Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorHernandez Riveros, Jesus Antonio
dc.contributor.authorRico Mesa, Edgar Mario
dc.date.accessioned2020-09-14T14:21:59Z
dc.date.available2020-09-14T14:21:59Z
dc.date.issued2019-07-15
dc.identifier.citationRico Mesa Edgar Mario, Hernandez-Riveros Jesus-Antonio, Transición entre tipos de locomoción de un robot cuadrúpedo articulado, Tesis para optar al título de: Doctorado en Ingeniería – Sistemas e Informatica presentada a Universidad Nacional,2019,
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78456
dc.description.abstractThe present work is an investigation of the transitions between types of locomotion using central pattern generators in quadruped robots with three joints per leg. Also, central pattern generators are created with systems of first-order differential equations (recurrent neural networks) of 2, 3, 4, 5, 6 neurons. The central generators of patterns or recurrent neural networks are conformed with specific criteria. These recurring neural networks are related to the movements of the robot. Besides, an approach is made to the biomechanics of the dog.
dc.description.abstractEl presente trabajo es una investigación sobre las transiciones entre tipos de locomoción empleando generadores centrales de patrones en robots cuadrúpedos con tres articulaciones por pata. Además, se crean generadores centrales de patrones con sistemas de ecuaciones diferenciales de primer orden (redes neuronales recurrentes) de 2, 3, 4, 5, 6 neuronas. Los generadores centrales de patrones o redes neuronales recurrentes son conformados con criterios específicos. Estas redes neuronales recurrentes se relacionan con los movimientos del robot. También se hace una aproximación a la biomecánica del perro.
dc.format.extent142
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddcInteligencia Artificial
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.titleTransición entre tipos de locomoción de un robot cuadrúpedo articulado
dc.title.alternativeTransition between locomotion types of an articulated quadruped robot
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Inteligencia Artificial
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Sistemas
dc.contributor.corporatenameUniversidad Nacional
dc.contributor.researchgroupGrupo de Investigación en Inteligencia Computacional
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesChoomuang Rerngwut. Distributed Control on a model of Mars Rover Spirit. IEEE Conference on Robotics, Automation and Mechatronics, pp 1-7, 2008.
dc.relation.referencesCappelletto Fuentes, José de la Cruz. Generador de modos de caminado para robot cuadrúpedo basado en principios neurofisiológicos. Tesis para optar título de maestría presentada a la Universidad Simón Bolívar. 2006.
dc.relation.referencesJiménez Estrada Ismael. La locomoción en los vertebrados. Revista Elementos, No 31, pp 28,1998.
dc.relation.referencesKassim, Muhammad Hafiz, Zainal, Norzeti and Arshad Mohd Rizal. (2008) Central Pattern Generator in Bio-Inspired Robot: Simulation Using MATLAB. In: 2nd International Conference Underwater System Technology, pp 1-4,2008.
dc.relation.referencesRico Mesa Edgar Mario. Análisis y aplicación de métodos de desplazamiento en plataformas articuladas basadas en CPG (Central Pattern Generator). Tesis para optar título de Maestría presentada a la Universidad Nacional. Colombia Medellín, 2013.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros. “Reingeniería y desarrollo de un brazo robótico industrial y planteamiento de técnica generadora de movimientos”. Congreso Nacional de Ingeniería Mecánica, Bucaramanga, 2010.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros “Diseño y desarrollo de un robot hexápodo tipo araña aplicando técnicas de CAD y explorando métodos de inteligencia computacional”. Congreso Nacional de Ingeniería Mecánica, Bucaramanga, 2010.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, Goez Edison, Londoño Camilo. “Método de desplazamiento y diseño de una plataforma articulada”. Congreso Colombiano de Computación, Cartagena, 2010.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, Cardona Jaime. Correa Sebastián, “Robot Móvil Solar”. IX Congreso Internacional de Ingeniería Electrónica y Tecnologías de Avanzada – CIETA, Cucuta, 2012.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, Cardona Jaime, Correa Sebastián. “Robot Móvil Solar”, Revista Colombiana de Tecnologías Avanzadas, Número 21, Volumen 1, 2013.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús. -“Los CPG en la robótica articulada”. Jornadas Tecnológicas SENA Antioquia. Octubre, 2012.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros. “Implementación de CPG en robots de locomoción continua y discreta”. III Congreso Internacional de Computación CICOM, 2013.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros. “Implementación de CPG en robots de locomoción continua y discreta”. Revista Vínculos, Numero 18, 2013.
dc.relation.referencesRico Mesa Edgar Mario, Hernández Riveros Jesús, y otros. “Aplicación de CPG en un brazo robótico de cinco articulaciones”. III Congreso Internacional de Ingeniería Mecatrónica y Automática - CIIMA Cartagena 2014.
dc.relation.referencesLiu Chengju, Chen Yifei, Zhang Jiaqi, Chen Qijun. “CPG driven locomotion control of quadruped robot”. IEEE International Conference on Systems, Man, and Cybernetics. USA,. pp 2368 – 2373, 2009.
dc.relation.referencesOwaki Dai, Morikawa Leona, Ishiguro Akio. “Listen to body's message: Quadruped robot that fully exploits physical interaction between legs”. IEEE/RSJ International Conference on Intelligent Robots and Systems, Portugal, pp 1950 – 1955, 2012.
dc.relation.referencesChengju Liu, Qijun Chen, Jiaqi Zhang, “Coupled Van Der Pol oscillators utilized as Central pattern generators for quadruped locomotion”. Chinese Control and Decision Conference, China, pp 3677 – 3682, 2009.
dc.relation.referencesLi Bin, Li Yibin, Rong Xuewen. “Gait generation and transitions of quadruped robot based on Wilson-Cowan weakly neural networks”. IEEE International Conference on Robotics and Biomimetics. China, pp 19- 24, 2010.
dc.relation.referencesSantos Cristina P., Matos Vítor, “Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach”, Robotics and Autonomous Systems Vol 59 No 9, pp 620–634, 2011.
dc.relation.referencesTrong Tran Duc, Mo Koo Ig, Haeng Lee Yoon, Moon Hyungpil , Park Sangdeok, Choon Koo Ja, Ryeol Choi Hyouk. “Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network”. Robotics and Autonomous Systems, pp 1 – 20,2014.
dc.relation.referencesEdin Koco, Alan Mutka, Zdenko Kovacic, New Parameterized Foot Trajectory Shape for Multi-gait Quadruped Locomotion With State Machine-based Approach for Executing Gait Transitions, 22nd Mediterranean Conference on Control and Automation (MED) University of Palermo. June 16-19, pp 1533 - 1539, 2014.
dc.relation.referencesShinya Aoi, Soichiro Fujiki, Daiki Katayama, Tsuyoshi Yamashita.Takehisa Kohda, Kei Senda, Kazuo Tsuchiya , Experimental verification of hysteresis in gait transition of a quadruped robot driven by nonlinear oscillators with phase resetting, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 2280 – 2285, 2011.
dc.relation.referencesXuesong Shao, Qifeng Huang, Zhongdong Wang, Qixin Cai Motion Planning and Compliant Control for a Quadruped Robot on Complicated Terrains, Proceedings of 2014 IEEE International Conference on Mechatronics and Automation, pp 1587 – 1594, 2014.
dc.relation.referencesWright Joe , Jordanov Ivan , Intelligent Approaches in Locomotion - A Review , journal J Intell Robot Syst Springer, pp 1-23,2014.
dc.relation.referencesIjspeert Auke Jan. “Central pattern generators for locomotion control in animals and robots: A review”. Neural Networks, Vol 2, pp 642–653, 2008.
dc.relation.referencesYibin Li, Bin Li, Jiuhong Ruan and Xuewen Rong , Research of Mammal Bionic Quadruped Robots: a Review, 5th International Conference on Robotics, Automation and Mechatronics, pp 166 - 171, 2014.
dc.relation.referencesWu QiDi, Liu ChengJu, Zhang JiaQi , Chen QiJun. “Survey of locomotion control of legged robots inspired by biological concept”. Science in China Series F: Information Sciences, Vol. 52, No. 10, pp 1715-1729, 2009.
dc.relation.referencesYu Junzhi, Tan Min, Chen Jian, Zhang Jianwei. “A Survey on CPG-Inspired Control Models and System Implementation”. IEEE Transactions on neural networks and learning systems,. pp 441 – 456, 2014.
dc.relation.referencesJung Heekyung, Dasen Jeremy S. ,Evolution of Patterning Systems and Circuit Elements for Locomotion, Journal Developmental Cell, Vol 32, 2015, pp 408 – 422.
dc.relation.referencesJimenez Estrada Ismael, La locomoción en los vertebrados. Revista Elementos, No 31, pp 28, 1998.
dc.relation.referencesBuchli J., Auke Jan Ijspeert, “Distributed central pattern generator model for robotics application based on phase sensitivity analysis”. 1st International Workshop Bio-ADIT: Lecture Notes in Computer Science, Volumen 3141, pp 333-349, 2004.
dc.relation.referencesCohen Avis H., Rossignol Serge, Grillner Sten. Neural Control of Rhythmic Movements in Vertebrate. John Wiley & Sons. 500p,1988.
dc.relation.referencesSangbae Kim, Cecilia Laschi, Barry Trimmer, “Soft robotics: a bioinspired evolution in robotics”. Trends in Biotechnology. Volumen 31, No. 5, pp 287 – 294, 2013.
dc.relation.referencesAbdelghani Chibani , Yacine Amirat , Samer Mohammed, Eric Matson, Norihiro Hagita , Marcos Barreto. “Ubiquitous robotics: Recent challenges and future trends”. Robotics and Autonomous Systems. Volumen 61, pp 1162–1172, 2013.
dc.relation.referencesGordon Klaus, Kyrre Glette, Mats Høvin. “Evolving locomotion for a 12-DOF quadruped robot in simulated environments”. BioSystems, Volumen 112, pp 102– 106, 2013.
dc.relation.referencesMostafa Ajallooeian, Majid Nili Ahmadabadi, Babak Nadjar Araabi, Hadi Moradi, “Design, implementation and analysis of an alternation-based Central Pattern Generator for multidimensional trajectory generation”. Robotics and Autonomous Systems. Volumen 6, pp 182–198, 2012.
dc.relation.referencesSantos Cristina P., Matos Vítor. “CPG modulation for navigation and omnidirectional quadruped locomotion”. Robotics and Autonomous Systems. Volumen 60, pp 912–927, 2012.
dc.relation.referencesYibin Li, Bin Li, Jiuhong Ruan , Xuewen Rong. “Research of Mammal Bionic Quadruped Robots: a Review”. IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM). pp 166 – 171, 2011.
dc.relation.referencesLiu Chengju, Chen Qijun, XU Tao. “Locomotion Control of Quadruped Robots Based on Central Pattern Generators”. 8th World Congress on Intelligent Control and Automation. pp 1167 - 1172, 2011.
dc.relation.referencesLibera Fabio Dalla, Takashi Hiroshi Ishiguro , Menegatti Emanuele. “Direct programming of a central pattern generator for periodic motions by touching”. Robotics and Autonomous Systems , Volumen 58 ,pp 847-854, 2010.
dc.relation.referencesAuke Jan Ijspeert ,” Central pattern generators for locomotion control in animals and robots: A review”. Neural Networks, Volumen 21 ,pp 642–653, 2008.
dc.relation.referencesLi Bin, LI Xun, Wang Wei, Tang Yanfen, YANG Yiping, “A Method Based on Center Pattern Generator for Quadruped Leg Control”, IEEE International Conference on Robotics and Biomimetics, pp 2035 - 2040, 2009.
dc.relation.referencesVogelstein R. Jacob, Tenore Francesco, Etienne-Cummings Ralph, M., Lewis Anthony, Cohen Avis H. “Dynamic control of the central pattern generator for locomotion”. Biol Cybern, Volumen 95, pp 555–566, 2006.
dc.relation.referencesJung Heekyung, Dasen Jeremy S. ,Evolution of Patterning Systems and Circuit Elements for Locomotionn Developmental Cell, Vol 32, pp 409 – 422, 2015.
dc.relation.referencesGinnobili Santiago. La teoría de la selección natural darwiniana, Revista Theoria 67, pp 37-58,2010.
dc.relation.referencesOrtega Víctor M. La evolución de la locomoción animal, Revista Ciencia, pp 60 - 67, 2011.
dc.relation.referencesSedeño Bustos Elizabeth. Locomoción de un Robot Cuadrúpedo: Un Enfoque a Celdas Neuronales Analógicas, tesis para optar al título de Maestría en Ciencias a CENIDET. Mexico Cuernavaca, 2011.
dc.relation.referencesBarrientos Antonio. Nuevas aplicaciones de la robótica, Robots de servicio. Revista Avances en robótica y visión por computador, pp 231-256, 2002.
dc.relation.referencesNavarro Oiza Inaki. Robots en el Espacio. Laboratorio de robótica y control - Escuela Técnica Superior de ingenieros de telecomunicación ,Universidad Politécnica de Madrid, , p 22, 2005.
dc.relation.referencesGuimarães Pedro P.S. , Nunes Matheus M. , Galembeck Thaís F. , Kalejaiye Lucas T., Tenório Ruan P.A. , Viana Dianne Magalhães , Vidal Flavio De Barros , Koike Carla M.C. E C. , "A Bio-inspired Apodal and Modular Robot," 2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR) , pp. 61-66, 2016.
dc.relation.referencesAlves Souza Nathan Costa, de Felippes Rodrigo Adriano, de Souza Milzara Menezes, Barca Guimarães Pedro Varella, Magalhães Viana Dianne, Braga de Oliveira Lara Christina, de Sales Duarte Franco David Bevilaqua, Chagas Carla Maria , Cavalcante , Erekobot alfa project: design and construction of a modular robot prototype , ABCM Symposium Series in Mechatronics - Vol. 5 , pp 1219 – 1228, 2012.
dc.relation.referencesShin Jiwon, Rusakov Andrey , Meyer Bertrand, SmartWalker: an intelligent robotic Walker , Journal of Ambient Intelligence and Smart Environments , Vol 1, pp 1–5, 2016.
dc.relation.referencesLiu Xinyu, Zang Xizhe, Zhu Yanhe, Liu Yixiang , Zhao Jie , System overview and walking dynamics of a passive dynamic walking robot with flat feet , Advances in Mechanical Engineering ,Vol. 7, pp 1–10, 2015.
dc.relation.referencesLi Ruiqin, Meng Hongwei , Bai Shaoping , Yao Yinyin , Zhang Jianwei , Stability and Gait Planning of 3-UPU Hexapod Walking Robot , Revista Robotics , pp 1- 17 , 2018.
dc.relation.referencesKumar Arun, Shivraj Palivela, Shivraj Yeole,. (2017). Design of a quadruped robot and its inverse kinematics. International Journal of Mechanical and Production Engineering Research and Development. Vol 7, pp 241-251, 2017.
dc.relation.referencesGonzález Gómez Juan. Robótica modular y locomoción: aplicación a robots ápodos. Tesis para optar al título de doctor. Universidad Autónoma de Madrid, 2008.
dc.relation.referencesGarcía Armada Elena. Optimización de la estabilidad y la velocidad de robots caminantes, Tesis para optar al título de doctor, Universidad Politécnica de Madrid, 2002.
dc.relation.referencesCappelletto, Jose and Estevez, Pablo and Medina, Wilfredis and Fermin, Leonardo and Bogado, Juan and Grieco, Juan and Fernandez-Lopez, Gerardo. Gait Synthesis and Modulation for Quadruped Robot Locomotion Using a Simple Feed-Forward Network. .In Artificial Intelligence and Soft Computing – ICAISC 2006 vol 4029 , p.731--739,2006.
dc.relation.referencesJingtao Lei, Feng Wang, Huangying Yu, Tianmiao Wang, Peijiang Yuan. Energy Efficiency Analysis of Quadruped Robot with Trot Gait and Combined Cycloid Foot Trajectory , Chinese Journal Of Mechanical Engineering, Vol. 27, No. 1, 2014. [60] Dicke E, Byde A, Cliff D y Layzell P ,A. J. Ispeert, M. Murata y N. Wakamiya. Proceedings of Biologically Inspired Approaches to Advanced Information Technology: First International Workshop, BioADIT 2004 LNCS 3141. pp. 364-379, 2004.
dc.relation.referencesVanegas A.Juan C. , Landinez P. Nancy S. , Garzón A. Diego A. , Solución computacional de modelos biológicos de formación de patrones espacio-temporales , Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 2, pp. 182-194, 2009.
dc.relation.referencesOgata Kasuhiko. Ingeniería de Control Moderna, Prentice Hall , pp 1 – 44 , 1998.
dc.relation.referencesGrillner Sten. Neural Networks for vertebrate locomotion. Journal Scientific American , pp 64 – 69, 1996.
dc.relation.referencesSánchez-Martín FM, Jiménez Schlegl P*, Millán Rodríguez F, Salvador-Bayarri J, Monllau Font V, Palou Redorta J, Villavicencio Mavrich H., Historia de la robótica: de Arquitas de Tarento al Robot da Vinci , actas urológicas españolas, vol 31 Num 3, pp185-196, 2007.
dc.relation.referencesGomez Urias Manuel Emilio. Diseño de controladores con compensacion adaptable de gravedad para robots manipuladores, tesis para optar al titulo de Maestro en ciencias. Instituto Politecnico Nacional, Mexico , 2005.
dc.relation.referencesKELLY Rafael , Santibáñez Victor , Control de Movimiento de robots Manipuladores. Prentice Hall, 2003.
dc.relation.referencesFu K S, González R C, Lee C S G. Robótica : Control, detección , visión e inteligencia. Mc Graw Hill, p 599,1988.
dc.relation.referencesPeña Miguel Edgardo, Control de estructura variable con técnicas de lógica borrosa, Tesis para optar al título de Maestría en Ingeniería de Sistemas de Control, Universidad Nacional de San Juan, Argentina, 1998.
dc.relation.references[69] Al-Hadithi Basil M., Suardíaz Muro Juan. Implementación de un controlador robusto de estructura variable mediante FPGA. Revista de Ciencia, Tecnología y Medio Ambiente, Volumen II , 2004.
dc.relation.references[70] Miller, Rex, Fundamentals of Industrial Robots and Robotics, Editorial PWS KENT Pub. Co., USA , 288 p 1988.
dc.relation.references[71] Parra Plazas Jaime Alberto. Nuevas tecnologías de control aplicadas a la robótica. Revista AVANCES Investigación en Ingeniería No. 5, pp 14 – 20, 2006.
dc.relation.references[72] Gomez Martinez Jorge Alberto , Mendoza Avendaño German , Aplicación del control adaptativo a procesos industriales tipo SISO , Monografía para optar al título de especialista en instrumentación y control industrial. Universidad Pontificia Bolivariana , 2009.
dc.relation.referencesRodriguez F, Lopez M. Control Adaptativo y Robusto. Editorial Universidad de Sevilla , España, 368 p ,1996.
dc.relation.referencesT. Yamakawa. Fuzzy controller hardware system. In Proceedings of 2nd IFSA Congress, pp. 827–830, 1987.
dc.relation.referencesKohonen, T. An Introduction to Neural Computing. Revista Neural Networks, Vol. 1, No. 1, pp. 3-16, 1988.
dc.relation.referencesJacques Duysens, Henry W.A.A. Van de Crommert. Neural control of locomotion; Part 1: The central pattern generator from cats to humans, Revista Gait and Posture, vol 7, pp 131–141, 1998.
dc.relation.referencesGrillner S., Wallna P., Saitoha K., Kozlova A., Robertsona B., Neural bases of goaldirected locomotion in vertebrates: an overview, Brain Research Reviews vol 57 , pp 2–12, 2008.
dc.relation.referencesSi Zhang, Junyao Gao, Xingguang Duan, Hui Li, Zhangguo Yu, Xuechao Chen, Jing Li, Huaxin Liu, Xin LI, Yi Liu , Zhe Xu, Trot Pattern Generation for Quadruped Robot Based on the ZMP Stability Margin , Proceedings of 2013 ICME International Conference on Complex Medical Engineering , pp 608 – 613 , 2013.
dc.relation.referencesGrillner S. Zangger P., On the Central Generation of Locomotion in the Low Spinal Cat, Experimenta Brain Research , vol 34, pp 241-261, 1979.
dc.relation.referencesTan, Y.G., Li, Z., Chen, Y.H., Wang, H, Bionic mechanism and kinetic characteristic for quadruped robot dog , 5th Asia International Symposium on Mechatronics , pp 118 – 123, 2015.
dc.relation.referencesR. Cingolani , Bioinspired Approaches for Human-Centric Technologies Cap 5 “Mechanism and Structures: Humanoids and Quadrupeds” , Springer International Publishing Switzerland , pp 133 – 153, 2014.
dc.relation.referencesAoi, S.,Katayama, D.,Fujiki, S., Tomita, N., Funato, T., Yamashita, T.,Senda, K.,Tsuchiya, K. , A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion, Journal of the Royal Society Interface , Vol 10 , pp 1 -12 , 2013.
dc.relation.referencesCamilo Caceres, Juan Puerta, Robinson Jiménez, Diego Rojas , Design of a Bio-Inspired Equine Robot Prototype , International Review of Mechanical Engineering , vol 10 , 2016.
dc.relation.referencesLei, J., Yu, H., Wang, T., Dynamic bending of bionic flexible body driven by pneumatic artificial muscles(PAMs) for spinning gait of quadruped robot , Chinese Journal of Mechanical Engineering , vol 29 , pp 11 – 20, 2016.
dc.relation.referencesNavarro Narvaez Nadia Pamela , Modelado cinemático y dinámico de un manipulador de 5 grados de libertad articulado verticalmente , Tesis para optar al título de Ingeniero Mecánico , Pontificia Universidad Catolica del Peru, Peru, 2011.
dc.relation.referencesByl Katie, Shkolnik Alec, Prentice Sam, Roy Nick, Tedrake Russ ,Reliable Dynamic Motions for a Stiff Quadruped, Springer Tracts in Advanced Robotics, Vol 54 , pp 319-328 , 2009.
dc.relation.referencesBetancourt Herrera J. L., Diseño de mecanismos de palancas asistido por Computadora, Revista Ingeniería Mecánica , Habana , Vol 4, No 3 , pp 35-39 , 2001. [88] Hermoso Prieto Eva, Caracterización mecánica de la madera estructural de Pinus sylvestris L, Tesis para optar al título de Doctor en Ingeniería, Escuela Técnica Superior de Ingenieros de Montes, pp 1 – 277, 2001.
dc.relation.referencesSerón María Marta, Sistemas no lineales, Notas de clase. Universidad Nacional de Rosario, Lab. de Sistemas Dinámicos y Procesamiento de Señales, pp 1-161, 2000.
dc.relation.referencesRamírez Moreno David Fernando, Modelo computacional de la modulación de la transformación sensorial motora, tesis para optar título de doctor presentada a la Universidad del Valle. 2006.
dc.relation.referencesConsolini Luca, Lini Gabriele. A Gauss–Newton Method for the Synthesis of Periodic Outputs with Central Pattern Generators. IEEE transactions on neural networks and learning systems, Vol. 25, No 7, 2014.
dc.relation.referencesSzczecinski Nicholas S · Alexander, Hunt · J. Roger, Quinn D. Design process and tools for dynamic neuromechanical models and robot controllers. Biol Cybern (2017) 111:105–127, 2017.
dc.relation.referencesChunrui Zhang, Zhenzhang Sui, Hongpeng Li. Equivariant bifurcation in a coupled complex-valued neural network rings. Chaos, Solitons and Fractals 98 (2017) 22–30 , 2017.
dc.relation.referencesWenlu Li, Weihai Chen, Xingming Wu,Jianhua Wang , Parameter Tuning of CPGs for Hexapod Gaits Based on Genetic Algorithm , 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA) , pp 45 – 50 , 2015.
dc.relation.references[95] Balarezo Gallardo Francisco, Hernández-Riveros Jesús-Antonio, Evolutionary parameter estimation of coupled non-linear oscillators. Advances in Computing. A. Solano and H. Ordoñez (Eds.): CCC 2017, CCIS 735, pp. 1–15, 2017.Springer International Publishing AG 2017. DOI: 10.1007/978-3-319-66562-7_33.
dc.relation.references[96] Cappelletto Fuentes, José de la Cruz, Generador de modos de caminado para robot cuadrúpedo basado en principios neurofisiológicos. Tesis para optar título de maestría presentada a la universidad Simón Bolívar, 2006.
dc.relation.references[97] Cappelletto J., Estevez P., Grieco J. C., Medina – Melendez W., Fernandez – Lopez G., Gait synthesis in legged robot locomotion using a CPG based model. Revista Bioinspiraction and robotics: walking and climbing robots, Viena , pp 227-246,2007.
dc.relation.referencesBower James M., Beeman David, The book of genesis, Editorial Springer – Verlag, Capítulo 8, 2003.
dc.relation.references[99] Mayor Tomillo Daniel, Diseño de filtros digitales FIR mediante técnicas de computación evolutiva y estudio de su aplicación al procesado de señales biomédicas. Tesis para optar título de Tecnologías de Telecomunicación presentada a la universidad de Valladolid, 2016.
dc.relation.referencesPérez C Marco., Cuevas Erik, Zaldivar Daniel, Segmentación difusa, e-Gnosis [online] Vol. 6, PP 1- 26, 2008.
dc.relation.referencesSanz Delgado José Antonio, Sistemas de clasificación basados en reglas difusas lingüísticas utilizando conjuntos difusos intervalo-valorados y ajuste de la ignorancia. Tesis para optar título de doctor presentada a la Universidad Pública de Navarra, 2011.
dc.relation.referencesRico E.M., Hernandez J.A. , Analysis and Application of a Displacement CPG-Based Method on Articulated Frames, Advances in Computing. Solano A., Ordoñez H. (eds): CCC 2017. CCIS vol 735, pp 495-510, 2017. Springer International Publishing AG 2017. DOI: 10.1007/978-3-319-66562-7_33.
dc.relation.referencesRico E.M., Hernandez J.A. , Modulation of Central Pattern Generators (CPG) for the Locomotion Planning of an Articulated Robot, Advances in Computing. Florez H., Diaz C., Chavarriaga J. (eds): ICAI 2018. CCIS vol 942, pp 321-334, 2017. Springer International Publishing AG 2018. DOI: 10.1007/978-3-030-01535-0_24.
dc.relation.references[104] Marder Eve, Bucher Dirk, Central pattern generators and the control of rhythmic movements, Current Biology Vol 11 No 23, pp 986 – 996, 2001.
dc.relation.referencesS Grillner Sten, Wallen P., Central pattern generators for locomotion, with special reference to vertebrates. Annual review of neuroscience, vol 8, pp 233-261, 1985.
dc.relation.referencesBower James M., Beeman David, The Book of Genesis, Editorial Springer-Verlag, chapter 8, 2003.
dc.relation.referencesAbe, M., Iwama, K., Takato, M., Saito, K., Uchikoba, F., Hardware neural network models of CPG and PWM for controlling servomotor system in quadruped robot (2017) Artificial Life and Robotics, 22 (3), pp. 391-397., 2017.
dc.relation.referencesLuchena, I., Gonzalez-Rodriguez, A.G., Gonzalez-Rodriguez, A., Adame-Sanchez, C., Castillo-Garcia, F.J., A new algorithm to maintain lateral stabilization during the running gait of a quadruped robot, Robotics and Autonomous Systems, 83, pp. 57-72, 2016.
dc.relation.references[109] Li, X., Wang, W., Yi, J., Gait transition based on CPG modulation for quadruped locomotion, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2015-August, art. no. 7222583, pp. 500-505, 2015.
dc.relation.referencesR Harischandra N., Krause, A.F., Dürr, V., Stable phase-shift despite quasi-rhythmic movements: A CPG-driven dynamic model of active tactile exploration in an insect, Frontiers in Computational Neuroscience, 9 (AUGUST), Nbr. 107, 16 p, 2015.
dc.relation.referencesTran, D.T., Koo, I.M., Lee, Y.H., Moon, H., Park, S., Koo, J.C., Choi, H.R., Central pattern generator based reflexive control of quadruped walking robots using a recurrent neural network, Robotics and Autonomous Systems, 62 (10), pp. 1497-1516, 2014.
dc.relation.referencesShahbazi, H., Parandeh, R., Jamshidi, K., Implementation of Imitation Learning using Natural Learner Central Pattern Generator Neural Networks, Neural Networks, 83, pp. 94-108, 2016.
dc.relation.referencesGabrielle J. Gutierrez and Eve Marder, Modulation of a Single Neuron Has State- Dependent Actions on Circuit Dynamics, eNeuro, Vol. 1, pp 1 – 12, 2014.
dc.relation.referencesNachstedt T, Tetzlaff C. and Manoonpong P., Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control. Front. Neurorobot. Vol. 11, pp 1-14, 2017.
dc.relation.referencesYasuhiro Fukuoka, Yasushi Habu, Takahiro Fukui, Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation, Biological Cybernetics, Vol 107, pp 695–710, 2013
dc.relation.referencesDimitar Ralev, José Cappelletto, Juan C Grieco, Novel Certad, María E Cabrera, Analysis of oscillators for the generation of rhythmic patterns in legged robot locomotion, IEEE Latin American Robotics Symposium, pp 125 - 128, 2013.
dc.relation.referencesR. Rojas: Neural Networks, Springer-Verlag, Berlin, 509 p, 1996.
dc.relation.referencesRico E. M. and Hernández-Riveros J. A., Analysis and application of a displacement CPG – based method on articulated frames, Communications in computing and information sciences: Advances in Computing, Ed Springer, 735 p, pp 495 – 510, 2017.
dc.relation.referencesCappelletto J., Estévez P., Grieco J. C., Medina-Meléndez W., Fernández-López G., Gait Synthesis in Legged Robot Locomotion using a CPG-Based Model, Journa Bioinspiration and Robotics: Walking and Climbing Robots, Vienna, pp 227 – 246, 2007.
dc.relation.referencesG. E. Goslow., H. J. Seeherman, C. R. Taylor, M. N. McCutchln, N. C. Heglund , Electrical activity and relative length changes of dog limb muscles as a function of speed and gait, Journal. Exp. Biol. Vol 94, pp 15-42, 1981.
dc.relation.referencesLidia Lukasiak , Andrzej Jakubowski , History of semiconductor , Journal of Telecomunications and Information Technology, pp 3 – 8 , 2010.
dc.relation.referencesYang Gao , Steve Chien, Review on space robotics: Toward top-level science through space exploration , Science Robotics , pp 1-11 , 2017.
dc.relation.referencesJonathan Wood , The top ten advances in materials science, Materials Today , pp 40 – 45 , 2008.
dc.relation.referencesFred Delcomyn , Biologically Inspired Robots , Bioinspiration and Robotics: Walking and Climbing Robots , pp 279 – 300 , 2007.
dc.relation.referencesDario Floeano , Auke Jan Ijspeert , Stefan Schaal, Robotics and Neuroscience , Current Biology , pp 910 – 920 , 2014.
dc.relation.referencesFukuhara, A.,Owaki, D.,Kano, T.,Kobayashi, R.Ishiguro, A. , Spontaneous gait transition to high-speed galloping by reconciliation between body support and propulsion, Journal Advanced Robotics , pp 794 – 808 , 2018.
dc.relation.referencesJia, W. , Huang, Z., Sun, Y.,Pu, H., Toward a novel deformable robot mechanism to transition between spherical rolling and quadruped walking, IEEE International Conference on Robotics and Biomimetics (ROBIO) , pp 1539-1544 , 2017.
dc.relation.referencesJia, W. , Huang, Z., Sun, Y.,Pu, H., Toward a novel deformable robot mechanism to transition between spherical rolling and quadruped walking, IEEE International Conference on Robotics and Biomimetics (ROBIO) , pp 1539-1544 , 2017.
dc.relation.referencesVasconcelos, R.,Hauser, S.,Dzeladini, F.,Mutlu, M.,Horvat, T.,Melo, K.,Oliveira, P.,Ijspeert, A.,Active stabilization of a stiff quadruped robot using local feedback, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) , pp. 4903-4910 , 2017.
dc.relation.referencesLiu, H. , Jia, W., Bi, L. , Hopf oscillator based adaptive locomotion control for a bionic quadruped robot, IEEE International Conference on Mechatronics and Automation (ICMA) , pp. 949-954 , 2017.
dc.relation.referencesLi, H. ,Shi, A.,Dai, Z.,A trajectory planning method for sprawling robot inspired by a trotting animal , Journal of Mechanical Science and Technology , pp 327–334 , 2017.
dc.relation.referencesOwaki, D.,Ishiguro, A. ,A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping, Scientific Reports , pp 1-10 , 2017.
dc.relation.referencesSuzuki, S.,Owaki, D.,Fukuhara, A.,Ishiguro, A.,Quadruped gait transition from walk to pace to rotary gallop by exploiting head movement, Biomimetic and Biohybrid Systems. Living Machines 2016. Lecture Notes in Computer Science , pp 532-539 , 2016.
dc.relation.referencesLi, X.,Wang, W.,Yi, J. Gait transition based on CPG modulation for quadruped locomotion , IEEE International Conference on Advanced Intelligent Mechatronics (AIM) , pp. 500-505 , 2015.
dc.relation.referencesKoo, I.M.,Trong, T.D.,Lee, Y.H.,Moon, H.,Koo, J.,Park, S.,Choi, H.R. , Biologically inspired gait transition control for a quadruped walking robot , Autonomous Robots , pp 169–182 , 2015.
dc.relation.referencesKoco, E.,Mutka, A.,Kovacic, Z., New parameterized foot trajectory shape for multi-gait quadruped locomotion with state machine-based approach for executing gait transitions , IEEE 22nd Mediterranean Conference on Control and Automation , pp. 1533-1539 , 2014.
dc.relation.referencesMcGhee RB and Frank A. On the stability properties of quadruped creeping gaits. Math Biosci, Vol 3, pp 331–351,1968.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSistemas de ecuaciones diferenciales de primer orden
dc.subject.proposalFirst-order differential equation systems
dc.subject.proposalRedes Neuronales Recurrentes
dc.subject.proposalRecurring Neural Networks
dc.subject.proposalQuadruped Robot
dc.subject.proposalRobot Cuadrúpedo
dc.subject.proposalAlgoritmos evolutivos
dc.subject.proposalEvolutionary Algorithms
dc.subject.proposalLógica Difusa
dc.subject.proposalDiffuse Logic
dc.subject.proposalCPG
dc.subject.proposalCPG
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit