dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Ruiz Vera, Jorge Mauricio |
dc.contributor.author | Fuentes Gil, José Exequiel |
dc.date.accessioned | 2020-09-22T18:50:17Z |
dc.date.available | 2020-09-22T18:50:17Z |
dc.date.issued | 2020-09-04 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78488 |
dc.description.abstract | In the process of capturing images, it is common to deal with deteriorated images. These appear in various fields such as: astronomy, medicine, among others. In this work, a method is developed for the restoration of blurred images based on the approach of poorly proposed integral equations. The solution of the integral equation is seen as the minimum of a limited optimization problem in the norm $ || \cdot ||_{L_1}$. In this way, it is expressed as a linear programming problem. Also, it was found that the problem needs to be adapted to the particular image restoration problem by adding additional terms to the originally proposed model. In addition, evaluating its efficiency and effectiveness, this method is shown to be competitive with respect to other ones, and it can be used in different environments, showing satisfactory results. |
dc.description.abstract | En el proceso de captura de imágenes es común tratar con imágenes deterioradas. Estas aparecen en diversos ámbitos como lo son: astronomía, medicina, entre otros. En este trabajo se desarrolla un método para la restauración de imágenes borrosas basado en el planteamiento de ecuaciones integrales mal propuestas. La solución de la ecuación integral es vista como el mínimo de un problema de optimización considerado en la norma $||\cdot||_{L_1}$. De esta forma es expresado como un problema de programación lineal. También, se encontró que el problema debe ser adaptado al caso particular de la restauración de imágenes agregando términos extra al modelo originalmente propuesto. Además de evaluar su eficiencia y eficacia, se muestra que este método es competitivo con respecto a otros propuestos inicialmente y que puede ser usado en diferentes ámbitos mostrando resultados satisfactorios. |
dc.format.extent | 104 |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 510 - Matemáticas |
dc.subject.ddc | 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas |
dc.subject.ddc | 510 - Matemáticas::518 - Análisis numérico |
dc.title | Restauración de imágenes borrosas usando programación lineal |
dc.type | Trabajo de grado - Maestría |
dc.rights.spa | Acceso abierto |
dc.description.additional | Línea de Investigación: Matemática aplicada, procesamiento de imágenes |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemática Aplicada |
dc.description.degreelevel | Maestría |
dc.publisher.department | Departamento de Matemáticas |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Restauración de ultrasonido. https://google.com.com/ultrasonido/, 2019. |
dc.relation.references | M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear programming and network flows.
John Wiley & Sons, 2011. |
dc.relation.references | D. S. Biggs and M. Andrews. Acceleration of iterative image restoration algorithms.
Applied optics, 36(8):1766–1775, 1997. |
dc.relation.references | S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004. |
dc.relation.references | A. Buades, B. Coll, and J. M. Morel. On image denoising methods. CMLA Preprint,
5, 2004. |
dc.relation.references | Canal1.com. Video de c´amara de seguridad. https://canal1.com.co/entretenimiento/virales/
video-camara-de-seguridad-agresion-pareja-gay-andino/, 2019. |
dc.relation.references | K. Chen. Matrix preconditioning techniques and applications, volume 19. Cambridge
University Press, 2005. |
dc.relation.references | J. G. N. Christian Hansen and D. P. O’Leary. http://www.imm.dtu.dk/ pcha/hno/,
2011. |
dc.relation.references | M. B. Cohen, Y. T. Lee, and Z. Song. Solving linear programs in the current matrix
multiplication time. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 938–942. ACM, 2019. |
dc.relation.references | J. C. del Valle Sotelo. Álgebra lineal para estudiantes de Ingenieria y ciencias. Mc Graw Hill, 2011. |
dc.relation.references | flickr.com. Placa de auto. from https://www.flickr.com/photos/pattoncito/2471478157,
2019. |
dc.relation.references | R. M. Freund. Primal-Dual Interior-Point Methods for Linear Programming based on
Newton’s Method. Massachusetts Institute of Technology, 2004. |
dc.relation.references | R. Gonzalez, R. Woods, and S. Eddins. Digital Image Processing Using MATLAB.
McGraw Hill Education, 2013. |
dc.relation.references | W. Hackbusch. Iterative solution of large sparse systems of equations, volume 95. Sprin-
ger, 1994. |
dc.relation.references | R. J. Hanisch, R. L. White, and R. L. Gilliland. Deconvolution of hubbles space telescope
images and spectra. In Deconvolution of images and spectra (2nd ed.), pages 310–360.
1996. |
dc.relation.references | P. C. Hansen, J. G. Nagy, and D. P. O’leary. Deblurring images: matrices, spectra, and
filtering, volume 3. Siam, 2006. |
dc.relation.references | W. Harwood. Fixing Hubble’s blurry vision. https://spaceflightnow.com/2015/04/23/fixing-
hubbles-blurry-vision/, 2015. |
dc.relation.references | R. A. Hummel, B. Kimia, and S. W. Zucker. Deblurring gaussian blur. Computer
Vision, Graphics, and Image Processing, 38(1):66–80, 1987. |
dc.relation.references | infoagro.com. El cultivo de la Orquídea. https://www.infoagro.com/documentos/el-
cultivo-orquidea.asp. |
dc.relation.references | iredbubble.com. Diosa Aqua. https://www.redbubble.com/3790348-chibi-llorando-
aqua?p=sticker, 2019. |
dc.relation.references | M. Jin, S. Roth, and P. Favaro. Normalized blind deconvolution. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 668–684, 2018. |
dc.relation.references | S. L. Kala. Deblurring images via partial differential equations. Proceedings of the
Louisiana-Mississippi Section of the Mathematical Association of America, 2004. |
dc.relation.references | D. Kincaid and W. Cheney. Análisis numérico las matemáticas del cálculo científico.
Adison-Wesley, 1994. |
dc.relation.references | V. Klee and G. J. Minty. How good is the simplex algorithm? Technical report, Wa-
shington university Seattle departament of Mathematics, 1970. |
dc.relation.references | R. Kress. Numerical analysis. Academic Edition, 1, 1998. |
dc.relation.references | R. Kress, V. Maz’ya, and V. Kozlov. Linear integral equations, volume 82. Springer,
1989. |
dc.relation.references | D. Krishnan. https://dilipkay.wordpress.com/blind-deconvolution/, 2011. |
dc.relation.references | D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution using a normalized sparsity
measure. In CVPR 2011, pages 233–240. IEEE, 2011. |
dc.relation.references | R. Mammone and G. Eichmann. Superresolving image restoration using linear pro-
gramming. Applied optics, 21(3):496–501, 1982. |
dc.relation.references | R. Mammoni. Image recovery: Theory and aplication. Academic Press, 1987. |
dc.relation.references | I. Mantilla. Análisis Numérico. Universidad Nacional de Colombia. Bogotá, 2004. |
dc.relation.references | S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
Journal on optimization, 2(4):575–601, 1992. |
dc.relation.references | A. Moffat. A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry. Astronomy and Astrophysics, 3:455,
1969. |
dc.relation.references | H. Moore, V. C. Olguín, and R. M. Nuño. Matlab para ingenieros. Number 620.0013M66 2007. Pearson Educación, 2007. |
dc.relation.references | NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration
and K. Noll (STScI). NGC 6050. https://www.spacetelescope.org/images/heic0810ap/,
2008. |
dc.relation.references | W. H. Richardson. Bayesian-based iterative method of image restoration. JoSA,
62(1):55–59, 1972. |
dc.relation.references | H. S. Saeed Ketabchi, Hossein Moosaei and M. Hedayati. New methods for solving
large scale linear programming problems in the windows and linux computer operating
systems. Appl. Math. Inf. Sci., 7, Octubre 2018. |
dc.relation.references | Tucarro.com. Placa de automóvil. https://tucarro.com/, 2018. |
dc.relation.references | C. F. Van Loan and G. H. Golub. Matrix computations. Johns Hopkins University
Press, 1983. |
dc.relation.references | Vicmat.com. La Conjetura de Nicomaco. https://vicmat.com/la-conjetura-nicomaco-
cubo-diferencia-dos-cuadrados/, 2017. |
dc.relation.references | Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. |
dc.relation.references | Wikipedia.org. Argumento diagonal de Cantor. https://es.wikipedia.org/wiki/Argumento-
de-la-diagonal-de-Cantor, 2019. |
dc.relation.references | M. Zaharescu and C. A. Boiangiu. Image deblurring: challenges and solutions. The 12th
International Conference on Circuits, Systems, Electronics, Control & Signal Processing
(CSECS ’13), 9:10, 2013. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | Imágenes borrosas |
dc.subject.proposal | Blurry images |
dc.subject.proposal | Problemas inversos |
dc.subject.proposal | Ill posed problems |
dc.subject.proposal | Problemas mal propuestos |
dc.subject.proposal | Inverse problems |
dc.subject.proposal | Linear programming |
dc.subject.proposal | Programación lineal |
dc.subject.proposal | Regularización |
dc.subject.proposal | Regularization |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |