Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRestrepo Sánchez, Luz Patricia
dc.contributor.authorOlaya Zea, Julio Andrés
dc.date.accessioned2020-09-10T15:14:06Z
dc.date.available2020-09-10T15:14:06Z
dc.date.issued2009-08-20
dc.identifier.citationOlaya Zea. J. Estudio del contenido de fenoles y su actividad antioxidante en 3 variedades de guayaba (psidium guajava L) colombiana en diferentes estados de madurez.2009
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78439
dc.description.abstractGuava (Psidium guajava L) have a valuable functional nutrient content as antioxidants, which have been associated with frequent consumption in the diet with the decrease of cardiovascular diseases, circulatory and cancer , directly related to the cellular damage caused by exposure to high levels of free radicals. This work studied free phenolic content , antioxidant activity and total vitamin C of three varieties of Colombian guava fruit in different stage of ripening of the fruit (green, pintón, ripe and overripe), two varieties with major production in wild (regional red and regional white) and a promising (guavatá Victoria) from the region of Suarez, Santander(Colombia). Ethanolic extracts were obtained for each variety in its different stages and evaluated free phenolics content by the method of Folin Ciocalteu four different antioxidant capacity methods were followed: using the free radical scavenging ABTS●+and DPPH● , ferric reduced antioxidant power (FRAP) and bleaching of β-carotene and the total vitamin C (ascorbic and dehydroascorbic acid) was determined by (HPLC) detector UV-VIS. The variety and ripeness stage showed higher free phenolic content and antioxidant capacity was the regional ripe white and the highest content of total vitamin C was the red ripe. With the variety regional white mature fractions were obtained using a column packed with amberlite ® XAD 2. All fractions obtained previously measured the content of free phenolics, antioxidant activity and preliminary analysis by HPLC UV-VIS and HPLC MS, in order to tentatively identify standards and compared with literature reports. Based on the spectra obtained by HPLC MS could be proposed that the stage guava white mature, there is the possibility of phenolic compounds such as: derivates cafeoylquinic, ellagitannins and flavonols glycosides. Also showing possible compounds like condensed tannins.
dc.description.abstractLa guayaba (Psidium guajava L) presenta un importante contenido de nutrientes funcionales como los antioxidantes, los cuales han sido asociados mediante su consumo frecuente en la dieta con la disminución de enfermedades cardiovasculares y cancerígenas, relacionadas directamente con el daño celular causado por la exposición a altos niveles de radicales libres. El presente trabajo estudió el contenido de compuestos fenólicos, su actividad antioxidante y el contenido total de vitamina C de tres variedades de guayaba producidas en Colombia y su variación de acuerdo al estado de madurez del fruto (verde, pintón, maduro y sobremaduro). Dos variedades de alta producción silvopastoril (regional roja y regional blanca) y una de carácter promisorio (guavatá victoria) provenientes de la región de la hoya del río Suárez, en el departamento de Santander (Colombia). Se obtuvieron extractos etanólicos de cada variedad en sus diferentes estados de madurez y se les evaluó el contenido de fenoles libres por el método de Folin Ciocalteu, la actividad antioxidante por las metodologías de bloqueo de radicales libres ABTS●+ y DPPH●, la capacidad reductora FRAP y decoloración del β-caroteno y el contenido de vitamina C total (acido ascórbico y dehidroascórbico) por HPLC-UV-VIS. La variedad y estado de madurez que mostró mayor valor de contenido de fenoles libres y mejores actividades antioxidantes fue la regional blanca en estado maduro y la que mayor valor de contenido de vitamina C total fue la regional roja madura. Con la variedad regional blanca en estado maduro, se obtuvieron fracciones utilizando una columna rellena con amberlita® XAD 2. A todas las fracciones anteriormente obtenidas se les midió el contenido de fenoles libres y su actividad antioxidante y se les hizo un análisis preliminar por HPLC UV-VIS y HPLC MS, con el fin de identificar tentativamente por comparación con estándares y reportes de literatura los espectros obtenidos por análisis de HPLC MS. Se podría sugerir que en la guayaba blanca en estado maduro, existe posiblemente compuestos fenólicos tales como: derivados del ácido cafeoilquínico, epigalocatequina, quercetina y flavonoles glicosidados. Aunque también se encontraron indicios de la presencia de taninos condensados.
dc.description.sponsorshipAsociación Colombiana de Frutas y Hortalizas (Asohofrucol), Ministerio de Agricultura y Desarrollo Rural de Colombia, DIB (División de Investigación Bogotá Universidad Nacional de Colombia)
dc.format.extent100
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relationActa biol. Colomb., Volumen 17, Número 3, p. 611-624, 2012. ISSN electrónico 1900-1649. ISSN impreso 0120-548X.
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleEstudio del contenido de fenoles y su actividad antioxidante en 3 variedades de guayaba (psidium guajava L) colombiana en 3 estados diferentes de madurez
dc.title.alternativeStudy of the content of phenols and their antioxidant activity in 3 varieties of Colombian guava (psidium guajava L) in 3 different stages of maturity
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.description.projectDesarrollo de productos funcionales promisorios a partir de la guayaba (Psidium guajava L.) para el fortalecimiento de la cadena productiva
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupAlimentos y nutraceuticos
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAaby et al. (2007) Characterization of Phenolic Compounds in Strawberry ( Fragaria ´ ananassa) Fruits by Different HPLC Detectors and Contribution of Individual Compounds to Total Antioxidant Capacity. J. Agric. Food Chem., 55, 4395-4406
dc.relation.referencesA.A. Franke et al. (2004) Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii . Journal of Food Composition and Analysis 17 1–35
dc.relation.referencesAbu-Goukh, A. A., & Abu-Sarra, A. F. (1993) Compositional changes during mango fruit ripening. University of Khartoum. Journal of Agricultural Sciences, 1(1), 33–51.
dc.relation.referencesAlia Tejecal M , Saucedo Veloz .C, Martinez Damina M, Colina Leon, (2008) Temperaturas de almacenamiento en furtos de Mamey pouteria sapota j . Revista Chapingo, serie horticultura 6(1) 73-78
dc.relation.referencesAlothman, M., Bhat, R., Karim, A.A. (2008) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents, Food Chemistry doi: 10.1016/j.food.chem. 12.005
dc.relation.referencesAmarowicz, R., Wanasundara, U., Wanasundara, J., & Shahidi, F. (1993) Antioxidant activity of ethanolic extracts of flaxseed in a â-carotene–linoleate model system. Journal of Food Lipids, 1, 111–117
dc.relation.referencesApak. R et al (2007) Comparative Evaluation of Various Total Antioxidant CapacityAssays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules, 12, 1496-1547
dc.relation.referencesArellano Gomez L,Saucedo Veloz C.Arevalo Galarz L. (2005) . Biochemical and physiological changes during ripening of black sapote fruit (Diospyros digyna Jacq.) Agrociencia , marzo – abril.
dc.relation.referencesArnao, M.B. (2000) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends in Food Science &Technology. 11; 419-421.
dc.relation.referencesBandy, B., & Bechara, E. J. H. (2001). Bioflaavonoid rescue of ascorbate at a membrane interface. Journal of Bioenergertics and Biomembranes, 33, 269–277.
dc.relation.referencesBedgood .D et al (2005) Analytical approaches to the determination of simple biophenols in forest trees such as Acer(maple), Betula(birch), Coniferus, Eucalyptus, Juniperus(cedar), Picea(spruce) and Quercus(oak) The Analyst, 130, 809
dc.relation.referencesBenzie, IF; Strain, JJ. (1996) The ferric reducing ability of plasma as a measure of “antioxidant power:” the FRAP assay. Anal Biochem.;239:70–76.
dc.relation.referencesH.A. Bashir, A.-B.A. Abu-Goukh . (2003). Compositional changes during guava fruit ripening. Food Chemistry. 80 557–563
dc.relation.referencesBerra B, Caruso D, Cortesi N, Fedeli E, Rasetti MF, Galli G. (1995) Antioxidant properties of minor polar components of olive oil on the oxidative processes of cholesterol in human LDL. Riv. It. Sost. Grasse;72: 285- 291.
dc.relation.referencesBrand-Williams W; Cuvelier, M. E;. Berset, C. (1995) Use of a Free Radical Method to Evaluate Antioxidant. Lebensm.-Wiss. u.-Technol.. 28.25-30.
dc.relation.referencesBravo L. (1998) Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev.; 56 (11): 317-333.
dc.relation.referencesCao G, Sofic E, Prior RL. (1997) Antioxidant and prooxidant behaviour of flavonoids: structure-activity relationships. Free Radic. Biol Med; 22: 749-760.
dc.relation.referencesCarter, T. Using Synthetic Antioxidants to Ensure Food Quality technologist, EastmanChemicalCompany.www.foodprocessing.com/whitepapers/2004/23.html 14-07-07
dc.relation.referencesChirinos R. et al. (2009) HPLC-DAD characterisation of phenolic compounds from Andean oca (Oxalis tuberosa Mol.) tubers and their contribution to the antioxidant capacity. Food Chemistry 113 1243–1251
dc.relation.referencesCrozier. A.et al. Antioxidant flavonols from fruits, vegetables and beverages:measurements and bioavailability.(2000)Biol. Res. v.33 n.2 Santiago
dc.relation.referencesCuestas, M; Acuerdo regional de competitividad para la cadena productiva de guayaba, en Boyacá y Santander-Hoya del río Suárez. Corpoica.(2002)
dc.relation.referencesDecker, E. A.The Role of Phenolics, Conjugated Linoleic Acid, Carnosine, and Pyrroloquinoline Quinone as Nonessential Dietary Antioxidants.(1995) Nutrition Reviews. 53 (3) : 49-58.
dc.relation.referencesEidenberger T.(2007).Patente extracto de guayaba. IPC8 Class: AA61K31704FI
dc.relation.referencesFAO-www.rlc.fao.org/es/bases/alimento/print.asp?dd=1803
dc.relation.referencesGarcıa -Alonso, M;Pascual-Teresa S. Santos-Buelga C; Rivas-Gonzalo J. (2004) Evaluation of the antioxidant properties of fruits. Food Chemistry. 84 .. 13–18.
dc.relation.referencesFernandez pachon M,Villaño D. Troncoso A. Garcia Parrilla A. (2006 ) Revisión de los métodos de evaluación de la actividad antioxidante in vitro del vino y valoración de sus efectos in vivo. Archivos Latinoamericanos de nutrición. v 56. 2.
dc.relation.referencesGelves Torres, C. Manejo postcosecha y comercialización de guayaba ( psidum guajava L); convenio Sena-Reino Unido, Cáp. 2;9 y 21.(1998)
dc.relation.referencesGökmen V. ; Kahraman N. ; Demir N. ; Acar J. ; (2000) Enzymatically validated liquid chromatographic method for the determination of ascorbic and dehydroascorbic acids in fruit and vegetables, Journal of chromatography., 881, no 1-2. 309-316
dc.relation.referencesG. Du et al. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. (2009) Food Chemistry. 113 557–562
dc.relation.referencesG .K .Poon (1998).Analysis of catechins in tea extracts by liquid chromatography– electrospray ionization mass spectrometry J . Chromatogr . A 794 63– 74
dc.relation.referencesGutierrez R.M.P et al. (2008)Journal of Ethnopharmacology 117. 1–27
dc.relation.referencesHalliwell, B; Gutteridge, J. (1989) In Free Radicals in Biology and Medicine; Oxford University Press: Oxford, U.K.;35-60
dc.relation.referencesE. Haslam . (2007) Vegetable tannins – Lessons of a phytochemical lifetime Phytochemistry 68 2713–2721
dc.relation.referencesH.Hao et al .(1996) Flavonoids from isodon oresbius. phytochemistry, vol. 42, no. 4, pp. 1247-1248
dc.relation.referencesH.A. Bashir, A.-B.A. Abu-Goukh. (2003) Compositional changes during guava fruit ripening. Food Chemistry 80. 557–563.
dc.relation.referencesHoremans, N.; Foyer, C. H.; Potters, G.; Asard, H. (2000)Ascorbate funtion and associated transport system in plants. Plant Physiol. Biochem. 38, 531-540.
dc.relation.referencesHuang D.Ou B. Prior R. (2005) The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem., 53, 1841-1856.
dc.relation.referencesIbrahim, K. E., Abu-Goukh, A. A., & Yusuf, K. S. (1994) Use of ethylene, acetylene and ether on banana fruit ripening. Journal of Agricultural Sciences, 2(1), 73–92
dc.relation.referencesIsaza H.J .Taninos o polifenoles vegetales. (2007) Scientia Et Technica. Abril vol XIII.n 033. P 13-18
dc.relation.referencesJimenez-Escrig A. Rincón M. Pulido R Saura-Calixto .F. (2001) Guava Fruit (Psidium guajava L.) as a New Source of Antioxidant Dietary Fiber J. Agric. Food Chem., 49, 5489-5493.
dc.relation.referencesJ. Han et al. Characterization of flavonoids in the traditional Chinese herbal medicine-Huangqin by liquid chromatography coupledwith electrospray ionization mass spectrometry. J. Chromatogr. B 848 (2007) 355–362
dc.relation.referencesJ. Zhang et al. (2005) Quantitative and qualitative analysis of flavonoids in leaves of Adinandranitida by high performance liquid chromatography with UV and electrospray ionization tandem mass spectrometry detection Analytica Chimica Acta 532) 97–104
dc.relation.referencesJ.K. Prasain et al.(2009) Liquid chromatography tandem mass spectrometry identfication of proanthocyanidins in rat plasma after oral administration of grape seed extract. Phytomedicine 16 .233–243.
dc.relation.referencesKalt, W.; Forney, C. F.; Martin, A.; Prior, R. L. (1999).Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. J. Agric. Food Chem. 47, 4638- 4644.
dc.relation.references(Kamath.J. Rahul N.Kumar A. Laskshmi M. (2009). Psidium Guajava L. Review. International Journal of Green pharmacy .January /March, vol 2. Issue 1.
dc.relation.referencesKumaran, A., & Karunakaran, J. R.(2006) Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97, 109–114..
dc.relation.referencesKuskoski, et Al. (2005). Determination de la capacidad antioxidante de pulpa de frutos; Ciênc. Tecnol. Aliment., Campinas; 25(4): 726-732.
dc.relation.referencesLa calle A. (2007) Antioxidantes en la alimentación: diferentes formas de expresar la actividad antioxidante.Barcelona. Neiker editores.pdf
dc.relation.referencesLaughton MJ, Evans PJ, Moroney MA, Hoult JRS, Halliwell B. (1991) Inhibition of mammalian 5-lipooxigenase and cyclooxigenase by flavonoids and phenolic dietary additives: relationship to antioxidant activity and to iron reducing ability. Biochem Pharmacol.; 42: 1673-1681
dc.relation.referencesLu, Y., & Foo, L.Y. (1999). Rosmarinic acid derivatives from Salvia officinalis. Phytochemistry, 51, 91–94. 295
dc.relation.referencesMahattanatawee, et al (2006). Total Antioxidant Activity and Fiber Content of Select Florida-Grown Tropical Fruits. J. Agric. Food Chem. 54, 7355-7363.
dc.relation.referencesMariod.A. Matthaus B. (2006) Antioxidant activity of extracts from sclerocarya birrea kernel oil cake. Grasas y Aceites, 57 (4), octubre- diciembre, 361-366 ,
dc.relation.referencesMichael, C. Latham. De las naciones unidas para la agricultura y la alimentación, Roma,.,Organización de las Naciones Unidas para la Agricultura y la Alimentación, Colección FAO Alimentación y nutrición N° 2. 2002
dc.relation.referencesMueller Harvey I. Tannins Hydrolysable.(2001) Animal feed and science technology.91. 3-20
dc.relation.referencesMullen W, Yokota T. Lean M, Crozier A. (2003) Analysis of ellagitannins and conjugates of ellagic acid and quercetin in raspberry fruits by LC–MS Phytochemistry 64 . 617–624
dc.relation.referencesN. Nuengchamnong, K. Ingkaninan. (2009) On-line characterization of phenolic antioxidants in fruit wines from family myrtaceae by liquid chromatography combined with electrospray ionization tandem mass spectrometry and radical scavenging detection .Food Science and Technology. 42. 297–302
dc.relation.referencesNoruma, T.; Kikuchi, M.; Kawakami, Y. (1997) Proton-Donative Antioxidant Activity of Fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). Biochem. Mol. Biol. Int., 42, 361-370.
dc.relation.referencesP. Johnsson et al .Polymeric fractions containing phenol glucosides in axseed (2002) Food Chemistry 76 207–212
dc.relation.referencesPalazón, J. Cusidó. R.M. y C. Morales. Metabolismo y significación biológica de los polifenoles del vino. ACE Revista de enología. www.acenologia.com/ciencia55_2.htm.consultada 22/04/09
dc.relation.referencesPannala AS, Chan TS, O’Brien P, Rice-Evans C. (2001) Flavonoid B-ring chemistry and antioxidant activity: fast-reaction kinetics. Biochem Biophys Res Com.; 282: 1161-1168.
dc.relation.referencesPatthamakanokporn et al. (2008) Journal of Food Composition and Analysis 21. 241–248.
dc.relation.referencesPhipps S. M, Maged H. M. Sharafz, Butterweck V. (2007) Pharmacopeial Assessing Antioxidant Activity in Botanicals and Other Dietary Supplements. Forum 810 of the USPC or the USP Council of Experts Vol. 33(4) July–Aug
dc.relation.referencesPrior, R.L.; Wu, X.; Schaich, K. (2005) Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 53, 4290-4302
dc.relation.referencesQ. Tian et al. (2005) Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis,common-neutral-loss analysis, and selected reaction monitoring. Journal of Chromatography A, 1091.72–82
dc.relation.referencesQ. Tian et al. (2006) Characterization of a new anthocyanin in black raspberries Rubus occidentalis) by liquid chromatography electrosprayionization tandem mass spectrometry. Food Chemistry. 94. 465–468
dc.relation.referencesRe, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9/10), 1231–1237.L.
dc.relation.referencesRestrepo, D. Narváez -Cuenca C, Restrepo-Sánchez L. (2008) Extracción de compuestos con actividad de frutos de guayaba cultivada en Vélez Santander, Colombia. Quím. Nova, in press
dc.relation.referencesRodriguez J. et al. (2007) Identification of secundary metabolites of miconia species (melastomataceae) by esi/ms/ms analyses. Reporte
dc.relation.referencesSalisbury F., y C. Ross. (1996) Fisiología Vegetal. Grupo editorial Iberoamericana.México. 759 p.
dc.relation.referencesSatué-Gracia MT, Heinonen M y Frankel EN. (1997) Anthocyanins as antioxidants on human low-densidity lipoprotein and lecitin-liposome systems. J Agric Food Chem,45: 3362-3367.
dc.relation.referencesShahidi, F.Y; Naczk, (1995) M. Methods of Analysis and Quantification of Phenolic Compounds in Food phenolics. Technomic, Publishing Co. Inc.;Lancaster,. 281-319
dc.relation.referencesSimirgiotis et al. (2009) Identification of phenolic compounds from the fruits of the mountain papaya Vasconcellea pubescens A. DC. grown in Chile by liquid chromatography–UV detection–mass spectrometry. Food Chemistry 115. 775–784.
dc.relation.referencesSoares et al .Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at diferent stages of maturity. (2007) Food Chemistry 100 .15–21.
dc.relation.referencesSoong Y; Barlow J. Antioxidant activity and phenolic content of selected fruit seeds. (2004) Food Chemistry 88 . 411–417..
dc.relation.referencesStangeland et al (2008) Total antioxidant activity in 35 Ugandan fruits and vegetables Food chemistry.
dc.relation.referencesSimunic et al.Determination of anthocyanins in four croatian cultivars of sour cherries ( prunus cerasus). (2005) Eur Food res technol .220:575–578
dc.relation.referencesThaipong K; B oonprakobl U; Cisneros-Zevallos L; Byrne D. (2005) Hydrophilic and lipophilic antioxidants activities guava fruits.vol 36.suppl 4.
dc.relation.referencesThaipong. K; Boonprakoba U. Crosbyb K; Cisneros-Zevallosc L. Byrne D. (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19. 669–675.
dc.relation.referencesTosun. I. Sule Ustun1 N.Tekguler B. (2008) . Physical and chemical changes during ripening of blackberry fruits. Sci. Agric. v.65, n.1, p.87-90,
dc.relation.referencesTsimidou, M.(1998) Polyphenols and quality of virgin olive oil in retrospect. Ital J Food Sci;2,(10): 99-116
dc.relation.referencesVasco C, Ruales J; Kamal-Eldin A. (2008) Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry. 111. 816–823.
dc.relation.referencesVelioglu, Y.S., G Mazza; L. Gao ; B.D. Oomah. (1998) Antioxidant and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem.. 46, 4113-4117
dc.relation.referencesVillamizar Cesar. CIMPA-La agroindustria de la guayaba en la provincia de Vélez, en el departamento de Santander Colombia. Barbosa sep 2000.
dc.relation.referencesVinson, J. A.; Su, X.; Zubik, L.; Bose, P. (2002) Phenol antioxidant Chem, 50, 7449-7454.(18).
dc.relation.referencesWang, S.Y.; Lin, H.S. (2000) Antioxidant activity in fruits and leaves of Blackberry, Raspberry and Strawberry varies with cultivar and development stage. J. Agric. Food Chem. 48, 140-146
dc.relation.referencesWeisz G.M et al. (2009) Identification and quantification of phenolic compounds from sunflower (Helianthus annuus L.) kernels and shells by HPLC-DAD/ESI-MS. Food Chemistry in press .
dc.relation.referencesYang, S. F. (1985) Biosy nthesis and action of ethylene. HortScience.20 (1): 41-45
dc.relation.referencesY.Y. Lim et al. (2006) Antioxidant properties of several tropical fruits: A comparative study. Food Chemistry
dc.relation.referencesY. Matsui et al.(2007) Liquid chromatography-electrospray ionization-tandem mass spectrometry for simultaneous analysis of chlorogenic acids and their metabolites in human plasma, Journal of Chromatography B, 858 96–105
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalGuava
dc.subject.proposalGuayaba
dc.subject.proposalStage of ripeness
dc.subject.proposalEstado de madurez
dc.subject.proposalPhenolic content
dc.subject.proposalContenido de fenoles
dc.subject.proposalAntioxidant activity
dc.subject.proposalActividad antioxidante
dc.subject.proposalVitamina C
dc.subject.proposalVitamin C
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit