Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorOcampo Plazas, Mary Luz
dc.contributor.authorRiscanevo Peñaloza, Angela Patricia
dc.date.accessioned2020-10-06T22:29:15Z
dc.date.available2020-10-06T22:29:15Z
dc.date.issued2020-10-06
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78527
dc.description.abstractIntroduction: Chronic non-communicable diseases (NCDs) are the main cause of disease and premature death, they are the cause of 71% of the deaths that occur in the world, 87% of deaths in the Americas and 75% in Colombia (OMS, 2018). Among the multiple risk factors, body fat has been strongly related as a trigger for these diseases. However, the importance of muscle mass content as a factor that influences cardiometabolic risk has gradually been known. Currently, health professionals involved in the evaluation of body composition, use indices to examine different relationships, but so far, there is no anthropometric standard that answers about the relationship between muscle mass (MM), body fat mass (FM) and cardiometabolic risk. Objective: To establish an index (quotient) between MM and FM, FMI (fatty muscle index), as an indicator of cardiometabolic health in an apparently healthy adult population of 20 to 60 years located in the city of Bogotá. Methodology: Descriptive cross-sectional study involving adults between the ages of 20 and 60, who were evaluated in anthropometry (5 components) following the guidelines of ISAK II, and blood chemistry (Glycated Hemoglobin, total cholesterol, HDL, LDL and triglycerides) using colorimetric enzymatic tests and the ROCHE Cobas 8000 technology equipment. Results: To our knowledge, this is the first study investigating the relationship between MM, MG and cardiometabolic risk in adults, and provides a range of relationship MM / MG measured by the FMI in population aged 20 to 60 years. Our findings show that the FMI has a statistically significant positive correlation with HDL cholesterol (r = 0.01, P <0.05) and triglycerides (r = 0.04, P <0.05) and a statistically significant negative correlation between total cholesterol and HDL (r = -0.03, P <0.05). This implies that participants with a higher FMI have a lower risk of alterations in HDL cholesterol and total cholesterol. Additionally, FMI values of 0.61 to 2.51, i.e. an individual for every kg of FM who has a minimum of 0.61 kg up to 2.51 kg of MM, have a lower cardiometabolic risk with HDL cholesterol and total levels within normal. Conclusion: IMF by allowing a relationship between MM, body MG is an anthropometric tool that allows cardiometabolic risk to be detected by being able to discriminate altered values of HDL cholesterol and total cholesterol, known risk factors for NCDs.
dc.description.abstractIntroducción: Las enfermedades no transmisibles (ENT) son la causa del 71% de las muertes prematuras en el mundo, del 87% de muertes del continente americano y del 75% en Colombia (OMS, 2018). Dentro de los múltiples factores de riesgo, la masa grasa se ha relacionado fuertemente como desencadenante de estas enfermedades. Sin embargo, paulatinamente se ha conocido la importancia que tiene el contenido de masa muscular como factor que influye en el riesgo cardiometabólico. Actualmente, los profesionales implicados en la evaluación de la composición corporal, usan índices para examinar distintas relaciones, pero hasta el momento, no existe un estándar antropométrico que dé respuestas a la relación entre masa muscular (MM), masa grasa (MG) corporal y riesgo cardiometabólico. Objetivo: Establecer un índice (cociente) entre la MM y MG corporal como indicador de riesgo cardiometabólico en población adulta de 20 a 60 años aparentemente sana ubicada en la ciudad de Bogotá. Metodología: Estudio descriptivo de corte transversal que involucra adultos de 20 a 60 años, a quienes se evalúa antropometría (5 componentes) siguiendo los lineamientos ISAK II, y química sanguínea (Hemoglobina glicosilada, colesterol total, HDL, LDL y triglicéridos) usando pruebas enzimáticas colorimétricas y la tecnología ROCHE Cobas 8000. Resultados: Hasta donde sabemos, este es el primer estudio que investiga la relación entre MM, MG y riesgo cardiometabólico en adultos, y proporciona un rango de relación MM / MG medido a través del IMG en población de 20 a 60 años. Nuestros hallazgos muestran que el IMG tiene una correlación positiva estadísticamente significativa con colesterol HDL (r=0.01, P < 0,05) y triglicéridos (r=0.04, P < 0,05) y una correlación negativa estadísticamente significativa entre Colesterol total y HDL (r=-0.03, P < 0,05). Esto da a entender que los participantes con mayor IMG tienen menor riesgo de alteraciones en Colesterol HDL y colesterol total. Adicionalmente, valores de IMG de 0.61 a 2.51, es decir, un individuo por cada kg de MG que tenga mínimo 0.61 hasta 2.51 kg de MM tiene menor riesgo cardiometabólico con valores de colesterol HDL y total en niveles normales. Conclusión: El IMG al permitir una relación conjunta entre MM, MG corporal es una herramienta antropométrica que permite detectar riesgo cardiometabólico al ser capaz de discriminar valores alterados de colesterol HDL y total, conocidos factores de riesgo para ENT.
dc.format.extent100
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleRelación entre masa muscular / masa grasa (índice muscular graso) y riesgo cardiometabólico en adultos de 20 a 60 años aparentemente sanos de la ciudad de Bogotá D.C.
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina - Maestría en Fisioterapia del Deporte y la Actividad Física
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAlvero-Cruz, J. (2011). La bioimpedancia eléctrica como método de estimación de la composición corporal: normas prácticas de utilización. Revista Andaluza de Medicina Del Deporte, 4(4), 167–174. https://doi.org/10.36104/amc.2018.1400
dc.relation.referencesAn, K. O., & Kim, J. (2016). Association of Sarcopenia and Obesity With Multimorbidity in Korean Adults: A Nationwide Cross-Sectional Study. Journal of the American Medical Directors Association, 17(10), 960.e1-960.e7. https://doi.org/10.1016/j.jamda.2016.07.005
dc.relation.referencesAnderson, G. S. (1999). Human morphology and temperature regulation. International Journal of Biometeorology, 43(3), 99–109. https://doi.org/10.1007/s004840050123
dc.relation.referencesArgilés, J. M., López-Soriano, J., Almendro, V., Busquets, S., & López-Soriano, F. J. (2005). Cross-talk between skeletal muscle and adipose tissue: A link with obesity? Medicinal Research Reviews, 25(1), 49–65. https://doi.org/10.1002/med.20010
dc.relation.referencesArvandi, M., Strasser, B., Meisinger, C., Volaklis, K., Gothe, R. M., Siebert, U., Ladwig, K. H., Grill, E., Horsch, A., Laxy, M., Peters, A., & Thorand, B. (2016). Gender differences in the association between grip strength and mortality in older adults: results from the KORA-age study. BMC Geriatrics, 16(1), 1–8. https://doi.org/10.1186/s12877-016-0381-4
dc.relation.referencesAshwell, M., Mayhew, L., Richardson, J., & Rickayzen, B. (2014). Waist-to-height ratio is more predictive of years of life lost than body mass index. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0103483
dc.relation.referencesBarquilla García, A., Mediavilla Bravo, J. J., Comas Samper, J. M., Seguí Díaz, M., Carramiñana Barrera, F., & Zaballos Sánchez, F. J. (2010). Recomendaciones de la Sociedad Americana de Diabetes para el manejo de la diabetes mellitus. Semergen, 36(7), 386–391. https://doi.org/10.1016/j.semerg.2010.03.008
dc.relation.referencesBenton, M. J., Whyte, M. D., & Dyal, B. W. (2011). Sarcopenic obesity: Strategies for management. American Journal of Nursing, 111(12), 38–44. https://doi.org/10.1097/01.NAJ.0000408184.21770.98
dc.relation.referencesBiblioteca Nacional de Medicina de los Estados Unidos. Colesterol, triglicéridos y hemoglobina glicosilada. MedLine plus, disponible en https://medlineplus.gov/.
dc.relation.referencesBuscemi J A. Sarcopenia, Sarcopenic Obesity and Insulin Resistence. En: Buscemi S, Batsis J. editores. Medical Complications of Type 2 Diabetes. Book edited by Collen Croniger. Shangai; 2011. p . 235-56.
dc.relation.referencesCai, L., Liu, A., Zhang, Y., & Wang, P. (2013). Waist-to-Height Ratio and Cardiovascular Risk Factors among Chinese Adults in Beijing. PLoS ONE, 8(7), 3–8. https://doi.org/10.1371/journal.pone.0069298
dc.relation.referencesCasale, M., von Hurst, P. R., Beck, K. L., Shultz, S., Kruger, M. C., O’Brien, W., Conlon, C. A., & Kruger, R. (2016). Lean mass and body fat percentage are contradictory predictors of bone mineral density in pre-menopausal Pacific Island women. Nutrients, 8(8). https://doi.org/10.3390/nu8080470
dc.relation.referencesCharlier, R., Knaeps, S., Mertens, E., Van Roie, E., Delecluse, C., Lefevre, J., & Thomis, M. (2016). Age-related decline in muscle mass and muscle function in Flemish Caucasians: a 10-year follow-up. Age, 38(2). https://doi.org/10.1007/s11357-016-9900-7
dc.relation.referencesChen, Y. Y., Fang, W. H., Wang, C. C., Kao, T. W., Yang, H. F., Wu, C. J., Sun, Y. S., Wang, Y. C., & Chen, W. L. (2019). Fat-to-muscle ratio is a useful index for cardiometabolic risks: A population-based observational study. PLoS ONE, 14(4), 1–13. https://doi.org/10.1371/journal.pone.0214994
dc.relation.referencesDe Gonzalez, A. B., Hartge, P., Cerhan, J. R., Flint, A. J., Hannan, L., MacInnis, R. J., Moore, S. C., Tobias, G. S., Anton-Culver, H., Freeman, L. B., Beeson, W. L., Clipp, S. L., English, D. R., Folsom, A. R., Freedman, D. M., Giles, G., Hakansson, N., Henderson, K. D., Hoffman-Bolton, J., … Thun, M. J. (2010). Body-mass index and mortality among 1.46 million white adults. New England Journal of Medicine, 363(23), 2211–2219. https://doi.org/10.1056/NEJMoa1000367
dc.relation.referencesDemura, S., Yamaji, S., Goshi, F., Kobayashi, H., Sato, S., & Nagasawa, Y. (2002). The validity and reliability of relative body fat estimates and the construction of new prediction equations for young Japanese adult males. Journal of Sports Sciences, 20(2), 153–164. https://doi.org/10.1080/026404102317200864
dc.relation.referencesDing, Q. F., Hayashi, T., Zhang, X. J., Funami, J., Ge, L., Li, J., Huang, X. L., Cao, L., Zhang, J., & Akihisa, I. (2007). Risks of CHD identified by different criteria of metabolic syndrome and related changes of adipocytokines in elderly postmenopausal women. Journal of Diabetes and Its Complications, 21(5), 315–319. https://doi.org/10.1016/j.jdiacomp.2006.03.005
dc.relation.referencesEikelis, N., Lambert, E. A., Phillips, S., Sari, C. I., Mundra, P. A., Weir, J. M., Huynh, K., Grima, M. T., Straznicky, N. E., Dixon, J. B., Schlaich, M. P., Meikle, P. J., & Lambert, G. W. (2017). Muscle sympathetic nerve activity is associated with elements of the plasma lipidomic profile in young asian adults. Journal of Clinical Endocrinology and Metabolism, 102(6), 2059–2068. https://doi.org/10.1210/jc.2016-3738
dc.relation.referencesErskine, R. M., Tomlinson, D. J., Morse, C. I., Winwood, K., Hampson, P., Lord, J. M., & Onambélé, G. L. (2017). The individual and combined effects of obesity- and ageing-induced systemic inflammation on human skeletal muscle properties. International Journal of Obesity, 41(1), 102–111. https://doi.org/10.1038/ijo.2016.151
dc.relation.referencesFerrara, L. A., Capaldo, B., Mancusi, C., Lee, E. T., Howard, B. V., Devereux, R. B., & de Simone, G. (2014). Cardiometabolic risk in overweight subjects with or without relative fat-free mass deficiency: The Strong Heart Study. Nutrition, Metabolism and Cardiovascular Diseases, 24(3), 271–276. https://doi.org/10.1016/j.numecd.2013.08.009
dc.relation.referencesFlegal, K. M., Kit, B. K., & Orpana, H. (2015). Association of All-Cause Mortality. 309(1), 71–82.
dc.relation.referencesFrisancho, A. R. (1981). New norms of upper limb fat and muscle areas for assessment of nutritional status. American Journal of Clinical Nutrition, 34(11), 2540–2545. https://doi.org/10.1093/ajcn/34.11.2540
dc.relation.referencesFrisancho, A. R. (1984). New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. American Journal of Clinical Nutrition, 40(4), 808–819. https://doi.org/10.1093/ajcn/40.4.808
dc.relation.referencesFrontera, W. R., Hughes, V. A., Fielding, R. A., Fiatarone, M. A., Evans, W. J., & Roubenoff, R. (2000). Aging of skeletal muscle: A 12-yr longitudinal study. Journal of Applied Physiology, 88(4), 1321–1326. https://doi.org/10.1152/jappl.2000.88.4.1321
dc.relation.referencesGalletti, F., Barbato, A., Versiero, M., Iacone, R., Russo, O., Barba, G., Siani, A., Cappuccio, F. P., Farinaro, E., Valle, E. Della, & Strazzullo, P. (2007). Circulating leptin levels predict the development of metabolic syndrome in middle-aged men: An 8-year follow-up study. Journal of Hypertension, 25(8), 1671–1677. https://doi.org/10.1097/HJH.0b013e3281afa09e
dc.relation.referencesGerstner, G. R., Thompson, B. J., Rosenberg, J. G., Sobolewski, E. J., Scharville, M. J., & Ryan, E. D. (2017). Neural and Muscular Contributions to the Age-Related Reductions in Rapid Strength. In Medicine and Science in Sports and Exercise (Vol. 49, Issue 7). https://doi.org/10.1249/MSS.0000000000001231
dc.relation.referencesGobato, A. O., Vasques, A. C., Porto Zambon, Um., De Azevedo Barros, A., & Hessel, G. (2014). Metabolic syndrome and insulin resistance in migraine. Journal of Headache and Pain, 32(1), 55–62. https://doi.org/10.1007/s10194-012-0416-y
dc.relation.referencesGoodpaster, B. H., Study, for the H. A. B. C., Park, S. W., Study, for the H. A. B. C., Harris, T. B., Study, for the H. A. B. C., Kritchevsky, S. B., Study, for the H. A. B. C., Nevitt, M., Study, for the H. A. B. C., Schwartz, A. V, Study, for the H. A. B. C., Simonsick, E. M., Study, for the H. A. B. C., Tylavsky, F. A., Study, for the H. A. B. C., Visser, M., Study, for the H. A. B. C., Newman, A. B., & Study, for the H. A. B. C. (2006). The Loss of Skeletal Muscle Strength, Mass, and Quality in Older Adults: The Health, Aging and Body Composition Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 61(10), 1059–1064.
dc.relation.referencesGoodpaster BH, Brown NF. Skeletal muscle lipid and its association with insulin resistance: what is the role for exercise? Exerc Sport Sci Rev. 2005; 33(3): 150-4.
dc.relation.referencesGuillet, C., & Boirie, Y. (2005). Insulin resistance: A contributing factor to age-related muscle mass loss? Diabetes and Metabolism, 31(SPEC. ISS. 2), 5S20-5S26. https://doi.org/10.1016/s1262-3636(05)73648-x
dc.relation.referencesHe, H., Liu, Y., Tian, Q., Papasian, C. J., Hu, T., & Deng, H. W. (2016). Relationship of sarcopenia and body composition with osteoporosis. Osteoporosis International, 27(2), 473–482. https://doi.org/10.1007/s00198-015-3241-8
dc.relation.referencesHébuterne, X., Bermon, S., & Schneider, S. M. (2001). Ageing and muscle: The effects of malnutrition, re-nutrition, and physical exercise. Current Opinion in Clinical Nutrition and Metabolic Care, 4(4), 295–300. https://doi.org/10.1097/00075197-200107000-00009
dc.relation.referencesHong, S., Chang, Y., Jung, H. S., Yun, K. E., Shin, H., & Ryu, S. (2017). Relative muscle mass and the risk of incident type 2 diabetes: A cohort study. PLoS ONE, 12(11), 1–13. https://doi.org/10.1371/journal.pone.0188650
dc.relation.referencesHu, F. B. (2007). Obesity and Mortality: Watch Your Waist, Not Just Your Weight. ARCH INTERN MED, 167, 875–876. https://doi.org/10.1093/oxfordhb/9780199736362.013.0030
dc.relation.referencesHwang, Y. C., Cho, I. J., Jeong, I. K., Ahn, K. J., & Chung, H. Y. (2017). Differential association between sarcopenia and metabolic phenotype in Korean young and older adults with and without obesity. Obesity, 25(1), 244–251. https://doi.org/10.1002/oby.21694
dc.relation.referencesJanssen, I., Heymsfield, S. B., Wang, Z. M., & Ross, R. (2000). Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. Journal of Applied Physiology, 89(1), 81–88. https://doi.org/10.1152/jappl.2000.89.1.81
dc.relation.referencesJoon Cho, G., Hyun Lee, J., Tae Park, H., Ho Shin, J., Cheol Hong, S., Kim, T., Young Hur, J., Wan Lee, K., Kyun Park, Y., & Haeng Kim, S. (2008). Postmenopausal status according to years since menopause as an independent risk factor for the metabolic syndrome. Menopause, 15(3), 524–529. https://doi.org/10.1097/gme.0b013e3181559860
dc.relation.referencesKelly DM, Jones TH. Testosterone: a metabolic hormone in health and disease. J Endocrinol. 2013 Apr 29;217(3):R25-45. doi: 10.1530/JOE-12-0455. PMID: 23378050.
dc.relation.referencesKim, B. C., Kim, M. K., Han, K., Lee, S. Y., Lee, S. H., Ko, S. H., Kwon, H. S., Merchant, A. T., Yim, H. W., Lee, W. C., Park, Y. G., & Park, Y. M. (2015). Low muscle mass is associated with metabolic syndrome only in nonobese young adults: The Korea National Health and Nutrition Examination Survey 2008-2010. Nutrition Research, 35(12), 1070–1078. https://doi.org/10.1016/j.nutres.2015.09.020
dc.relation.referencesKim, D. J., Noh, J. H., Lee, B. W., Choi, Y. H., Chung, J. H., Min, Y. K., Lee, M. S., Lee, M. K., & Kim, K. W. (2008). The associations of total and differential white blood cell counts with obesity, hypertension, dyslipidemia and glucose intolerance in a Korean population. Journal of Korean Medical Science, 23(2), 193–198. https://doi.org/10.3346/jkms.2008.23.2.193
dc.relation.referencesKim, G., Lee, S. E., Jun, J. E., Lee, Y. Bin, Ahn, J., Bae, J. C., Jin, S. M., Hur, K. Y., Jee, J. H., Lee, M. K., & Kim, J. H. (2018). Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: A 7-year retrospective cohort study. Cardiovascular Diabetology, 17(1), 1–13. https://doi.org/10.1186/s12933-018-0659-2
dc.relation.referencesKim, T. N., Lee, E. J., Hong, J. W., Kim, J. M., Won, J. C., Kim, M. K., Noh, J. H., Ko, K. S., Rhee, B. D., & Kim, D. J. (2016). Relationship between sarcopenia and albuminuria the 2011 korea national health and nutrition examination survey. Medicine (United States), 95(3), 1–7. https://doi.org/10.1097/MD.0000000000002500
dc.relation.referencesKuriyan, R., Lokesh, D. P., Selvam, S., Jayakumar, J., Philip, M. G., Shreeram, S., & Kurpad, A. V. (2016). The relationship of endogenous plasma concentrations of β-Hydroxy β-Methyl Butyrate (HMB) to age and total appendicular lean mass in humans. Experimental Gerontology, 81, 13–18. https://doi.org/10.1016/j.exger.2016.04.013
dc.relation.referencesLao, X. Q., Thomas, G. N., Jiang, C. Q., Zhang, W., Yin, P., Adab, P., Lam, T. H., & Cheng, K. K. (2006). Association of the metabolic syndrome with vascular disease in an older Chinese population: Guangzhou Biobank Cohort Study. J. Endocrinol. Invest., 29, 989–996.
dc.relation.referencesLao, X. Q., Zhang, Y. H., & Sang Wong, M. C. (2012). The prevalence of metabolic syndrome and metabolic syndrome risk factors in adults in southern China. BMC Public Health, 12(1), 64. https://doi.org/10.4278/ajhp.100415-QUAN-116
dc.relation.referencesLee, J., Hong, Y. P., Shin, H. J., & Lee, W. (2016). Associations of Sarcopenia and Sarcopenic obesity with metabolic syndrome considering both muscle mass and muscle strength. Journal of Preventive Medicine and Public Health, 49(1), 35–44. https://doi.org/10.3961/jpmph.15.055
dc.relation.referencesLeón-ariza, H. H., Mendoza-navarrete, M. P., Maldonado-arango, M. I., & Botero-rosas, D. A. (2018). Miocinas y regulación metabólica , una revisión sistemática. Apunts.Org, 53(200). https://apunts.org/es-miocinas-regulacion-metabolica-una-revision-articulo-X0213371718634426
dc.relation.referencesMainous, A. G., Tanner, R. J., Anton, S. D., & Jo, A. (2016). Low grip strength and prediabetes In normal-weight adults. Journal of the American Board of Family Medicine, 29(2), 280–282. https://doi.org/10.3122/jabfm.2016.02.150262
dc.relation.referencesMarcell, T. J. (2003). Sarcopenia : Causes , Consequences , and Preventions. 58(10), 911–916.
dc.relation.referencesMüller, M. J., Lagerpusch, M., Enderle, J., Schautz, B., Heller, M., & Bosy-Westphal, A. (2012). Beyond the body mass index: Tracking body composition in the pathogenesis of obesity and the metabolic syndrome. Obesity Reviews, 13(SUPPL.2), 6–13. https://doi.org/10.1111/j.1467-789X.2012.01033.x
dc.relation.referencesNevill, A. M., Stewart, A. D., Olds, T., & Holder, R. (2006). Relationship between adiposity and body size reveals limitations of BMI. American Journal of Physical Anthropology, 129(1), 151–156. https://doi.org/10.1002/ajpa.20262
dc.relation.referencesOMS. (2018). RIESGO DE MORTALIDAD PREMATURA DEBIDO A ENT (%). 2018.
dc.relation.referencesOMS, O. (2019). Mortalidad Por Enfermedades No Transmisibles En Las Américas 2.
dc.relation.referencesPedersen, B. K., Åkerström, T. C. A., Nielsen, A. R., & Fischer, C. P. (2007). Role of myokines in exercise and metabolism. Journal of Applied Physiology, 103(3), 1093–1098. https://doi.org/10.1152/japplphysiol.00080.2007
dc.relation.referencesPeterson, M. D., Duchowny, K., Meng, Q., Wang, Y., Chen, X., & Zhao, Y. (2017). Low Normalized Grip Strength is a Biomarker for Cardiometabolic Disease and Physical Disabilities among U.S. and Chinese Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 72(11), 1525–1531. https://doi.org/10.1093/gerona/glx031
dc.relation.referencesPoggiogalle, E., Lubrano, C., Sergi, G., Coin, A., Gnessi, L., Mariani, S., Lenzi, A., & Donini, L. M. (2016). Sarcopenic obesity and metabolic syndrome in adult Caucasian subjects. Journal of Nutrition, Health and Aging, 20(9), 958–963. https://doi.org/10.1007/s12603-015-0638-1
dc.relation.referencesRamírez-Vélez, R., Carrillo, H. A., Correa-Bautista, J. E., Schmidt-Riovalle, J., González-Jiménez, E., Correa-Rodríguez, M., González-Ruíz, K., & García-Hermoso, A. (2018). Fat-to-muscle ratio: A new anthropometric indicator as a screening tool for metabolic syndrome in young colombian people. Nutrients, 10(8). https://doi.org/10.3390/nu10081027
dc.relation.referencesRamírez-Vélez, R., Correa-Bautista, J. E., Lobelo, F., Izquierdo, M., Alonso-Martínez, A., Rodríguez-Rodríguez, F., & Cristi-Montero, C. (2016). High muscular fitness has a powerful protective cardiometabolic effect in adults: Influence of weight status. BMC Public Health, 16(1), 1–8. https://doi.org/10.1186/s12889-016-3678-5
dc.relation.referencesRubio, M. A., Moreno, C., & Cabrerizo, L. (2004). Guías para el tratamiento de las dislipemias en el adulto: Adult Treatment Panel III (ATP-III). Endocrinología y Nutrición, 51(5), 254–265. https://doi.org/10.1016/s1575-0922(04)74614-8
dc.relation.referencesSchmidt, M., Johannesdottir, S. A., Lemeshow, S., Lash, T. L., Ulrichsen, S. P., Botker, H. E., & Sorensen, H. T. (2013). Obesity in young men, and individual and combined risks of type 2 diabetes, cardiovascular morbidity and death before 55 years of age: A danish 33-year follow-up study. BMJ Open, 3(4), 1–3. https://doi.org/10.1136/bmjopen-2013-002698
dc.relation.referencesSrikanthan, P., Hevener, A. L., & Karlamangla, A. S. (2010). Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: Findings from the national health and nutrition examination survey III. PLoS ONE, 5(5). https://doi.org/10.1371/journal.pone.0010805
dc.relation.referencesSrikanthan, P., Seeman, T. E., & Karlamangla, A. S. (2009). Waist-Hip-Ratio as a Predictor of All-Cause Mortality in High-Functioning Older Adults. Annals of Epidemiology, 19(10), 724–731. https://doi.org/10.1016/j.annepidem.2009.05.003
dc.relation.referencesStefanaki, C., Peppa, M., Boschiero, D., & Chrousos, G. P. (2016). Healthy overweight/obese youth: early osteosarcopenic obesity features. European Journal of Clinical Investigation, 46(9), 767–778. https://doi.org/10.1111/eci.12659
dc.relation.referencesStewart, A., Marfell-Jones, M., Olds, Timothy., De Ridder, Hans. (2011). Protocolo internacional para la valoración antropométrica. Sociedad Internacional para el Avance de la Cineantropométria ISAK, ISBN 0-620-36207-3.
dc.relation.referencesVaziri, Y., Bulduk, S., Shadman, Z., Bulduk, E. O., Hedayati, M., Koc, H., Er, F., & Erdogan, C. S. (2015). Lean body mass as a predictive value of hypertension in young adults, in Ankara, Turkey. Iranian Journal of Public Health, 44(12), 1643–1654.
dc.relation.referencesVoils, S. A., & Cooper-Dehoff, R. M. (2014). Association between high sensitivity C-reactive protein and metabolic syndrome in subjects completing the National Health and Nutrition Examination Survey (NHANES) 2009-10. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 8(2), 88–90. https://doi.org/10.1016/j.dsx.2014.04.021
dc.relation.referencesVolaklis, K. A., Halle, M., & Meisinger, C. (2015). Muscular strength as a strong predictor of mortality: A narrative review. European Journal of Internal Medicine, 26(5), 303–310. https://doi.org/10.1016/j.ejim.2015.04.013
dc.relation.referencesWatanabe, K., Holobar, A., Kouzaki, M., Ogawa, M., Akima, H., & Moritani, T. (2016). Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction. Age, 38(3). https://doi.org/10.1007/s11357-016-9915-0
dc.relation.referencesWorld Health Organisation (WHO). (2008). WHO | Waist Circumference and Waist–Hip Ratio. Report of a WHO Expert Consultation. Geneva, 8-11 December 2008. December, 8–11. http://www.who.int
dc.relation.referencesXU, K., ZHU, H. J., CHEN, S., CHEN, L., WANG, X., ZHANG, L. Y., PAN, L., WANG, L., FENG, K., WANG, K., DONG, F., WANG, D. M., YU, Y. W., PAN, H., & SHAN, G. L. (2018). Fat-to-muscle Ratio: A New Anthropometric Indicator for Predicting Metabolic Syndrome in the Han and Bouyei Populations from Guizhou Province, China. Biomedical and Environmental Sciences, 31(4), 261–271. https://doi.org/10.3967/bes2018.034
dc.relation.referencesZeng, P., Han, Y., Pang, J., Wu, S., Gong, H., Zhu, J., Li, J., & Zhang, T. (2016). Sarcopenia-related features and factors associated with lower muscle strength and physical performance in older Chinese: A cross sectional study Physical functioning, physical health and activity. BMC Geriatrics, 16(1). https://doi.org/10.1186/s12877-016-0220-7
dc.relation.referencesZhong, L., Li, Q., Jiang, Y., Cheng, D., Liu, Z., Wang, B., Luo, R., Cheng, Q., & Qing, H. (2010). The ApoB/ApoA1 ratio is associated with metabolic syndrome and its components in a Chinese population. Inflammation, 33(6), 353–358. https://doi.org/10.1007/s10753-010-9193-4
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalmuscle mass
dc.subject.proposalmasa muscular
dc.subject.proposalmasa grasa
dc.subject.proposalbody fat mass
dc.subject.proposalriesgo cardiometabólico
dc.subject.proposalcardiometabolic risk
dc.subject.proposalHDL Choresterol
dc.subject.proposalColesterol HDL
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit