Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorRosales Rivera, Andrés
dc.contributor.authorMolano Ruales, Diego Andrés
dc.date.accessioned2020-10-23T20:56:04Z
dc.date.available2020-10-23T20:56:04Z
dc.date.issued2020
dc.identifier.citationD. A. Molano R., A. Rosales-Rivera, Síntesis de la aleación intermetálica Fe60Al40 por el método de molienda mecánica en presencia de campo magnético y su caracterización estructural, morfológica y termomagnética
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78558
dc.description.abstractEn el presente trabajo realizamos un estudio experimental detallado sobre la síntesis, caracterización estructural, morfológica y magnética para aleaciones intermetálicas Fe60Al40 (en porcentaje atómico) obtenidas mediante un proceso de aleación mecánica. La aleación mecánica se realizó utilizando un dispositivo de molienda, en el que el movimiento de bolas puede ser controlado por un campo magnético externo de hasta 1.5 kOe (equipo Uni-Ball-Mill 5) para diferentes intervalos de tiempo de molienda, t = 12, 24, 36, 48, 72, y 120 horas. Estas aleaciones se prepararon a partir de precursores de polvo de hierro y aluminio (99,9% de pureza), que se ponderaron por separado con el fin de obtener la composición deseada. La caracterización se llevó a cabo a través de difracción de rayos X (XRD), microscopía electrónica de barrido (SEM), magnetómetro de muestra vibratorio (VSM), y análisis termogravimétrico (TGA). Se obtuvo una aleación intermetálica con estructura bcc para un tiempo de molienda igual o superior a 72 horas de molienda. El análisis de los resultados de XRD indicó que el tamaño medio del cristalito disminuye mientras que las microtensiones presentes en estas aleaciones aumentan con el aumento del tiempo de molienda. Los resultados de la caracterización morfológica por SEM mostraron que en el proceso de fresado para obtener la aleación FeAl, las partículas de polvo de Hierro y Aluminio de las que se obtiene, evolucionan a través de diferentes etapas, incluyendo formas, tamaños, fractura, soldadura y cizallamiento. Las mediciones de magnetización a temperatura ambiente revelaron que la magnetización de saturación disminuye casi linealmente con el aumento del tiempo de fresado. A su vez, el campo coercitivo aumenta con el tiempo de molienda, alcanza un máximo a las 72 horas de molienda, y luego disminuye para mayores tiempos de molienda.
dc.description.abstractIIn the present work we make a detail experimental study on synthesis, structural, morphological, and magnetic characterization is presented for Fe60Al40 (at. %) intermetallic alloys obtained by means of a mechanical alloying process. The mechanical alloying was performed using a milling device with magnetically controlled balls movement (Uni-Ball-Mill 5 equipment) for different intervals of milling time, t = 12, 24, 36, 48, 72, and 120 hours. These alloys were prepared from Iron and Aluminum powder precursors (99.9% purity), which were separately weighted in order to obtain the desired composition. The characterization was carried out via X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). An intermetallic alloy with bcc structure was obtained at and after 72 hours of milling time. Analysis of XRD results indicated that the crystallite average size decreases while the micro strains present in these intermetallic alloys increase with the increase of milling time. The results of the morphological characterization by SEM showed that in the milling process to obtain the FeAl alloy, the dust particles of Iron and Aluminum from which it is obtained, evolve through different stages, including shapes, sizes, fracture, welding and shearing. The magnetization measurements at room temperature revealed that the saturation magnetization quasi-linearly decreases with the increase of milling time. In turn, the coercive field increases with milling time and goes through a maximum at t = 72 hours before finally decreasing.
dc.format.extent112
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc530 - Física
dc.titleSíntesis de la aleación intermetálica Fe60Al40 por el método de molienda mecánica en presencia de campo magnético y su caracterización estructural, morfológica y termomagnética
dc.title.alternativeSynthesis of the Fe60Al40 intermetallic alloy by the mechanical grinding method in the presence of magnetic field and its structural, morphological and thermo-magnetic characterization
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalTesis presentada como requisito parcial para optar el título de: Magister en Ciencias - Física.
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física
dc.contributor.researchgroupMagnetismo y Materiales Avanzados
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Física y Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.references[1] C. C. Koch, Material synthesis by Mechanical alloy. Annu. Re. Mater. Sci,121 143, 1989.
dc.relation.references[2] R. Sundaresan and F. H. Froes, Mechanical Alloying.
dc.relation.references[3] R. L. White, "The Use of Mechanical Alloying in the Manufacture of Multifilamentary Superconducting Wire," Ph.D. Thesis, Stanford Univ., 1979.
dc.relation.references[4] J.S. Benjamin, ScientifIC American, 234 (5) (1976), p. 40
dc.relation.references[5] S. Gialanella, Intermetallics 3 (I 995) 73-76
dc.relation.references[6] F. Reyes-Gómez, W.R. Aguirre-Contreras, G.A. Pérez Alcázar, J.A. Tabares, Journal of Alloys and Compounds 735 (2018) 870-879
dc.relation.references[7] A.K. Arzhnikov, L.V. Dobysheva, M.A. Timirgazin, J. Magn. Magn. Mater. 320 (2008) 1904
dc.relation.references[8] D.A. Días, J. Ricardo de Sousa, J.A. Plascak, Phys. Lett. A 373 (2009) 3513
dc.relation.references[9] M.J. Besnus, A. Herr, J.P. Meyer, J. Phys. F Met. Phys. 5 2138 (1975)
dc.relation.references[10] Y. Yanga, I. Barker, P. Martin, Phil. Mag. A 79 (1999) 449.
dc.relation.references[11] A. Taylor, R.M. Jones, J. Phys. Chem. Solids 6 (1958) 16
dc.relation.references[12] X. Amils, J. Nogués, S. Suriñach, J.S. Muñoz, M.D. Baró, A. Hernando, J.P. Morniroli, Phys. Rev. B 63 (2001), 052402.
dc.relation.references[13] A. Arrott, H. Sato, Phys. Rev. 114 (1959) 1420
dc.relation.references[14] G.P. Huffman, R.M. Fisher, J. Appl. Phys. 38 (1967) 735
dc.relation.references[15] J. Nogués, E. Apiñaniz, J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puzniak, I. Fita, J. S. Gritaonandia, S. Suriñach, J. S. Muñoz, M. D. Baró, F. Plazaola, and F. Baudelet; PHYSICAL REVIEW B 74, 024407 2006.
dc.relation.references[16] X. Amiles, J. Nogues, S. Suriñach; IEEE Transactions on magnetics, vol 34 No 4, July 1998, 1129-1131.
dc.relation.references[17] Calka, A., Varin, R. A., Application of Controlled Ball Milling in Materials Processing, Proc. Int. Symp. on Processing and Fabrication of Advanced Materials IX (PFAM-IX), T.S. Srivatsan, R.A. Varin, M. Khor (Eds.) (ASM International, Materials Park, OH, pp.263-287, 2001.
dc.relation.references[18] Bohn R, Hanbold T, Birringer R, Gleiter H. Nanocrystalline intermetallic compounds-an approach to ductility? Scripta Metallurgica et Materialia. 1991;25:81
dc.relation.references[19] M. I. Raviathul and N. Krishna Mukhopadhyay, Estructural and Mechanical Behavior of Al-Fe intermetallics, DOI: 10.5772/intechopen.73944.
dc.relation.references[20] Jang JS, Koch CC. The Hall-Petch relationship in nanocrystalline iron produced by ball milling. Scripta Metallurgica et Materialia. 1990;24:1599.
dc.relation.references[21] Koch CC, Cho YS. Nanocrystals by high energy ball milling. Nanostructured Materials. 1992;1:207
dc.relation.references[22] Ermakov A, Yurchikov E, Barinov V. The magnetic properties of amorphous Y-Co alloy powders obtained by mechanical comminution. Physics of Metals and Metallography.1981;52:50
dc.relation.references[23] Ermakov AY, Yurchikov YY, Barinov VA. Magnetic properties of amorphous powders prepared by the mechanical grinding of Y-Co alloys. Fizika Metallov I Metallovedenie. 1981;52:1184
dc.relation.references[24] Physics of magnetism and magnetic materials, K. H. J. Buschow and F. R. De Boer, 2003.
dc.relation.references[1] Bohn R, Hanbold T, Birringer R, Gleiter H. Nanocrystalline intermetallic compounds-an approach to ductility? Scripta Metallurgica et Materialia. 1991;25:81.
dc.relation.references[2] Jang JS, Koch CC. The Hall-Petch relationship in nanocrystalline iron produced by ball milling. Scripta Metallurgica et Materialia. 1990;24:1599.
dc.relation.references[3] Koch CC, Cho YS. Nanocrystals by high energy ball milling. Nanostructured Materials. 1992;1:207
dc.relation.references[4] Ermakov A, Yurchikov E, Barinov V. The magnetic properties of amorphous Y-Co alloy powders obtained by mechanical comminution. Physics of Metals and Metallography.1981;52:50
dc.relation.references[5] Ermakov AY, Yurchikov YY, Barinov VA. Magnetic properties of amorphous powders prepared by the mechanical grinding of Y-Co alloys. Fizika Metallov I Metallovedenie. 1981;52:1184
dc.relation.references[6] C. C. Koch, Material synthesis by Mechanical alloy. Annu. Re. Mater. Sci,121 143, 1989.
dc.relation.references[7] J.S. Benjamin, ScientifIC American, 234 (5) (1976), p. 40
dc.relation.references[8] R. Sundaresan and F. H. Froes, Mechanical Alloying.
dc.relation.references[9] R. L. White, "The Use of Mechanical Alloying in the Manufacture of Multifilamentary Superconducting Wire," Ph.D. Thesis, Stanford Univ., 1979.
dc.relation.references[10] S. Gialanella, Intermetallics 3 (I 995) 73-76
dc.relation.references[11] Calka, A., Varin, R. A., Application of Controlled Ball Milling in Materials Processing, Proc. Int. Symp. on Processing and Fabrication of Advanced Materials IX (PFAM-IX), T.S. Srivatsan,
dc.relation.references[12] F. Reyes-Gómez, W.R. Aguirre-Contreras, G.A. Pérez Alcázar, J.A. Tabares, Journal of Alloys and Compounds 735 (2018) 870-879
dc.relation.references[1] Benjamín, J. S. 1970. Metall. Trans. 1:2943-51
dc.relation.references[2] V. A. Peña Rodriguez, J. Quispe Marcatoma, Aplicación de la mecano-síntesis en la producción de materiales magnéticos blandos, Universidad Nacional Mayor de San Marcos.
dc.relation.references[3] C. Casas Quesada, J. A. Benito Páramo, Influencia de la distribución bimodal de grano contenido en oxígeno y vías de consolidación sobre la resistencia y ductilidad para el hierro UF obtenido por molienda mecánica, Barcelona, 2014.
dc.relation.references[4] C. C. Koch, Material synthesis by Mechanical alloy. Annu. Re. Mater. Sci, 121 143, 1989.
dc.relation.references[5] A. Gómez, Amorfización de aleaciones metálicas mediante aleado mecánico, Sevilla, 2016.
dc.relation.references[6] J. Y. Huang, Y. K. Wu and H. Q. Ye Acta Mater. 44. 1201 (1996).
dc.relation.references[7] A. Calka, R.A. Varin, in: Proc. Int. Symp. Processing and Fabrication of Advanced Materials IX (PEAM-IX) (Eds. T.S. Srivatsan, R.A. Varin and M. Khor), ASM International, Materials Park, OH, 2001, p.263-287.
dc.relation.references[8] B. D. Cullity. Elements of X-Ray Diffraction, 2nd Edition. Addison-Wesley Publishing Company, Inc. London, Amsterdam, Ontario, Sidney 1978
dc.relation.references[9] D. R. Askeland, P. P. Fulay, W. J. Wright. Ciencia e Ingeniería de materiales, Ed. Cengage Learning, sexta edición.
dc.relation.references[10] J. D. WINEFORDNER. Chemical Analysis. Introduction to X-Ray Powder Diffractometry. Vol 138. Ed John Wiley & Sons, Inc. EE UU. 1996.
dc.relation.references[11] I. C. NOYAN, J.B. COHEN. Residual Stress; Measurement by diffraction and Interpretation. Springer–Verlag, New York, 1987
dc.relation.references[12] S. Foner, Rev. Sci. Instrum 27, 548 (1956)
dc.relation.references[13] B. D. Cullity, C.D. Graham. Introduction to Magnetic materials 2nd Edition. WILEY. A 34ear wiley & sons Inc. Publication
dc.relation.references[14] MICROSCOPÍA ELECTRÓNICA DE BARRIDO EN LA CARACTERIZACIÓN DE MATERIALES, Miguel Ipohorski y Patricia B. Bozzano.
dc.relation.references[15] Estudio de Materiales Nanométricos con Microscopio Electrónico de Barrido SEM. Rodolfo Salas Cepeda
dc.relation.references[16] https://sites.ualberta.ca/~ccwj/teaching/microscopy/
dc.relation.references[17] J.A. Dean. The Analytical Chemistry Handbook. McGraw-Hill, Second Edition 1995.
dc.relation.references[18] D.A. Skoog, F.J. Holler, S.R. Crouch and D. Harris (Editor). Principles of Instrumental Analysis, Sixth Edition. Thomson Brooks/Cole. 2007, 900-904.
dc.relation.references[19] Calka, A., Varin, R. A., Application of Controlled Ball Milling in Materials Processing, Proc. Int. Symp. On Processing and Fabrication of Advanced Materials IX (PFAM-IX), T.S. Srivatsan, R.A. Varin, M. Khor (Eds.) (ASM International, Materials Park, OH, pp.263-287, 2001.
dc.relation.references[20] David Jailes, Introduction to magnetism and magnetic materials, Springer-Science + Bussines media, B. V.
dc.relation.references[1] X. Amils, J. Nogues, S. Surinach, M. D. Baro and J. S. Munoz: IEEE Trans. Magn. 34 (1998) 1129.
dc.relation.references[2] X. Amils, J.S. Garitaonandia, J. Nogues, S. Surinach, F. Plazaola, J.S. Muñoz and M.D. Baró: J. Non-Crys. Sol. 287 (2001) 272-276.
dc.relation.references[3] J. Nogués, E. Apiñaniz ,J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puzniak, I. Fita, J. S. Garitaonandia, S. Suriñach, J. S. Muñoz, M. D. Baró, F. Plazaola, and F. Baudelet: Phy. Rev. B 74, 024407 (2006).
dc.relation.references[4] Materials Data JADE XRD Pattern Processing. MDI Materials Data. 1999.
dc.relation.references[5] M.L. Ramón García. Determinación del tamaño de cristal utilizando el software Jade 6.5. Centro de Investigación en Energía, Universidad Nacional Autónoma de México. 2007.
dc.relation.references[6] D. Von Rohr. Jade User’s Manual. 2002.
dc.relation.references[1] L. Castex, J. L. Lebrun, G. Maeder, J. M. Sprauel, Publs Scient. Tech. ENSAM, 22, 51-60 (1981).
dc.relation.references[2] N. Boukherroub, A. Guittoum, N. Souami, K. Akkouche, S. Boutarfaia. EPJ Web of Conferences 29, 00010 (2012).
dc.relation.references[3] M. Krasnowski, A. Grabias, T. Kulik, J. Alloys Compd. 424 (2006) 119–127.
dc.relation.references[4] Sh. Ehtemam Haghighi, K. Janghorban, S. Izadi, Journal of Alloys and Compounds 495 (2010) 260–264.
dc.relation.references[5] X. Amils, J.S. Garitaonandia, J. Nogues, S. Surinach, F. Plazaola, J.S. Muñoz and M.D. Baró: J. Non-Crys. Sol. 287 (2001) 272-276.
dc.relation.references[6] M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol and M. Dammak, J. Nanomater. 2010, 712407 (2010).
dc.relation.references[7] B. Avar, M. Gogebakan, S. Ozcan, S. Kerly. J. of the Korean Phys. Society, Vol. 65, No. 5, September 2014, pp. 664∼670.
dc.relation.references[8] M. H. Enayati, G. R. Aryanpour and A. Ebnonnasir, Int. J. Ref. Met. Hard. Mater. 27, 159 (2009).
dc.relation.references[9] F. A. Mohamed, Acta Materialia, vol. 51, pp. 4107–4119, 2003.
dc.relation.references[10] H.-J. Fecht, “Nanostructure formation by mechanical attrition,” Nanostructured Materials, vol. 6, no. 1-4, pp. 33–42, 1995.
dc.relation.references[11] J. Rawers and D. Cook, Nanostructured Materials, vol. 11, no. 3, pp. 331–342, 1999.
dc.relation.references[12] G. K. Williamson and R. E. Smallman, Philosophical Magazine, vol. 1, no. 1, pp. 34–46, 1956
dc.relation.references[13] R. E. Smallman and K. H. Westmacott, Philosophical Magazine, vol. 2, no. 17, pp. 669–683, 1957.
dc.relation.references[14] Y. H. Zhao, H. W. Shang, and K. Lu, Acta Materialia, vol. 49, pp. 365–375, 2001.
dc.relation.references[15] W. Hu, T. Kato and M. Fukumoto. Materials Transactions, Vol. 44, No. 12 (2003) pp. 2678 to 2687
dc.relation.references[16] M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol and M. Dammak, J. Alloys Comp. 509, 3293 (2011).
dc.relation.references[17] M. Mhadhbi, M. Khitouni, L. Escoda, J. J. Sunol and M. Dammak, Journal of Nanomaterials, 2010.
dc.relation.references[18] A. Calka and D. Waxler, A Study of the Evolution of Particle Size and Geometry during Ball Milling, Journal of Metastable and Nanocrystalline Materials (2001).
dc.relation.references[19] C. Suryanarayana, Progress in Materials Science, 46(1), 1 (2001).
dc.relation.references[20] R. A. RODRÍGUEZ-DÍAZ, JUAN FRAUSTO-SOLIS, A. SEDANO, A. MOLINA, J. PORCAYO-CALDERÓN, J. JUAREZ-ISLAS, Digest Journal of Nanomaterials and Biostructures Vol. 10, No. 2, April - June 2015, p. 577 - 586
dc.relation.references[21] B. D. Cullity, C.D. Graham. Introduction to Magnetic materials 2nd Edition. WILEY. A john wiley & sons Inc. publication.
dc.relation.references[22] G. G. Lee, H. Hashimoto and R. Watanabe, Mater. Trans JIM 36 (1995) 548.
dc.relation.references[23] J. Nogués, E. Apiñaniz ,J. Sort, M. Amboage, M. d’Astuto, O. Mathon, R. Puzniak, I. Fita, J. S. Garitaonandia, S. Suriñach, J. S. Muñoz, M. D. Baró, F. Plazaola, and F. Baudelet: Phy. Rev. B 74, 024407 (2006).
dc.relation.references[24] X. Amils, J. Nogues, S. Surinach, M. D. Baro and J. S. Munoz: IEEE Trans. Magn. 34 (1998) 1129.
dc.relation.references[25] M. Krifa, M. Mhadhbi, L. Escoda, J. M. Guell, J. J. Sunol, N. Llorca-Isern, C. Artieda-Guzman and M. Khitouni, Powder Tech. 246, 117 (2013).
dc.relation.references[26] Q. Zeng, I. Baker, Intermetallics 14, 396 - 405 (2006).
dc.relation.references[27] J. A. Plascak, L. E. Zamora and G. A. P. Alcazar, Phys. Rev. B 61, 3188 (2000).
dc.relation.references[28] R. Bernal-Correa, A. Rosales-Rivera, P. Pineda-Gomez and N. A. Salazar, J. Alloys Comp. 495, 491 (2010).
dc.relation.references[29] B. Avar, M. Gogebakan, S. Ozcan, S. Kerli, Journal of the Korean Physical Society, Vol. 65, No. 5, September 2014, pp. 664∼670.
dc.relation.references[30] A. Sharifati, S. Sharafi, Mater. Des. 41, 8 (2012).
dc.relation.references[31] A. Guittoum, A. Layadi, A. Bourzami, H. Tafat, N. Souami, S. Boutarfaia and D. Lacour, J. Magn. Magn. Mater. 320, 1385 (2008).
dc.relation.references[32] M. J. Besnus, A Herr and A. J. P. Meyer: J. Phys. F 5 (1975) 2138.
dc.relation.references[33] V. Sundararajan, B. R. Sahu, D. G. Kanhere, P. V. Panat and G. P. Das: J. Phys.: Condens. Matter. 7 (1995) 6019.
dc.relation.references[34] A. Hernando, X. Amils, J. Nogues, S. Surinach, M. D. Baro and M. R. Ibarra: Phys. Rev. B58 (1998) R11864.
dc.relation.references[35] K. Tarigan, S. K. Oh, T. L. Phan, S. C. Yu and D. S. Yang, J. of the Korean Physical Society, Vol. 57, No. 6, 2010, pp. 1555∼1558
dc.relation.references[36] David Jiles, Introduction to magnetism and magnetic materials, Springer Science+Business Media (1991).
dc.relation.references[1] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination Phys. Rev. 56 (1939) 978.
dc.relation.references[2] S. Dinilchenko et al., Research and Technology Crystal 37 (2002).
dc.relation.references[3] G. Caglioti, A. Paoletti y F.P. Ricci, Nucl. Instrum. Methods 9 (1960).
dc.relation.references[1] Williamson G. K., Hall W.H. 1953; 1: 22-31.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAleado mecánico
dc.subject.proposalMechanical alloy
dc.subject.proposaltransición de fase ferromagnética-paramagnética
dc.subject.proposalferromagnetic-paramagnetic phase transition
dc.subject.proposalstructural, morphological and thermomagnetic characterization
dc.subject.proposalcaracterización estructural, morfológica y termomagnética
dc.subject.proposalciencia de los materiales
dc.subject.proposalMaterials science
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit