Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRestrepo Parra, Elisabeth
dc.contributor.advisorEscobar Rincón, Daniel
dc.contributor.authorSerna Manrique, Milton David
dc.date.accessioned2020-10-19T16:21:21Z
dc.date.available2020-10-19T16:21:21Z
dc.date.issued2020
dc.identifier.citationMilton David Serna Manrique. Estudio de los mecanismos de crecimiento en función de las fases presentes y la evaluación de la microestructura en películas de TaxNy obtenidas por deposición física en fase de vapor asistida por plasma. Universidad Nacional de Colombia sede Manizales. 2020
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78543
dc.description.abstractIn this dissertation, the study of growth mechanisms in tantalum nitride thin films was realized. Samples were sintered through plasma-enhanced vapor deposition. The survey was based on crystalline phases and microstructure. These features were deduced by employing X-ray diffraction (XRD). This technique allowed us to determine the phases through a conventional identification process consisting in deconvolution of diffraction peaks. For calculating the average crystalline domain and micro deformation percent, a microstructural analysis was carried out by using Williamson-Hall method. Texture coefficient related to Harris method was the parameter for determining information about crystallographic preferential planes. Based on the cell parameter, we made a study about the macroscopic tension state that appeared in the thin films, due to synthesis process and atomic behavior close to substrate-film interface. All the parameters were related with layer compositions in order to determine which were the main growth mechanisms during the synthesis process. Also, superficial morphology was analyzed and related with structural parameters mentioned before. Finally, obtained samples were evaluated like a function of their behavior into a corrosive environment.
dc.description.abstractEn esta tesis se realizó el estudio de los mecanismos de crecimiento de películas de nitruro de tantalio, mediante deposición en fase de vapor asistida por plasma, con base en el tipo de fases sintetizadas y las características microestructurales. Dichas características fueron obtenidas empleando la técnica de difracción de rayos X, la cual se usó para la determinación de las fases, por medio un proceso de identificación convencional que consiste en la descomposición de los picos de difracción. El análisis microestructural se hizo a partir del método de Williamson y Hall, con el fin de determinar el tamaño de dominio cristalino medio y el porcentaje de microdeformación. El parámetro para determinar la información sobre la orientación preferencial fue el coeficiente de textura relacionado en el método de Harris. Finalmente, con base en el análisis del parámetro de red se realizó un estudio del estado de tensión macroscópica desarrollado en las películas delgadas tanto por el proceso de síntesis como por las características de la interfaz película-sustrato. Dichos parámetros fueron relacionados con la composición de las capas con miras a determinar cuáles son los mecanismos de crecimiento que priman en el proceso de síntesis. Adicional a lo anterior se analizó la morfología superficial de los recubrimientos y se relacionó con los parámetros de estructura ya mencionados. Finalmente, y como estudio adicional, se evaluaron las muestras sintetizadas en función de su comportamiento frente a la corrosión.
dc.format.extent74
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.titleEstudio de los mecanismos de crecimiento en función de las fases presentes y la evaluación de la microestructura en películas de TaxNy obtenidas por deposición física en fase de vapor asistida por plasma
dc.title.alternativeStudy of the growth mechanisms as a function of the phases present and the evaluation of the microstructure in TaxNy films obtained by physical deposition in the plasma-assisted vapor phase
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalTesis presentada como requisito parcial para optar al título de: Magister en Ciencias – Física.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.contributor.researchgroupLaboratorio de Fisica del Plasma
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Física y Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesJ. William D . C allister, “Ciencia e Ingeniería de los Materiales W I L L I k M D . C A L L I S T E R , J r,” Univ. Utah., 2012.
dc.relation.referencesC. Mijangos and J. S. M. S, Nuevos materiales en la sociedad del siglo XXI. 2018.
dc.relation.referencesA. Salamat, A. L. Hector, P. Kroll, and P. F. McMillan, “Nitrogen-rich transition metal nitrides,” Coord. Chem. Rev., vol. 257, no. 13–14, pp. 2063–2072, 2013, doi: 10.1016/j.ccr.2013.01.010.
dc.relation.referencesC. L. Au, W. A. Anderson, D. A. Schmitz, J. C. Flassayer, and F. M. Collins, “Stability of Tantalum Nitride Thin Film Resistors,” J. Mater. Res., vol. 5, no. 6, pp. 1224–1232, 1990, doi: 10.1557/JMR.1990.1224.
dc.relation.referencesR. Marchand, F. Tessier, and F. J. DiSalvo, “New routes to transition metal nitrides: Preparation and characterization of new phases,” J. Mater. Chem., vol. 9, no. 1, pp. 297–304, 1999, doi: 10.1039/a805315d.
dc.relation.referencesB. Mondal, S. Bhattacharya, and S. Ghosh, “Heterometallic boride clusters of group 6 and 9 transition metals,” J. Organomet. Chem., vol. 819, pp. 147–154, 2016, doi: 10.1016/j.jorganchem.2016.06.027.
dc.relation.referencesS. Zhang, D. Sun, Y. Fu, and H. Du, “Effect of sputtering power on the nucleation and growth of Cu films deposited by magnetron sputtering,” Surf. Coatings Technol., vol. 167, no. 2–3, pp. 113–119, 2003, doi: 10.1016/S0257-8972(02)00903-9.
dc.relation.referencesN, r. Mody, R. Q. Hwang, “Residual Stress Effects On The Fracture Of Tantalum Nitride Films,” Mater. Res. Soc., vol. 458, no. 3, pp. 295–316, 1997.
dc.relation.referencesR. S. Ningthoujam and N. S. Gajbhiye, “Synthesis, electron transport properties of transition metal nitrides and applications,” Prog. Mater. Sci., vol. 70, pp. 50–154, 2015, doi: 10.1016/j.pmatsci.2014.11.004
dc.relation.referencesK. Hohmuth, B. Rauschenbach, A. Kolitsch, and E. Richter, “Formation of compounds by metalloid ion implantation in iron,” Nucl. Instruments Methods Phys. Res., vol. 209–210, no. PART 1, pp. 249–257, 1983, doi: 10.1016/0167-5087(83)90808-6.
dc.relation.referencesW. G. Fahrenholtz and G. E. Hilmas, “Ultra-high temperature ceramics: Materials for extreme environments,” Scr. Mater., vol. 129, pp. 94–99, 2017, doi: 10.1016/j.scriptamat.2016.10.018.
dc.relation.referencesT. J. Prior, D. A. Headspith, and M. G. Francesconi, “Modification of the anion sublattice in metal nitrides,” Coord. Chem. Rev., vol. 257, no. 13–14, pp. 1970–1977, 2013, doi: 10.1016/j.ccr.2013.01.033.
dc.relation.referencesC. Bhattacharya, “Effect of shock on transition metal carbides and nitrides {MC/N (M = Zr, Nb, Ta, Ti)},” Comput. Mater. Sci., vol. 127, pp. 85–95, 2017, doi: 10.1016/j.commatsci.2016.10.010.
dc.relation.referencesP. Pande, P. G. Rasmussen, and L. T. Thompson, “Charge storage on nanostructured early transition metal nitrides and carbides,” J. Power Sources, vol. 207, pp. 212–215, 2012, doi: 10.1016/j.jpowsour.2012.01.028
dc.relation.referencesD. Wang et al., “First-Principles Calculations of Ti2N and Ti2NT2 (T = O, F, OH) Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond,” J. Phys. Chem. C, vol. 121, no. 24, pp. 13025–13034, 2017, doi: 10.1021/acs.jpcc.7b03057
dc.relation.referencesE. Gregoryanz et al., “Synthesis and characterization of a binary noble metal nitride,” Nat. Mater., vol. 3, no. 5, pp. 294–297, 2004, doi: 10.1038/nmat1115.
dc.relation.referencesR. F. Zhang, S. H. Sheng, and S. Veprek, “Origin of different plastic resistance of transition metal nitrides and carbides: Stiffer yet softer,” Scr. Mater., vol. 68, no. 12, pp. 913–916, 2013, doi: 10.1016/j.scriptamat.2013.01.040.
dc.relation.referencesM. Ohring, “Materials science of thin films,” Antimicrob. Agents Chemother., vol. 58, no. 12, pp. 7250–7257, Dec. 2014, doi: 10.1016/B978-0-12-524975-1.X5000-9.
dc.relation.referencesX. Liu, G. J. Ma, G. Sun, Y. P. Duan, and S. H. Liu, “Effect of deposition and annealing temperature on mechanical properties of TaN film,” Appl. Surf. Sci., vol. 258, no. 3, pp. 1033–1037, 2011, doi: 10.1016/j.apsusc.2011.08.116.
dc.relation.referencesC. S. Shin, Y. W. Kim, D. Gall, J. E. Greene, and I. Petrov, “Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si(001) and MgO(001) by reactive magnetron sputter deposition,” Thin Solid Films, vol. 402, no. 1–2, pp. 172–182, 2002, doi: 10.1016/S0040-6090(01)01618-2.
dc.relation.referencesC. Stampfl and A. J. Freeman, “Stable and metastable structures of the multiphase tantalum nitride system,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 71, no. 2, pp. 4–8, 2005, doi: 10.1103/PhysRevB.71.024111
dc.relation.referencesM. Nikravesh, G. H. Akbari, and A. Poladi, “A comprehensive study on the surface tribology of Ta thin film using molecular dynamics simulation: The effect of TaN interlayer, power and temperature,” Tribol. Int., vol. 105, no. August 2016, pp. 185–192, 2017, doi: 10.1016/j.triboint.2016.10.010.
dc.relation.referencesE. Liu, G. Jin, X. Cui, Q. Xiao, and T. Shao, “Effect of gas pressure on the mechanical properties of sputtered tan films,” Phys. Procedia, vol. 50, no. October 2012, pp. 438–441, 2013, doi: 10.1016/j.phpro.2013.11.068.
dc.relation.referencesY. X. Leng et al., “Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering,” Thin Solid Films, vol. 398, no. 399, pp. 471–475, 2001, doi: 10.1016/S0040-6090(01)01448-1.
dc.relation.referencesJ. A. Thornton, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings.,” J Vac Sci Technol, vol. 11, no. 4, pp. 666–670, 1974, doi: 10.1116/1.1312732.
dc.relation.referencesJ. A. Thornton, “High rate thick film growth,” Annu. Rev. Mater. Sci., vol. 7, p. 239, 1977, doi: 1977.7:239-260.
dc.relation.referencesD. Esteban, “Propiedades estructurales , eléctricas y mecánicas de películas delgadas obtenidas por métodos de evaporación asistidos por plasma,” 1997.
dc.relation.referencesH. I. Aaronson, “Atomic mechanisms of diffusional nucleation and growth and comparisons with their counterparts in shear transformations,” Metall. Trans. A, vol. 24, no. 2, pp. 241–276, 1993, doi: 10.1007/bf02657313.
dc.relation.referencesN. A. S. I. Series and N. Base, Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices. 1993.
dc.relation.referencesM. Ohring, Materials science of thin films, Second., no. 9. 2002.
dc.relation.referencesJ. M. Albella, “Mecanismos de nucleación y crecimiento de capas delgadas.”
dc.relation.referencesH. 0. Pierson, “Handbook of refractory carbides and nitrides,” 2010.
dc.relation.referencesL. E. Conroy and A. N. Christensen, “Preparation and Cry&i1 Structure of p-Ta2N,” J. Solid State Chem., vol. 20, no. 2, pp. 205–207, 1977, doi: 10.1016/0022-4596(77)90069-X.
dc.relation.referencesM. Grumski, “Ab initio Study of Tantalum Nitride and Silver Adatoms,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2019, doi: 10.1017/CBO9781107415324.004.
dc.relation.referencesN. Terao, “Structure of Tantalum Nitrides,” Jpn. J. Appl. Phys., vol. 10, 1971.
dc.relation.referencesW. L. Wang et al., “The influence of amorphous TaNx under-layer on the crystal growth of over-deposited Ta film,” Thin Solid Films, vol. 603, pp. 34–38, 2016, doi: 10.1016/j.tsf.2016.01.049.
dc.relation.referencesH. Kawasaki, K. D. J. Namba, and Y. Suda, “Tantalum Nitride Thin Films Synthesized by Pulsed Nd:YAG Laser Deposition Method,” MRS Proc., vol. 617, p. J3.22, Feb. 2000, doi: 10.1557/PROC-617-J3.22.
dc.relation.referencesS. Chaudhuri, I. J. Maasilta, L. Chandernagor, M. Ging, and M. Lahtinen, “Fabrication of superconducting tantalum nitride thin films using infrared pulsed laser deposition,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 31, no. 6, p. 061502, 2013, doi: 10.1116/1.4812698.
dc.relation.referencesW. Ensinger, M. Kiuchi, and M. Satou, “Low-temperature formation of metastable cubic tantalum nitride by metal condensation under ion irradiation,” J. Appl. Phys., vol. 77, no. 12, pp. 6630–6635, 1995, doi: 10.1063/1.359073.
dc.relation.referencesG. B. Rayner and S. M. George, “Nucleation and growth of tantalum nitride atomic layer deposition on Al2O3 using TBTDET and hydrogen radicals,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 27, no. 4, pp. 716–724, 2009, doi: 10.1116/1.3147215.
dc.relation.referencesO. Van Der Straten, Y. Zhu, K. Dunn, E. T. Eisenbraun, and A. E. Kaloyeros, “Atomic layer deposition of tantalum nitride for ultrathin liner applications in advanced copper metallization schemes,” J. Mater. Res., vol. 19, no. 2, pp. 447–453, 2004, doi: 10.1557/jmr.2004.0053.
dc.relation.referencesS. Xu, P. Munroe, J. Xu, and Z. H. Xie, “The microstructure and mechanical properties of tantalum nitride coatings deposited by a plasma assisted bias sputtering deposition process,” Surf. Coatings Technol., vol. 307, pp. 470–475, 2016, doi: 10.1016/j.surfcoat.2016.09.015.
dc.relation.referencesD. Bernoulli, U. Müller, M. Schwarzenberger, R. Hauert, and R. Spolenak, “Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition,” Thin Solid Films, vol. 548, pp. 157–161, 2013, doi: 10.1016/j.tsf.2013.09.055.
dc.relation.referencesS. S. Firouzabadi, M. Naderi, K. Dehghani, and F. Mahboubi, “Effect of nitrogen flow ratio on nano-mechanical properties of tantalum nitride thin film,” J. Alloys Compd., vol. 719, pp. 63–70, 2017, doi: 10.1016/j.jallcom.2017.05.159.
dc.relation.referencesA. Al-Masha’al, A. Bunting, and R. Cheung, “Evaluation of residual stress in sputtered tantalum thin-film,” Appl. Surf. Sci., vol. 371, pp. 571–575, 2016, doi: 10.1016/j.apsusc.2016.02.236.
dc.relation.referencesM. Grosser, H. Seidel, and U. Schmid, “Microstructure and mechanical properties of sputter deposited tantalum nitride thin films after high temperature loading,” Thin Solid Films, vol. 629, pp. 69–78, 2017, doi: 10.1016/j.tsf.2017.03.030.
dc.relation.referencesI. K. and H. K. Kiyotaca Wasa, handbook of sputter deposition technology, Second edi., no. 9. 2012.
dc.relation.referencesE. Nieto, P. Durán, C. Moure, and J. Fernández, “Películas delgadas: fabricación y aplicaciones.,” Boletín la Soc. Española Cerámica y Vidr., vol. 33, no. 5, pp. 245–258, 1994.
dc.relation.referencesI. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: A review,” Surf. Coatings Technol., vol. 127, no. 2–3, pp. 203–218, 2000, doi: 10.1016/s0257-8972(00)00566-1.
dc.relation.referencesJ. M. Albella, Depósito Mediante Pulverización Catódica (' Sputtering ’).
dc.relation.referencesT. Solidfilms, A. Okamoto, and T. Serikawa, “REACTIVE SPUTTERING Ar-N, MIXTURE,” vol. 137, pp. 143–151, 1986, doi: 10.1016/0040-6090(86)90202-6.
dc.relation.referencesS. Maniv and W. D. Westwood, “Oxidation of an aluminum magnetron sputtering target in Ar/O2 mixtures,” J. Appl. Phys., vol. 51, no. 1, pp. 718–725, 1980, doi: 10.1063/1.327332.
dc.relation.referencesJ. Musil, P. Baroch, J. Vlček, K. H. Nam, and J. G. Han, “Reactive magnetron sputtering of thin films: Present status and trends,” in Thin Solid Films, 2005, vol. 475, no. 1-2 SPEC. ISS., pp. 208–218, doi: 10.1016/j.tsf.2004.07.041.
dc.relation.referencesD. G. Constantin, M. Apreutesei, R. Arvinte, A. Marin, O. C. Andrei, and D. Munteanu, “Magnetron Sputtering Technique Used for Coatings Deposition ; Technologies and Applications,” 7th Int. Conf. Mater. Sci. Eng., vol. 12, no. February, pp. 24–26, 2011
dc.relation.referencesR. P. Howson, N. Danson, and I. Safi, “High rate reactive sputtering using gas pulsing: A technique for the creation of films onto large, flat substrates,” Thin Solid Films, vol. 351, no. 1–2, pp. 32–36, 1999, doi: 10.1016/S0040-6090(99)00081-4.
dc.relation.referencesS. Kadlec, J. Musil, and H. Vyskocil, “Hysteresis effect in reactive sputtering: A problem of system stability,” J. Phys. D. Appl. Phys., vol. 19, no. 9, 1986, doi: 10.1088/0022-3727/19/9/004.
dc.relation.referencesS. Kadlec, J. Musil, and J. Vyskočil, “Influence of the pumping speed on the hysteresis effect in the reactive sputtering of thin films,” Vacuum, vol. 37, no. 10, pp. 729–738, 1987, doi: 10.1016/0042-207X(87)90262-4.
dc.relation.referencesV. Kirchhoff, T. Kopte, T. Winkler, M. Schulze, and P. Wiedemuth, “Dual magnetron sputtering (DMS) system with sine-wave power supply for large-area coating,” Surf. Coatings Technol., vol. 98, no. 1–3, pp. 828–833, 1998, doi: 10.1016/S0257-8972(97)00371-X.
dc.relation.referencesJ. Musil, S. Kadlec, J. Vyskočil, and V. Valvoda, “New results in d.c. reactive magnetron deposition of TiNx films,” Thin Solid Films, vol. 167, no. 1–2, pp. 107–120, 1988, doi: 10.1016/0040-6090(88)90487-7.
dc.relation.referencesH. Ohsaki, Y. Tachibana, A. Mitsui, T. Kamiyama, and Y. Hayashi, “High rate deposition of TiO2 by DC sputtering of the TiO2-X target,” Thin Solid Films, vol. 392, no. 2, pp. 169–173, 2001, doi: 10.1016/S0040-6090(01)01023-9.
dc.relation.referencesN. Martin, A. R. Bally, P. Hones, R. Sanjinés, and F. Lévy, “High rate and process control of reactive sputtering by gas pulsing: The Ti-O system,” Thin Solid Films, vol. 377–378, pp. 550–556, 2000, doi: 10.1016/S0040-6090(00)01440-1.
dc.relation.referencesS. Schiller et al., “R. voigt, r. fendler and g. teschner,” Power, vol. 96, pp. 235–240, 1982.
dc.relation.referencesS. Schiller et al., “R. voigt, r. fendler and g. teschner,” Power, vol. 96, pp. 235–240, 1982.
dc.relation.referencesA. G. Spencer, V. C. Group, A. Road, R. P. Howson, and A. Road, “DYNAMIC CONTROL OF REACTIVE MAGNETRON SPUTTERING: A THEORETICAL ANALYSIS,” Thin Solid Films, vol. 186, pp. 129–136, 1990.
dc.relation.referencesD. Escobar, “MICROESTRUCTURA, ESFUERZOS RESIDUALES Y DUREZA EN PELÍCULAS DELGADAS DE NITRURO DE TITANIO-CIRCONIO,” Tesis Maest., 2012.
dc.relation.referencesJ. D. R. Salazar, “SÍNTESIS Y ESTUDIO OPTICO, ESTRUCTURAL Y TERMICO DE PVA DOPADAS CON TiO2,” 2014.
dc.relation.referencesB. E. Warren, “B. E. Warren - X-ray diffraction-Dover (1990).pdf.” NEW YORK, 1990.
dc.relation.referencesP. B. Hirsch, “Elements of X-Ray Diffraction,” Phys. Bull., vol. 8, no. 7, pp. 237–238, 1957, doi: 10.1088/0031-9112/8/7/008.
dc.relation.referencesP. Scardi, M. Leoni, and R. Delhez, “Line broadening analysis using integral breadth methods: A critical review,” J. Appl. Crystallogr., vol. 37, no. 3, pp. 381–390, 2004, doi: 10.1107/S0021889804004583.
dc.relation.referencesL. H. Schwartz J. B. cohen, Diffraction from materials, vol. 53, no. 9. 2013
dc.relation.referencesG. Ribárik, “Modeling of diffraction patterns based on microstructural properties,” PhD Thesis, 2008.
dc.relation.referencesL. E. A. Harold P. Klug, X- Ray diffraction procedures_ for polyerystalline and amorphous materials-Wiley (1974).pdf. 1974.
dc.relation.referencesG. K. Williamson and W. H. Hall, “X-Ray broadening from filed aluminium and tungsten,” Acta Metall., vol. 1, pp. 22–31, 1953.
dc.relation.referencesM. M. WOOLFSON, “AN INTRODUCTION TO X-RAY CRYSTALLOGRAPHY,” 2010, doi: 10.1524/zkri.1998.213.5.308.
dc.relation.referencesP. Taylor and G. B. Harris, “Philosophical Magazine Series 7 X . Quantitative measurement of preferred orientation in rolled uranium bars,” Communication, no. March 2012, pp. 37–41, 2009.
dc.relation.referencesP. Eaton and P. West, “Atomic Force Microscopy,” At. Force Microsc., vol. 9780199570, pp. 1–256, 2010, doi: 10.1093/acprof:oso/9780199570454.001.0001
dc.relation.referencesA. International, “standard practique for calculation of corrosion rates and related information from electrochemical measurement,” 1994.
dc.relation.referencesR. Baboian, Corrosion Tests and Standards, Second. 2005.
dc.relation.referencesY. Mashimo, T., Tashiro, S., Toya, T., Nishida, M., Yamazaki, H., Yamaya, S., Oh-ishi, K., Syono, “JCPDS 49-1283,” in J. Mater. Sci, 1993, vol. 28, p. 3439.
dc.relation.referencesH. B. Nie et al., “Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering,” Appl. Phys. A Mater. Sci. Process., vol. 73, no. 2, pp. 229–236, Aug. 2001, doi: 10.1007/s003390000691.
dc.relation.referencesS. Xu, P. Munroe, J. Xu, and Z. H. Xie, “The microstructure and mechanical properties of tantalum nitride coatings deposited by a plasma assisted bias sputtering deposition process,” Surf. Coatings Technol., vol. 307, pp. 470–475, 2016, doi: 10.1016/j.surfcoat.2016.09.015.
dc.relation.referencesI. P. B. and A. N. P. V. F. Petrunin, N. I. Sorokin, “STABILITY OF CUBIC TANTALUM NITRIDES DURING HEAT TREATMENT,” vol. 3, no. 3, pp. 1–22, 1980.
dc.relation.referencesS. Baik and Y. Kim, “Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering,” Appl. Microsc., vol. 50, no. 1, p. 7, Dec. 2020, doi: 10.1186/s42649-020-00026-7.
dc.relation.referencesG. Bejarano Gaitán, J. Roque Caicedo, P. Prieto Pulido, G. Zambrano, and E. Baca Miranda, “Influence of ionic bombardment on cubic boron nitride (c-BN) thin film deposition by r. f. magnetron sputtering,” Rev. Fac. Ing. Univ. Antioquia, no. 37, pp. 188–199, 2006.
dc.relation.referencesJ. J. Olaya, D. M. Marulanda, and S. Rodil, “Preferential orientation in metal nitride deposited by the UBM system,” Ing. e Investig., vol. 30, no. 1, pp. 125–129, 2010.
dc.relation.referencesK. L. Chopra, M. R. Randlett, and R. H. Duff, “Face-centred cubic modification in sputtered films of tantalum, molybdenum, tungsten, rhenium, hafnium and zirconium,” Philos. Mag., vol. 16, no. 140, pp. 261–273, 1967, doi: 10.1080/14786436708229739.
dc.relation.referencesA. Al-Masha’al, A. Bunting, and R. Cheung, “Evaluation of residual stress in sputtered tantalum thin-film,” Appl. Surf. Sci., vol. 371, pp. 571–575, 2016, doi: 10.1016/j.apsusc.2016.02.236.
dc.relation.referencesTakuya Yoshihara and Katsumi Suzuki, “Variation of internal stresses in sputtered Ta films,” J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 11, no. 2, p. 301, 1993, doi: 10.1116/1.586674.
dc.relation.referencesL. A. Clevenger, A. Mutscheller, J. M. E. Harper, C. Cabral, and K. Barmak, “The relationship between deposition conditions, the beta to alpha phase transformation, and stress relaxation in tantalum thin films,” J. Appl. Phys., vol. 72, no. 10, pp. 4918–4924, 1992, doi: 10.1063/1.352059.
dc.relation.referencesG. K. Williamson and W. H. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall., vol. 1, no. 1, pp. 22–31, 1953, doi: 10.1016/0001-6160(53)90006-6.
dc.relation.referencesK. Y. Chan and B. S. Teo, “Investigation into the influence of direct current (DC) power in the magnetron sputtering process on the copper crystallite size,” Microelectronics J., vol. 38, no. 1, pp. 60–62, 2007, doi: 10.1016/j.mejo.2006.09.011.
dc.relation.referencesS. D. Ekpe and S. K. Dew, “Stability of Cubic FAPbI3 from X-ray Diffraction, Anelastic, and Dielectric Measurements,” pp. 229–254, 2008, doi: 10.1007/978-3-540-76664-3_7.
dc.relation.referencesM. T. Le, Y. U. Sohn, J. W. Lim, and G. S. Choi, “Effect of sputtering power on the nucleation and growth of Cu films deposited by magnetron sputtering,” Mater. Trans., vol. 51, no. 1, pp. 116–120, 2010, doi: 10.2320/matertrans.M2009183.
dc.relation.referencesD. A. Cogswell and M. Z. Bazant, “Coherency strain and the kinetics of phase separation in LiFePO 4 nanoparticles,” ACS Nano, vol. 6, no. 3, pp. 2215–2225, 2012, doi: 10.1021/nn204177u.
dc.relation.referencesH. N. Shah, R. Jayaganthan, and D. Kaur, “Effect of sputtering pressure and temperature on DC magnetron sputtered CrN films,” Surf. Eng., vol. 26, no. 8, pp. 629–637, 2010, doi: 10.1179/174329409X389326. [18] M. K. S. Bin Rafiq et al., “WS2: A New Window Layer Material for Solar Cell Application,” Sci. Rep., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1038/s41598-020-57596-5.
dc.relation.referencesJ. Jaiswal, S. Chauhan, and R. Chandra, “Influence of Sputtering Parameters on Structural, Optical and Thermal Properties of Copper Nanoparticles Synthesized By Dc Magnetron Sputtering,” Int. J. Sci. Technol. Manag., no. 0401, pp. 2394–1529, 2015.
dc.relation.referencesD. HESSE, N. ZAKHAROV, A. PIGNOLET, A. JAMES, and S. SENZ, “TEM cross-section investigations of epitaxial Ba,” Cryst. Res. Technol., vol. 35, pp. 641–651, 2000.
dc.relation.referencesT. Elangovan et al., “Synthesis and high temperature XRD studies of tantalum nitride thin films prepared by reactive pulsed dc magnetron sputtering,” J. Alloys Compd., vol. 509, no. 22, pp. 6400–6407, 2011, doi: 10.1016/j.jallcom.2011.03.067.
dc.relation.referencesC. H. Ma, J. H. Huang, and H. Chen, “Texture evolution of transition-metal nitride thin films by ion beam assisted deposition,” Thin Solid Films, vol. 446, no. 2, pp. 184–193, 2004, doi: 10.1016/j.tsf.2003.09.063.
dc.relation.referencesC.-S. Shin, D. Gall, Y.-W. Kim, N. Hellgren, I. Petrov, and J. E. Greene, “Development of preferred orientation in polycrystalline NaCl-structure δ-TaN layers grown by reactive magnetron sputtering: Role of low-energy ion surface interactions,” J. Appl. Phys., vol. 92, no. 9, pp. 5084–5093, Nov. 2002, doi: 10.1063/1.1510558.
dc.relation.referencesF. Ritchie, A practical guide to SPM, vol. 86, no. 2. 2005.
dc.relation.referencesK. Y. Chan and B. S. Teo, “Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique,” Microelectronics J., vol. 37, no. 10, pp. 1064–1071, 2006, doi: 10.1016/j.mejo.2006.04.008.
dc.relation.referencesV. Chawla, R. Jayaganthan, A. K. Chawla, and R. Chandra, “Microstructural characterizations of magnetron sputtered Ti films on glass substrate,” J. Mater. Process. Technol., vol. 209, no. 7, pp. 3444–3451, 2009, doi: 10.1016/j.jmatprotec.2008.08.004.
dc.relation.referencesI. Safi, “Recent aspects concerning DC reactive magnetron sputtering of thin films: A review,” Surf. Coatings Technol., vol. 127, no. 2–3, pp. 203–218, 2000, doi: 10.1016/s0257-8972(00)00566-1.
dc.relation.referencesA. P. Amalathas and M. M. Alkaisi, “Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen,” J. Mater. Sci. Mater. Electron., vol. 27, no. 10, pp. 11064–11071, 2016, doi: 10.1007/s10854-016-5223-9.
dc.relation.referencesY. Jin et al., “Effect of sputtering power on surface topography of dc magnetron sputtered Ti thin films observed by AFM,” Appl. Surf. Sci., vol. 255, no. 8, pp. 4673–4679, 2009, doi: 10.1016/j.apsusc.2008.12.029.
dc.relation.referencesD. Escobar, “MICROESTRUCTURA, ESFUERZOS RESIDUALES Y DUREZA EN PELÍCULAS DELGADAS DE NITRURO DE TITANIO-CIRCONIO,” Tesis Maest., 2012.
dc.relation.referencesS. S. Firouzabadi, M. Naderi, K. Dehghani, and F. Mahboubi, “Effect of nitrogen flow ratio on nano-mechanical properties of tantalum nitride thin film,” J. Alloys Compd., vol. 719, pp. 63–70, 2017, doi: 10.1016/j.jallcom.2017.05.159.
dc.relation.referencesU. Gramberg, M. Renner, and H. Diekmann, “Tantalum as a material of construction for the chemical processing industry – A critical survey,” Mater. Corros., vol. 46, no. 12, pp. 689–700, 1995, doi: 10.1002/maco.19950461206.
dc.relation.referencesS. B. Lyon, “Shreir’s Corrosion Volume 3: Comprehensive Corrosion,” Shreir’s Corros., 2009.
dc.relation.referencesJ. P. N. Espinosa, “Evaluación de la resistencia a la corrosión a través de técnicas electroquímicas en películas delgadas de TiZrN,” 2019.
dc.relation.referencesC. Liu, Q. Bi, A. Leyland, and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behavior of PVD coated steels in 0.5 N NaCl aqueous solution: Part II. EIS interpretation of corrossion behaviour,” Corros. Sci., vol. 45, no. 6, pp. 1257–1273, 2003, doi: 10.1016/S0010-938X(02)00214-7.
dc.relation.referencesY. M. Lu, R. J. Weng, W. S. Hwang, and Y. S. Yang, “Study of phase transition and electrical resistivity of tantalum nitride films prepared by DC magnetron sputtering with OES detection system,” Thin Solid Films, vol. 398, no. 399, pp. 356–360, 2001, doi: 10.1016/S0040-6090(01)01342-6.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalTantalum nitride
dc.subject.proposalNitruro de Tantalio
dc.subject.proposalgrowth mechanisms
dc.subject.proposalmecanismos de crecimiento
dc.subject.proposalX-ray diffraction
dc.subject.proposaldifracción de rayos X
dc.subject.proposalmicrostructure
dc.subject.proposalmicroestructura
dc.subject.proposalidentificación de fases
dc.subject.proposalphase identification
dc.subject.proposaltextura
dc.subject.proposaltexture
dc.subject.proposalesfuerzos residuales
dc.subject.proposalresidual stress
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit