478, 2001.
dc.relation.referencesP. J. Brewer, D. Stoica, and R. J. C. Brown, “Sensitivities of key parameters in the preparation of silver/silver chloride electrodes used in Harned cell measurements of pH,” Sensors, vol. 11, no. 8, pp. 8072–8084, 2011.
dc.relation.referencesP. J. Brewer and R. J. C. Brown, “Effect of structural design of silver/silver chloride electrodes on stability and response time and the implications for improved accuracy in pH measurement,” Sensors, vol. 9, no. 1, pp. 118–130, 2009.
dc.relation.referencesS. K. Lower, “Electrochemistry,” Simon Fraser Univ., pp. 1–39, 1994.
dc.relation.referencesDaniel C. Harris, Quantitative Chemical Analysis, Seventh Ed. New York, USA: W. H. Freeman and Company, 2007.
dc.relation.referencesW. C. Milner and G. Phillips, Coulometry in Analytical Chemistry. 1967.
dc.relation.referencesC. N. Reilley and R. W. Schmid, “Chelometric Titrations with Potentiometric End Point Detection: Mercury as pM Indicator Electrode,” Anal. Chem., vol. 30, no. 5, pp. 947–953, 1958.
dc.relation.referencesE. Barsoukov and J. R. Macdonald, Impedance Spectroscopy. 2005.
dc.relation.referencesA. J. Bard and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications. New York, USA: John Wiley & Sons, Inc., 2001.
dc.relation.referencesA. R. Gennaro, J. P. (Joseph P. Remington, and S. Belluci, Remington farmacia. Editorial Médica Panamericana, 2003.
dc.relation.referencesR. L. A. Villela, P. P. Borges, and L. Vyskočil, “Comparison of methods for accurate end-point detection of potentiometric titrations,” J. Phys. Conf. Ser., vol. 575, p. 6, 2015.
dc.relation.referencesW. F. Koch, D. P. Poe, and H. Diehl, “Location of end-points in high precision coulometry,” Talanta, vol. 22, no. 7, pp. 609–611, 1975.
dc.relation.referencesP. P. Borges, I. C. Fraga, A. P. Ordine, H. C. Carnaval, B. S. Rossini, and J. C. Dias, “Potentiometric titration of hydrochloric acid dilute solution using a metrological approach,” XVIII IMEKO WORLD CONGRESS, Rio de Janeiro, Brazil, pp. 4–6, 2006.
dc.relation.referencesCRISON, “La celda de conductividad. Partes esenciales y consideraciones prácticas,” 2004.
dc.relation.referencesMetrohm, “pHt Kit- Give your electrodes a treat.” 2010.
dc.relation.referencesElectrodos Thermo Scientific Orion, “Electrodos de pH,” 2009.
dc.relation.referencesC. M. A. Brett, A. N. A. Maria, and O. Brett, Principles , Methods , and Applications. Great Britain: Bookcraft (Bath) Ltd., 1994.
dc.relation.referencesK. Izutsu, Electrochemistry in Nonaqueous Solutions, vol. 5. Wile-VCH Verlang GmbH and Co, 2002.
dc.relation.referencesH. Suarez, R. Cristancho, and H. Torres, “Implementation of Coulometric Titration system at constant current for developing of certified materials as primary standards,” IOP Con. Ser. J. Phys. Conf. Ser., vol. 786, no. 012041, pp. 1–5, 2017.
dc.relation.referencesJCGM 100:2008, “Evaluation of measurement data — Guide to the expression of uncertainty in measurement,” 2008.
dc.relation.referencesT. Metrol and M. Anal, “Guía Técnica de Trazabilidad Metrológica e Incertidumbre de Medida en las Mediciones Analíticas que Emplean la Técnica de Medición de pH,” pp. 1–47, 2013.
dc.relation.referencesBureau International des Poinds et Mesures (BIPM), “Vocabulario Internacional de Metrología. Conceptos Fundamentales, Generales y Términos Asociados (VIM). GTC-ISO/IEC 99,” 2009.
dc.relation.referencesEURACHEM, Cuantificación de la Incertidumbre en Mediciones Analíticas Eureachem. 2000.
dc.relation.referencesA. Maroto, R. Boqué, J. Riu, and F. X. Rius, “Incertidumbre y precisión,” Tarragona. España, 2000.
dc.relation.referencesCENAM (Centro Nacional de Metrología de México) and EMA (Entidad Mexicana de Acreditación), Guía técnica sobre trazabilidad e incertidumbre en las mediciones analíticas que emplean la técnica de pH, vol. 1. 2008, pp. 1–49.
dc.relation.referencesComité Internacional de Pesas y Medidas (CIPM), “Sistema Internacional de Unidades (SI),” BIPM, Oficina Internacional de Pesas y Medidas (BIPM), pp. 45–46, 2006.
dc.relation.referencesJCGM/ WG 1 and JCGM 100:2008, Evaluación de datos de medición Guía para la Expresión de la Incertidumbre. BIPM, 2008.
dc.relation.referencesEURACHEM/CITAC, “Quantifying Uncertainty in Analytical Measurement,” in English, 2012, vol. 3nd, p. 141.
dc.relation.referencesICONTEC, “Guía Técnica Colombiana GTC 115. Guía sobre la incertidumbre de la medición para principiantes,” Colombia, 2005.
dc.relation.referencesL. A. Rodriguez Saucedo, “Metrología: Conceptos y definiciones,” Bogotá, D.C. (Colombia), 2002.
dc.relation.referencesJoint Committee for Guides in Metrology, “Evaluation of measurement data — Supplement 1 to the ‘Guide to the expression of uncertainty in measurement’ — Propagation of distributions using a Monte Carlo method,” Evaluation, vol. JCGM 101:2, p. 90, 2008.
dc.relation.referencesS. J. Sáez Ruiz and L. Font Avila, “Incertidumbre de la Medición, Teoría y Práctica,” L&S Consultores, Maracay, Estado de Aragua, 2001.
dc.relation.referencesS. a. Margolis, “Amperometric Measurement of Moisture in Transformer Oil Using Karl Fischer Reagents,” Anal. Chem., vol. 67, no. 23, pp. 4239–4246, 1995.
dc.relation.referencesB. N. Taylor and C. E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results,” Washington, D.C., U.S., Thechcnical Note 1297, 1994.
dc.relation.references“BIPM - Metre Convention.” [Online]. Available: https://www.bipm.org/en/worldwide-metrology/metre-convention/. [Accessed: 12-Jan-2020].
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCoulometría
dc.subject.proposalCoulometry
dc.subject.proposalMétodo de medición
dc.subject.proposalMeasurement method
dc.subject.proposalMedición química
dc.subject.proposalChemical measurement
dc.subject.proposalCorriente constante
dc.subject.proposalConstant current
dc.subject.proposalQuantity of substance
dc.subject.proposalCantidad de sustancia
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit