Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMontealegre Rubio, Wilfredo
dc.contributor.authorForonda Obando, Esteban
dc.date.accessioned2020-09-15T13:47:09Z
dc.date.available2020-09-15T13:47:09Z
dc.date.issued2020-09-11
dc.identifier.citationForonda, Esteban (2020). Optimización topológica aplicada al diseño de turbomáquinas considerando restricciones estructurales y sobre el fluido (tesis de maestría). Universidad Nacional de Colombia
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78461
dc.description.abstractThe performance of turbomachines is highly dependent on the design of the rotor and optimizing its interaction with the fluid has been an active research field in academia and industry. The Topology Optimization Method has proven successful in the design of rotors of radial flow machines, including numerical and experimental performance assessment and allowing the creation of non-intuitive optimum geometries. Usually, the optimization process is developed from the fluid perspective, for objective functions such as energy dissipation and vorticity; however, this methodology does not guarantee that the structural response satisfies the constraints on factors like stiffness, stress and temperature, requiring an iterative process to obtain a feasible design that is no longer optimum. In the present work, the two physics of this problems are coupled by considering the fluid-structure interaction. The effect of including the structural response on the optimum designs is verified, consolidating a robust methodology that can be extended to solve more complex physics such as fluid compressibility, flow transients and turbulence.
dc.description.abstractEl desempeño de las turbomáquinas depende fuertemente del diseño del rotor, por lo que la optimización de su interacción con el fluido ha sido un campo de investigación activo, tanto en la academia como en la industria. El Método de Optimización Topológica ha demostrado ser exitoso en el diseño de rotores de máquinas de flujo radial, incluyendo la evaluación de desempeño numérico y experimental y permitiendo la creación de geometrías no intuitivas. Comúnmente, el proceso de optimización es desarrollado desde la perspectiva del fluido, para funciones objetivo como la disipación de energía y la vorticidad; sin embargo, esta metodología no garantiza que la respuesta estructural satisface las restricciones en factores como rigidez, esfuerzos y temperaturas, requiriendo un proceso iterativo para obtener una solución factible pero que no es óptima. En este trabajo, las dos físicas de este problema son acopladas al considerar la interacción fluido-estructura. Así, se verifica el efecto de incluir la respuesta estructural en el problema de optimización, consolidando una metodología robusta que puede ser extendida a resolver físicas más complejas, como compresibilidad del fluido, flujo transitorio y turbulencia.
dc.format.extent170
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleOptimización topológica aplicada al diseño de turbomáquinas considerando restricciones estructurales y sobre el fluido
dc.title.alternativeTopology optimization applied to the design of turbomachines considering structural and fluid restrictions
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería Mecánica
dc.contributor.researchgroupDiseño y Optimización Aplicada (DOA)
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Ingeniería Mecánica
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAkl, W. (2010). Topology optimization of fluid-loaded shells by minimizing the acoustic coupling to the fluid domain. International Journal of Computational Methods in Engineering Science and Mechanics, 11(6), 337–353. https://doi.org/10.1080/15502287.2010.516791
dc.relation.referencesAlnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., … Wells, G. N. (2015). The FEniCS Project Version 1.5. Archive of Numerical Software, 3(100), 9–23. https://doi.org/10.11588/ans.2015.100.20553
dc.relation.referencesAlonso, D. H., Sá, L. F. N., Saenz, J. S. R., & Silva, E. C. N. (2018). Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, 58(6), 2341–2364. https://doi.org/10.1007/s00158-018-2078-0
dc.relation.referencesAlonso, D. H., Sá, L. F. N., Saenz, J. S. R., & Silva, E. C. N. (2019). Topology optimization based on a two-dimensional swirl flow model of Tesla-type pump devices. Computers and Mathematics with Applications, 77(9), 2499–2533. https://doi.org/10.1016/j.camwa.2018.12.035
dc.relation.referencesAndreasen, C. S. (2017). Topology optimization of inertia driven dosing units. Structural and Multidisciplinary Optimization, 55(4), 1301–1309. https://doi.org/10.1007/s00158-016-1573-4
dc.relation.referencesAndreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., & Sigmund, O. (2011). Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43(1), 1–16. https://doi.org/10.1007/s00158-010-0594-7
dc.relation.referencesAnsys Inc. (2017). Ansys Release 17.2 [computer program].
dc.relation.referencesAntonios, F., Avenue, I., Nikolaos, V., & Vassilios, V. (2015). A Novel Methodology to Predict Centrifugal Pump Characteristics Through Navier-Stokes Exact Solutions. International Journal of Engineering Research & Technology IJERT, 4(02), 1110–1116.
dc.relation.referencesAxisa, F., & Antunes, J. (2007). Modelling of mechanical systems: Fluid-Structure Interaction. Elsevier Ltd.
dc.relation.referencesBaklacioglu, T., Turan, O., & Aydin, H. (2015). Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks. Energy, 86, 709–721. https://doi.org/10.1016/j.energy.2015.04.025
dc.relation.referencesBaloni, B. D., Pathak, Y., & Channiwala, S. A. (2015). Centrifugal blower volute optimization based on Taguchi method. Computers and Fluids, 112, 72–78. https://doi.org/10.1016/j.compfluid.2015.02.007
dc.relation.referencesBathe, K. J. (1996). Finite Element Procedures. New Jersey: Prentice Hall.
dc.relation.referencesBendsøe, M. P. (1989). Optimal shape design as a material distribution problem. Structural Optimization, 1(4), 193–202. https://doi.org/10.1007/BF01650949
dc.relation.referencesBendsøe, M. P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71(2), 197–224. https://doi.org/10.1016/0045-7825(88)90086-2
dc.relation.referencesBendsøe, M. P., & Sigmund, O. (1999). Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 69(9), 635–654. https://doi.org/10.1007/s004190050248
dc.relation.referencesBendsøe, M. P., & Sigmund, O. (2003). Topology optimization: theory, methods and applications. In Engineering. https://doi.org/10.1007/978-3-662-05086-6
dc.relation.referencesBoccini, E., Meli, E., Rindi, A., Corbò, S., & Iurisci, G. (2017). Innovative structural topology optimization approach for rotordynamics components using innovative materials and new manufacturing techniques. Proceedings of ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. https://doi.org/10.1115/detc2017-67061
dc.relation.referencesBoccini, E., Meli, E., Rindi, A., Falomi, S., Iurisci, G., & Corb, S. (2017). Structural topology optimization of turbomachinery components using new manufacturing techniques and innovative materials. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 1–13. Charlotte, NC.
dc.relation.referencesBoccini, E., Meli, E., Rindi, A., Pinelli, L., Peruzzi, L., & Arnone, A. (2018). Towards structural topology optimization of rotor blisks. Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 1–10. https://doi.org/10.1115/gt2018-76482
dc.relation.referencesBoom, T. Van Den, & Schutter, B. De. (2007). Optimization in Systems and Control. Delft Center for Systems and Control.
dc.relation.referencesBorrvall, T., & Petersson, J. (2003). Topology optimization of fluids in Stokes flow. International Journal for Numerical Methods in Fluids, 41(1), 77–107. https://doi.org/10.1002/fld.426
dc.relation.referencesBuckney, N., Green, S., Pirrera, A., & Weaver, P. M. (2012). On the structural topology of wind turbine blades. Wind Energy, 16(4), 545–560. https://doi.org/10.1002/we.1504
dc.relation.referencesCampelo, F., Ram, J. A., & Igarashi, H. (2010). A survey of topology optimization in electromagnetics: considerations and current trends. Retrieved from http://www.cpdee.ufmg.br/~fcampelo/files/TR/Campelo2010-NME.pdf
dc.relation.referencesChandrupatla, T. R., & Belegundu, A. (2002). Introduction to Finite Elements in Engineering (3rd ed.). New Jersey: Prentice Hall.
dc.relation.referencesChang, J. W., & Lee, Y. S. (2008). Topology optimization of compressor bracket. Journal of Mechanical Science and Technology, 22(9), 1668–1676. https://doi.org/10.1007/s12206-008-0428-3
dc.relation.referencesCheah, K. W., Lee, T. S., Winoto, S. H., & Zhao, Z. M. (2007). Numerical flow simulation in a centrifugal pump at design and off-design conditions. International Journal of Rotating Machinery, 2007(Article ID 83641), 8. https://doi.org/10.1155/2007/83641
dc.relation.referencesChen, B. C., & Kikuchi, N. (2001). Topology optimization with design-dependent loads. Finite Elements in Analysis and Design, 37(1), 57–70. https://doi.org/10.1016/S0168-874X(00)00021-4
dc.relation.referencesChen, X. M., Lai, X. De, Zhang, X., & Zhou, X. (2013). Evolutionary Topology Optimization Design of Rotary Lobe of Roots Vacuum Pumps. Advanced Materials Research, 798–799, 365–368. https://doi.org/10.4028/www.scientific.net/amr.798-799.365
dc.relation.referencesCho, J., Choi, M., Baik, Y., Lee, G., Ra, H., Kim, B., & Kim, M. (2016). Development of the turbomachinery for the supercritical carbon dioxide power cycle. International Journal of Energy Research, 40, 587–599. https://doi.org/10.1002/er.3453
dc.relation.referencesCook, R. D., Malkus, D. S., Plesha, M. E., & Witt, R. J. W. (2002). Concept and Applications of Finite Element Analysis (4th ed.). John Wiley & Sons, Inc.
dc.relation.referencesDeaton, J. D., & Grandhi, R. V. (2014). A survey of structural and multidisciplinary continuum topology optimization: post 2000. Structural and Multidisciplinary Optimization, 49(1), 1–38. https://doi.org/10.1007/s00158-013-0956-z
dc.relation.referencesDick, E. (2015). Fundamentals of Turbomachines. In Fluid Mechanics and Its Applications (Vol. 109). https://doi.org/10.1016/0300-9467(86)85009-2
dc.relation.referencesDixon, J. a, Verdicchio, J. a, Benito, D., Karl, A., & Tham, K. M. (2004). Recent developments in gas turbine component temperature prediction methods, using computational fluid dynamics and optimization tools, in conjunction with more conventional finite element analysis techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218, 241–255. https://doi.org/10.1243/0957650041200641
dc.relation.referencesDixon, S. L., & Hall, C. A. (2014). Fluid Mechanics and Thermodynamics of Turbomachinery (7th ed.). Elsevier Inc.
dc.relation.referencesDubrovskaya, A., Dongauzer, K., & Faskhutdinov, R. (2017). The design of lightweight gas turbine engine parts using topology optimization. MATEC Web of Conferences, 129. https://doi.org/10.1051/matecconf/201712901067
dc.relation.referencesElsevier. (2019). Scopus. Retrieved May 20, 2016, from http://www.scopus.com/
dc.relation.referencesEschenauer, H. A., & Olhoff, N. (2001). Topology Optimization of Continuum Structures: A review. Applied Mechanics Reviews, 54(4), 331–390. https://doi.org/10.1115/1.1388075
dc.relation.referencesEvgrafov, A. (2005). The Limits of Porous Materials in the Topology Optimization of Stokes Flows. Applied Mathematics & Optimization, 52(3), 263–277. https://doi.org/10.1007/s00245-005-0828-z
dc.relation.referencesFaskhutdinov, R. N., Dubrovskaya, A. S., Dongauzer, K. A., Maksimov, P. V, & Trufanov, N. A. (2017). Topology optimization of a gas-turbine engine part. IOP Conf. Series: Materials Science and Engineering, 177. https://doi.org/10.1088/1757-899X/177/1/012077
dc.relation.referencesGanesan, S., & Tobiska, L. (2017). Finite Elements: Theory and Algorithms. Cambridge University Press.
dc.relation.referencesGersborg-Hansen, A., Sigmund, O., & Haber, R. B. (2005). Topology optimization of channel flow problems. Structural and Multidisciplinary Optimization, 30(3), 181–192. https://doi.org/10.1007/s00158-004-0508-7
dc.relation.referencesGuest, J. K., Prévost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61(2), 238–254. https://doi.org/10.1002/nme.1064
dc.relation.referencesGülich, J. F. (2014). Centrifugal Pumps. In Springer (3rd ed.). https://doi.org/10.1007/978-3-642-40114-5
dc.relation.referencesHaftka, R. T., & Gürdal, Z. (1992). Elements of Structural Optimization (Vol. 11). https://doi.org/10.1002/nme.2403
dc.relation.referencesHahn, Y., & Cofer, J. I. (2014). Study of Parametric and Non-Parametric Optimization of a Rotor-Bearing System. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 1–7. Düsseldorf.
dc.relation.referencesHermann, A. N. A., Mijatovic, N., & Henriksen, M. L. (2016). Topology optimisation of PMSM rotor for pump application. Proceedings - 2016 22nd International Conference on Electrical Machines, ICEM 2016, 2119–2125. https://doi.org/10.1109/ICELMACH.2016.7732815
dc.relation.referencesHibbeler, R. C. (2014). Mechanics of materials (9th ed.).
dc.relation.referencesHinterberger, C., & Olesen, M. (2011). Industrial application of continuous adjoint flow solvers for the optimization of automotive exhaust systems. ECCOMAS Thematic Conference, (069), 1–17. Antalya, Turkey: CFD & Optimization: Methods and Applications.
dc.relation.referencesHutton, D. V. (2004). Fundamentals of Finite Element Analysis. McGraw-Hill.
dc.relation.referencesIseler, J., & Martin, T. J. (2017). Flow Topology Optimization of a Cooling Passage for a High Pressure Turbine Blade. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. https://doi.org/10.1115/gt2017-63618
dc.relation.referencesIshikawa, T., Mizuno, S., & Krita, N. (2017). Topology Optimization Method for Asymmetrical Rotor Using Cluster and Cleaning Procedure. IEEE Transactions on Magnetics, 53(6). https://doi.org/10.1109/TMAG.2017.2665441
dc.relation.referencesJafarzadeh, B., Hajari, A., Alishahi, M. M., & Akbari, M. H. (2011). The flow simulation of a low-specific-speed high-speed centrifugal pump. Applied Mathematical Modelling, 35(2011), 242–249. https://doi.org/10.1016/j.apm.2010.05.021
dc.relation.referencesJenkins, N., & Maute, K. (2015). Level set topology optimization of stationary fluid-structure interaction problems. Structural and Multidisciplinary Optimization, 52(1), 179–195. https://doi.org/10.1007/s00158-015-1229-9
dc.relation.referencesJiang, L., & Wu, C. W. (2017). Topology optimization of energy storage flywheel. Structural and Multidisciplinary Optimization, 55(5). https://doi.org/10.1007/s00158-016-1576-1
dc.relation.referencesKilchyk, V., Senay, E., & Abdelwahab, A. (2017). Selection of the Optimum Control Parameters for Compressor Design Optimization Algorithm. Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. https://doi.org/10.1115/gt2017-63009
dc.relation.referencesKundu, P. K., Cohen, I. M., & Dowling, D. R. (2016). Fluid Mechanics (6th ed.). Elsevier Inc.
dc.relation.referencesLe, C., Norato, J., Bruns, T., Ha, C., & Tortorelli, D. (2010). Stress-based topology optimization for continua. Structural and Multidisciplinary Optimization, 41(4), 605–620. https://doi.org/10.1007/s00158-009-0440-y
dc.relation.referencesLee, Y. S., González, J. A., Lee, J. H., Kim, Y. Il, Park, K. C., & Han, S. (2016). Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation. Renewable Energy, 85, 1214–1225. https://doi.org/10.1016/j.renene.2015.07.052
dc.relation.referencesLiu, J. H., & Wei, Z. Z. (2014). Optimization design of uncertainty fluid topology in the parallel connection of double pump. World Journal of Engineering, 11(3), 311–316.
dc.relation.referencesLiu, J., & Ma, Y. (2016). A survey of manufacturing oriented topology optimization methods. Advances in Engineering Software, 100, 161–175. https://doi.org/10.1016/j.advengsoft.2016.07.017
dc.relation.referencesLogan, D. L. (2012). A first course in the Finite Element Method (5th ed.). CENGAGE Learning.
dc.relation.referencesLundgaard, C., Alexandersen, J., Zhou, M., Andreasen, C. S., & Sigmund, O. (2018). Revisiting density-based topology optimization for fluid-structure-interaction problems. Structural and Multidisciplinary Optimization, 58(3), 969–995. https://doi.org/10.1007/s00158-018-1940-4
dc.relation.referencesMcClanahan, D. R., Liu, G. R., Turner, M. G., & Anantharaman, D. (2018). Topology Optimization of the Interior Structure of Blades With an Outer Surface Determined Through Aerodynamic Design. International Journal of Computational Methods, 15(3), 1–11. https://doi.org/10.1142/s0219876218400273
dc.relation.referencesMiyamoto, Y., Kaysser, W. A., Rabin, B. H., Kawasaki, A., & Ford, R. G. (1999). Functionally Graded Materials. Design, Processing and Applications. In Springer Science + Business Media (1st ed.). https://doi.org/10.1201/9781420092578
dc.relation.referencesNeethu, S., Shinoy, K. S., & Shajilal, A. S. (2010). Novel design, optimization and realization of axial flux motor for implantable blood pump. 2010 Joint International Conference on Power Electronics, Drives and Energy Systems, PEDES 2010 and 2010 Power India, 1–6. https://doi.org/10.1109/PEDES.2010.5712458
dc.relation.referencesOh, S., Wang, S., & Cho, S. (2016). Topology optimization of a suction muffler in a fluid machine to maximize energy efficiency and minimize broadband noise. Journal of Sound and Vibration, 366, 27–43. https://doi.org/10.1016/j.jsv.2015.10.022
dc.relation.referencesPicelli, R., Vicente, W. M., & Pavanello, R. (2015). Bi-directional evolutionary structural optimization for design-dependent fluid pressure loading problems. Engineering Optimization, 47(10), 1324–1342. https://doi.org/10.1080/0305215x.2014.963069
dc.relation.referencesPicelli, R., Vicente, W. M., & Pavanello, R. (2017). Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads. Finite Elements in Analysis and Design, 135(January), 44–55. https://doi.org/10.1016/j.finel.2017.07.005
dc.relation.referencesPietropaoli, M., Montomoli, · F, & Gaymann, · A. (2018). Structural and Multidisciplinary Optimization Three-dimensional fluid topology optimization for heat transfer. Structural and Multidisciplinary Optimization, 59(3), 801–812. https://doi.org/10.1007/s00158-018-2102-4
dc.relation.referencesQian, K. (1990). Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump. Journal of Biomedical Engineering, 12(6), 533–535. https://doi.org/10.1016/0141-5425(90)90066-V
dc.relation.referencesReddy, J. N. (2006). An Introduction to the Finite Element Method (3rd ed.). McGraw-Hill.
dc.relation.referencesReddy, J. N., & Gartling, D. K. (2010). The finite element method in heat transfer and fluid dynamics third edition. In The Finite Element Method in Heat Transfer and Fluid Dynamics, Third Edition (3rd ed.). https://doi.org/10.1201/9781439882573
dc.relation.referencesRindi, A., Meli, E., Boccini, E., Iurisci, G., Corbò, S., & Falomi, S. (2016). Static and Modal Topology Optimization of Turbomachinery Components. Journal of Engineering for Gas Turbines and Power, 138(11). https://doi.org/10.1115/1.4033512
dc.relation.referencesRomero, J. S., & Silva, E. C. N. (2014). A topology optimization approach applied to laminar flow machine rotor design. Computer Methods in Applied Mechanics and Engineering, 279, 268–300. https://doi.org/10.1016/j.cma.2014.06.029
dc.relation.referencesRomero, J. S., & Silva, E. C. N. (2016). Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, 55(5), 1711–1732. https://doi.org/10.1007/s00158-016-1599-7
dc.relation.referencesRozvany, G. I. N. (2001, April). Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Structural and Multidisciplinary Optimization, Vol. 21, pp. 90–108. https://doi.org/10.1007/s001580050174
dc.relation.referencesRozvany, G. I. N. (2009). A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 37(3), 217–237. https://doi.org/10.1007/s00158-007-0217-0
dc.relation.referencesRozvany, G. I. N., & Lewiński, T. (2014). Topology Optimization in Structural and Continuum Mechanics. In CISM International Centre for Mechanical Sciences (Vol. 549). https://doi.org/10.1007/978-3-7091-1643-2
dc.relation.referencesRozvany, G. I. N., & Zhou, M. (1991a). The COC algorithm, Part I: Cross-section optimization or sizing. Computer Methods in Applied Mechanics and Engineering, 89(1–3), 281–308. https://doi.org/10.1016/0045-7825(91)90045-8
dc.relation.referencesRozvany, G. I. N., & Zhou, M. (1991b). The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1–3), 309–336. https://doi.org/10.1016/0045-7825(91)90046-9
dc.relation.referencesSá, L. F. N. (2016). Topology optimization method applied to laminar flow machine rotor design (master’s thesis). University of São Paulo.
dc.relation.referencesSá, L. F. N., Novotny, A. A., Romero, J. S., & Silva, E. C. N. (2017). Design optimization of laminar flow machine rotors based on the topological derivative concept. Structural and Multidisciplinary Optimization, 56(5), 1013–1026. https://doi.org/10.1007/s00158-017-1698-0
dc.relation.referencesSá, L. F. N., Romero, J. S., Horikawa, O., & Silva, E. C. N. (2018). Topology optimization applied to the development of small scale pump. Structural and Multidisciplinary Optimization, 57(5), 2045–2059. https://doi.org/10.1007/s00158-018-1966-7
dc.relation.referencesSá, L. F. N., Romero, J. S., Silva, E. C. N., & Horikawa, O. (2015). Design, Optimization, Manufacturing, and Characterization of an Ventricle Assist Pump. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering, 4–11. https://doi.org/10.20906/cps/cob-2015-0712
dc.relation.referencesSchobeiri, M. T. (2012). Turbomachinery Flow Physics and Dynamic Performance (2nd ed.). https://doi.org/10.1007/978-3-642-24675-3
dc.relation.referencesSeppälä, J., & Hupfer, A. (2014). Topology Optimization in Structural Design of a LP Turbine Guide Vane: Potential of Additive Manufacturing for Weight Reduction. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 1–10. Düsseldorf.
dc.relation.referencesShah, S. R., Jain, S. V., Patel, R. N., & Lakhera, V. J. (2013). CFD for centrifugal pumps: A review of the state-of-the-art. Procedia Engineering, 51, 715–720. https://doi.org/10.1016/j.proeng.2013.01.102
dc.relation.referencesShen, X., Dong, S., & Chen, Z. (2014). Research of an Advanced Turbine Disk for High Thrust-Weight Ratio Engine. Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, 1–7. Düsseldorf.
dc.relation.referencesShojaeefard, M. H., Tahani, M., Ehghaghi, M. B., Fallahian, M. A., & Beglari, M. (2012). Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid. Computers and Fluids, 60, 61–70. https://doi.org/10.1016/j.compfluid.2012.02.028
dc.relation.referencesSigmund, O. (2001). A 99 line topology optimization code written in matlab. Structural and Multidisciplinary Optimization, 21(2), 120–127. https://doi.org/10.1007/s001580050176
dc.relation.referencesSigmund, O. (2007). Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 33(4–5), 401–424. https://doi.org/10.1007/s00158-006-0087-x
dc.relation.referencesSigmund, O., & Bendsøe, M. P. (2004). Topology optimization: from airplanes to nano-optics. In K. Stubkjær & T. Kortenbach (Eds.), Bridging From Technology To Society (pp. 40–51). Lyngby: Technical University of Denmark.
dc.relation.referencesSigmund, Ole. (2000). Topology optimization: a tool for the tailoring of structures and materials. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 358, 211–227.
dc.relation.referencesSvanberg, K. (1987). The method of moving asymptotes - a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24(2), 359–373. https://doi.org/10.1002/nme.1620240207
dc.relation.referencesSvanberg, K. (2002). A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM Journal on Optimization, 12(2), 555–573. https://doi.org/https://doi.org/10.1137/S1052623499362822
dc.relation.referencesTaylor, C., & Hood, P. (1973). A numerical solution of the Navier-Stokes equations using the finite element technique. Computers and Fluids, 1(1), 73–100. https://doi.org/10.1016/0045-7930(73)90027-3
dc.relation.referencesThe MathWorks Inc. (2019). Matlab R2019b [computer program]. Natick, Massachusetts.
dc.relation.referencesTsai, T. D., & Cheng, C. C. (2012). Topology Optimization of Flywheel Rotors Using SIMP Method: A Preliminary Study. Advanced Materials Research, 579, 427–434. https://doi.org/10.4028/www.scientific.net/AMR.579.427
dc.relation.referencesVatanabe, S. L., Lippi, T. N., Lima, C. R. de, Paulino, G. H., & Silva, E. C. N. (2016). Topology optimization with manufacturing constraints: A unified projection-based approach. Advances in Engineering Software, 100, 97–112. https://doi.org/10.1016/j.advengsoft.2016.07.002
dc.relation.referencesWhite, F. M. (2011). Fluid Mechanics. New York: McGraw-Hill Education.
dc.relation.referencesWiker, N., Klarbring, A., & Borrvall, T. (2007). Topology optimization of regions of Darcy and Stokes flow. International Journal for Numerical Methods in Engineering, 69(7), 1374–1404. https://doi.org/10.1002/nme.1811
dc.relation.referencesWu, D., Zhu, Z., Ren, Y., Gu, Y., Mou, J., & Zheng, S. (2019). Integrated topology optimization for vibration suppression in a vertical pump. Advances in Mechanical Engineering, 11(3), 1–13. https://doi.org/10.1177/1687814019832689
dc.relation.referencesXie, G., Liu, J., Zhang, W., Lorenzini, G., & Biserni, C. (2014). Numerical Prediction of Turbulent Flow and Heat Transfer Enhancement in a Square Passage With Various Truncated Ribs on One Wall. Journal of Heat Transfer, 136(January), 1–11. https://doi.org/10.1115/1.4024989
dc.relation.referencesXu, B., Ye, S., & Zhang, J. (2016). Numerical and experimental studies on housing optimization for noise reduction of an axial piston pump. Applied Acoustics, 110, 43–52. https://doi.org/10.1016/j.apacoust.2016.03.022
dc.relation.referencesXu, S., Cai, Y., & Cheng, G. (2010). Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 41(4), 495–505. https://doi.org/10.1007/s00158-009-0452-7
dc.relation.referencesYoon, G. H. (2010a). Structural topology optimization for frequency response problem using model reduction schemes. Computer Methods in Applied Mechanics and Engineering, 199(25–28), 1744–1763. https://doi.org/10.1016/j.cma.2010.02.002
dc.relation.referencesYoon, G. H. (2010b). Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation. International Journal for Numerical Methods in Engineering, 82(5), 591–616. https://doi.org/10.1002/nme.2777
dc.relation.referencesZhang, Y., Duda, T., Scobie, J. A., Sangan, C. M., Copeland, C. D., & Redwood, A. (2018). Design of an air-cooled radial turbine: Part 1 — Computational modelling. Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 1–13. https://doi.org/10.1115/gt2018-76378
dc.relation.referencesZienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The Finite Element Method: Its Basis and Fundamentals (6th ed.). McGraw-Hill.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalOptimización topológica
dc.subject.proposalTopology optimization
dc.subject.proposalTurbomachine
dc.subject.proposalTurbomáquina
dc.subject.proposalPump
dc.subject.proposalBomba
dc.subject.proposalRotor
dc.subject.proposalRotor
dc.subject.proposalInteracción fluido-estructura
dc.subject.proposalFluid-structure interaction
dc.subject.proposalFinite element method
dc.subject.proposalMétodo de los elementos finitos
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit