Modelamiento de problemas de radiación/dispersión electromagnética mediante el método de elementos finitos
dc.rights.license | Atribución-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Osorio Lema, Mauricio Andrés |
dc.contributor.advisor | Camargo Mazuera, Liliana Marcela |
dc.contributor.author | Ríos Casas, Julián Andrés |
dc.date.accessioned | 2020-09-07T15:11:25Z |
dc.date.available | 2020-09-07T15:11:25Z |
dc.date.issued | 2020-06-30 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78407 |
dc.description.abstract | En el presente trabajo se estudia el problema de radiación en una cavidad con condiciones de frontera de conductor perfecto e impedancia. Partimos de la ecuaciones de Maxwell en régimen armónico para construir una ecuación diferencial de segundo orden que, junto a las condiciones de frontera mencionadas conforman el problema fuerte. Basados en éste, construimos una formulación variacional cuyo análisis de existencia y unicidad de la solución se lleva a cabo vía alternativa de Fredholm. Posteriormente se deriva una formulación discreta usando los elementos finitos de Nédélec de primer orden, en donde la convergencia de la solución se estudia usando la teoría de operadores colectivamente compactos y finalmente, describimos con detalle la implementación de la formulación discreta usando Matlab, llevando a cabo análisis de error en las normas L^2, H(curl) y estudiamos el orden de convergencia. |
dc.description.abstract | In this document, the cavity radiation problem under perfect conductor and impedance boundary conditions is studied. We start from time-harmonic Maxwell's equations to construct a second order differential equation that, with the afore menctioned boundary conditions, constitutes the strong problem. Based on this, we construct a variational formulation whose existence and uniqueness analysis of the solution is done via Fredholm's alternative. Later, a discrete formulation is built using the Nédélec's first order finite element, where the convergence of the solution is studied using the collectively compact operators theory and finally, we describe a detailed implementation of the discrete formulation using Matlab, analyzing the error estimates in the norms L^2, H(curl;) and studying the convergence rate. |
dc.format.extent | 122 |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ |
dc.subject.ddc | 510 - Matemáticas |
dc.title | Modelamiento de problemas de radiación/dispersión electromagnética mediante el método de elementos finitos |
dc.title.alternative | Modeling of electromagnetic radiation/scattering problems using the finite element method |
dc.type | Otro |
dc.rights.spa | Acceso abierto |
dc.type.driver | info:eu-repo/semantics/other |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Matemática Aplicada |
dc.description.degreelevel | Maestría |
dc.publisher.department | Escuela de matemáticas |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.references | N. Matthew and O. Sadiku, “Elementos de electromagnetismo,” España, Crítica, 2003. |
dc.relation.references | W. Cai, “Numerical methods for Maxwell’s equations in inhomogeneous media with material interfaces,” Journal of Computational Mathematics, pp. 156–167, 2004. |
dc.relation.references | K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966 |
dc.relation.references | J. C. Nédélec, “A new family of mixed finite elements in Rˆ3,” Numerische Mat- hematik, vol. 50, no. 1, pp. 57–81, 1986. |
dc.relation.references | M. Olm, S. Badia, and A. Martín, “On a general implementation of h- and p-adaptive curl-conforming finite elements,” Advances in Engineering Software, vol. 132, pp. 74–91, 06 2019. |
dc.relation.references | P. Monk et al., Finite element methods for Maxwell’s equations. Oxford University Press, 2003. |
dc.relation.references | G. Gatica, Introducción al análisis funcional: teoría y aplicaciones. Reverté. |
dc.relation.references | R. Kress, Linear integral equations. Applied Mathematical Sciences 82, Springer New York, 2 ed., 1999. |
dc.relation.references | W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, 1 ed., 2000. |
dc.relation.references | V. Girault and P. A. Raviart, Finite element methods for Navier - Stokes equations: theory and algorithms. Springer Series in Computational Mathematics, Springer - Verlag, 1986. |
dc.relation.references | J. Necas, “Les méthodes directes en théorie des équations elliptiques,” 1967. |
dc.relation.references | S. Brenner and R. Scott, The mathematical theory of finite element methods, vol. 3. Springer Science & Business Media, 1994. |
dc.relation.references | P. G. Ciarlet, The finite element method for elliptic problems, vol. 4. North - Holland, 1978. |
dc.relation.references | L. Chen, “Finite element methods for Maxwell equations,” Lecture Notes, 2016. |
dc.relation.references | J. C. Nédélec, “Mixed finite elements in rˆ3,” Numerische Mathematik, vol. 35, no. 3, pp. 315–341, 1980. |
dc.relation.references | C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, “Vector potentials in three- dimensional non-smooth domains,” Mathematical Methods in the Applied Sciences, vol. 21, no. 9, pp. 823–864, 1998. |
dc.relation.references | Z. Chen, Q. Du, and J. Zou, “Finite element methods with matching and nonmat- ching meshes for Maxwell equations with discontinuous coefficients,” SIAM Journal on Numerical Analysis, vol. 37, no. 5, pp. 1542–1570, 2000. |
dc.relation.references | P. Jacobsson, “Nédélec elements for computational electromagnetics,” 2007. |
dc.relation.references | J. H. Bramble, J. E. Pasciak, and J. Xu, “The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms,” Mathematics of Computation, vol. 56, no. 193, pp. 1–34, 1991. |
dc.relation.references | A. Kirsch and P. Monk, “A finite element/spectral method for approximating the time-harmonic Maxwell system in Rˆ3,” SIAM Journal on Applied Mathematics, vol. 55, no. 5, pp. 1324–1344, 1995. |
dc.relation.references | S. Caorsi, P. Fernandes, and M. Raffetto, “On the convergence of Galerkin fini- te element approximations of electromagnetic eigenproblems,” SIAM Journal on Numerical Analysis, vol. 38, no. 2, pp. 580–607, 2000. |
dc.relation.references | D. Colton and R. Kress, “Inverse acoustic and electromagnetic scattering theory,” |
dc.relation.references | R. Leis, “Initial boundary value problems in mathematical physics,” Tubner, 1986. |
dc.relation.references | G. Hsiao, P. Monk, and N. Nigam, “Error analysis of a finite element - Integral equation scheme for approximating the time - harmonic Maxwell system,” SIAM journal on numerical analysis, vol. 40, no. 1, pp. 198–219, 2002. |
dc.relation.references | B. López Rodríguez and M. Osorio, “Seminario sobre elementos finitos,” Lecture Notes, 2018. |
dc.relation.references | C. Bahriawati and C. Carstensen, “Three MATLAB implementations of the lowest- order Raviart - Thomas MFEM with a posteriori error control,” Computational Methods in Applied Mathematics Comput. Methods Appl. Math., vol. 5, no. 4, pp. 333–361, 2005. |
dc.relation.references | O. C. Zienkiewicz and R. L. Taylor, The finite element method: solid mechanics, vol. 2. Butterworth - Heinemann, 2000. |
dc.relation.references | S. Nicaise, “Edge elements on anisotropic meshes and approximation of the Maxwell equations,” SIAM Journal on Numerical Analysis, vol. 39, no. 3, pp. 784–816, 2001. |
dc.relation.references | L. Camargo, B. López-Rodrıguez, M. Osorio, and M. Solano, “An HDG method for Maxwell’s equations in heterogeneous media,” |
dc.relation.references | D. Boffi, “A note on the de-Rham complex and a discrete compactness property,” Applied mathematics letters, vol. 14, no. 1, pp. 33–38, 2001. |
dc.relation.references | D. Boffi, F. Brezzi, and L. Gastaldi, “On the convergence of eigenvalues for mixed formulations,” Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, vol. 25, no. 1-2, pp. 131–154, 1997. |
dc.relation.references | D. Boffi, F. Brezzi, and L. Gastaldi, “On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form,” Mathematics of compu- tation, vol. 69, no. 229, pp. 121–140, 2000. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | Ecuaciones de Maxwell |
dc.subject.proposal | Theory of electromagnetism |
dc.subject.proposal | Teoria de electromagnetismo |
dc.subject.proposal | Discreet spaces |
dc.subject.proposal | Espacios discretos |
dc.subject.proposal | Abstract finite elements |
dc.subject.proposal | Elementos finitos abstractos |
dc.subject.proposal | Variational formulation |
dc.subject.proposal | Algebraic analysis |
dc.subject.proposal | Formulación variacional |
dc.subject.proposal | Análisis algebraico |
dc.subject.proposal | Maxwell equations |
dc.type.coar | http://purl.org/coar/resource_type/c_1843 |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit