Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorAcero Pizarro, Arturo
dc.contributor.authorMelo Valencia, Andres Felipe
dc.description.abstractIn San Andrés and Providencia islands (western Colombian Caribbean) are registered two poeciliid fishes: Gambusia aestiputeus and Poecilia vetiprovidentiae. However, these have been considered conespecific with Poecilia sphenops (Valenciennes, 1846) and Gambusia nicaraguensis (Günther, 1866) even though it has been proposed to review their situation, due to the great geographic variations and the taxonomic difficulties presented by these two genera. In this way, the present work evaluated the morphometric and mitochondrial variation for Cit-B and NADH genes, of Gambusia and Poecilia populations respectively, present in the Colombian islands. We found significant differences in size and conformation, where populations with the largest individuals are in Providence. Likewise, for mitochondrial variation we found both G. aestiputeus and P. vetiprovidentiae are not conespecific whit G. nicaraguensis and P. sphenops respectively for the markers used.
dc.description.abstractEn las islas de San Andrés y Providencia (Caribe occidental colombiano) se encuentran registradas dos especies de poecílidos: Gambusia aestiputeus y Poecilia vetiprovidentiae. Sin embargo, estas especies han sido consideradas por más de medio siglo conespecíficas con Poecilia sphenops (Valenciennes, 1846) y Gambusia nicaraguensis (Günther, 1866) aun cuando se ha propuesto revisar su situación, debido a las grandes variaciones geográficas que enfrentan y a las particularidades y dificultades taxonómicas que presentan estos dos géneros. De esta manera, el presente trabajo evaluó la variación morfométrica y mitocondrial para los genes Cit-B y NADH, de las poblaciones de Gambusia y Poecilia respectivamente, presentes en las islas colombianas, encontrando diferencias significativas en el tamaño y conformación, donde las poblaciones con los individuos más grandes están en Providencia. En cuanto a la variación mitocondrial, se encontró que tanto G. aestiputeus como P. vetiprovidentiae son entidades diferentes a G. nicaraguensis y P. sphenops para los marcadores empleados.
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.subject.ddc570 - Biología
dc.titleIntegración morfométrica y molecular para la resolución del estatus taxonómico de las poblaciones de San Andrés y Providencia (Mar Caribe) pertenecientes a los géneros Poecilia y Gambusia (Teleostei: Poeciliidae)
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.publisher.programCaribe - Caribe - Maestría en Ciencias - Biología
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Caribe
dc.publisher.departmentCentro de estudios en Ciencias del mar-CECIMAR
dc.publisher.facultyFacultad Caribe
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribe
dc.relation.referencesALDA, F., REINA, R. G., DOADRIO, I., & BERMINGHAM, E. Phylogeny and biogeography of the Poecilia sphenops species complex (Actinopterygii, Poeciliidae) in Central America. Mol Phyl Evol, 2013. 66 (3), 1011-1026.
dc.relation.referencesARAÚJO LG, MONTEIRO LR. Growth pattern and survival in populations of Poecilia vivipara (Teleostei; Poeciliidae) inhabiting an environmental gradient: a common garden study. Environ Biol Fish 2013, 96(8):941–951.
dc.relation.referencesARAÚJO, M. S., PEREZ, S. I., MAGAZONI, M. J. C., & PETRY, A. C. Body size and allometric shape variation in the molly Poecilia vivipara along a gradient of salinity and predation. BMC evolutionary biology, 2014.14(1), 1.
dc.relation.referencesBOOKSTEIN, F.L. Morphometric tools for landmark data: Geometry and Biology. Cambridge, EEUU. 1991.
dc.relation.referencesBREDEN, F., PTACEK, M.B., RASHED, M., TAPHORN, D. & FIGUEIREDO, C.. Molecular phylogeny of the live-bearing fish genus Poecilia (Cyprinodontiformes: Poeciliidae). Molecular phylogenetics and evolution 1999.12, 95-104.
dc.relation.referencesCOURTENAY JR, W. R., MEFFE, G. K., & SNELSON JR, F. F. Small fishes in strange places: a review of introduced poeciliids. In: Ecology and evolution of livebearing fishes (Poeciliidae). 1989. 319-331.
dc.relation.referencesDUJARDIN, J. P. Click package for Windows. Institut de Recherches pour le Dévelopement (IRD. France). {En línea}. {10 julio de 2016} disponible en: (
dc.relation.referencesECHEVERRY, A. Biogeografía y geología: una reflexión sobre su interacción a partir de tres casos caribeños. Revista de Geografía Norte Grande, 2011. (48), 27-43.
dc.relation.referencesENDLER JA: Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol Evol 1995, 10(1):22–29.
dc.relation.referencesEVANS, J. P., PILASTRO, A., SCHLUPP, I. Ecology and Evolution of Poeciliid Fishes. University of Chicago Press. Evans & Pilastro, 2011
dc.relation.referencesFROESE, R., & PAULY, D. FishBase. Version 2013. World Wide Web electronic publication. {En línea}. {30 de mayo de 2013} disponible en: (
dc.relation.referencesGHALAMBOR CK, REZNICK DN, WALKER JA. Constraints on adaptive evolution: the functional trade-off between reproduction and fast start swimming performance in the Trinidadian guppy (Poecilia reticulata). American Naturalist 164: 38–50. 2004.
dc.relation.referencesGOMES, J. L., and MONTEIRO, L. R. Morphological divergence patterns among populations of Poecilia vivipara (Teleostei Poeciliidae): test of an ecomorphological paradigm. Biological Journal of the Linnean Society 93: 799–812. 2008.
dc.relation.referencesHAMMER, Ø., HARPER, D. A. T., & RYAN, P. D. PAST-PAlaeontological STatistics, ver. 1.89. University of Oslo, Oslo, 1-31. 2009.
dc.relation.referencesHENDRY AP, KELLY ML, KINNISON MT, REZNICK DN. Parallel evolution of the sexes? Effects of predation and habitat features on the size and shape of wild guppies. Journal of Evolutionary Biology 19: 741–754. 2006.
dc.relation.referencesHRBEK, T., SECKINGER, J., MEYER, A. A phylogenetic and biogeographic perspectiveon the evolution of poeciliid fishes. Molecular Phylogenetics and Evolution 43: 986-998. 2007.
dc.relation.referencesITURRALDE-VINENT, M. A., & MACPHEE, R. D. Paleogeography of the Caribbean region: implications for Cenozoic biogeography. American Museum of Natural History. 1999.
dc.relation.referencesKOCHER, T.D., THOMAS, W.K., MEYER, A., EDWARDS, S.V, PÄÄBO, S.F., VILLABLANCA, FX., AND WILSON, A.C.. Dynarnics of mtDNA evolution in animals: amplification and sequencing with conserved primers. Proc. Nad. Acad. Sci. U.S.A. 86: 6196-6200. 1989.
dc.relation.referencesKOCHER, T.D., CONROY, J.A., MCKAYE, K.R., STAUFFER, J.R., LOCKWOOD, S.F. Evolution of NADH dehydrogenase subunit 2 in East African cichlid fish. Mol. Phylogenet. Evol. 1995. 4, 420–432.
dc.relation.referencesLANGERHANS R. B. Predicting evolution with generalized models of divergent selection: a case study with poeciliid fish. Integr Comp Biol, 50(6):1167–1184. 2010.
dc.relation.referencesLANGERHANS, R. B., AND DEWITT, T. J. Shared and unique features of evolutionary diversification. American Naturalist 164: 335–349. 2004.
dc.relation.referencesLANGERHANS RB, LAYMAN CA, LANGERHANS AK, DEWITT TJ. Habitat-associated morphological divergence in two Neotropical fish species. Biological Journal of the Linnean Society 80: 689–698. 2003.
dc.relation.referencesLANGERHANS, R. B., LAYMAN, C. A., SHOKROLLAHI, A. M., AND DEWITT, T. J. Predator-driven phenotypic diversification in Gambusia affinis. Evolution 58: 2305–2318. 2004.
dc.relation.referencesLANGERHANS, R. B., LAYMAN, C. A., & DEWITT, T. J. Male genital size reflects a tradeoff between attracting mates and avoiding predators in two live-bearing fish species. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 2005. 7618-7623.
dc.relation.referencesLANGERHANS, R. B., GIFFORD, M. E., AND JOSEPH, E. O. Ecological speciation in Gambusia fishes. Evolution 61: 2056 –2074. 2007.
dc.relation.referencesLEBERG, P. L. Influence of genetic variability on population growth: implications for conservation. J Fish Biol, 37(Supplement A), 193-195. 1990
dc.relation.referencesLUCINDA, P. H. Family Poeciliidae.Check List of the Freshwater Fishes of South and Central America. EDIPUCRS, Porto Alegre, Brazil, 2003. 555-581.
dc.relation.referencesLYDEARD, C., WOOTEN, M. C., & MEYER, A. Molecules, morphology, and area cladograms: a cladistic and biogeographic analysis of Gambusia (Teleostei: Poeciliidae). Systematic Biology, 44(2), 1995. 221-236.
dc.relation.referencesMARTIN S. B, HITCH A. T, PURCELL K. M, KLERKS P. L, LEBERG P. L.. Life history variation along a salinity gradient in coastal marshes. Aquat Biol, 8(1):15–28. 2009.
dc.relation.referencesMEREDITH, R. W., PIRES, M. N., REZNICK, D. N., & SPRINGER, M. S. Molecular phylogenetic relationships and the coevolution of placentotrophy and superfetation in Poecilia (Poeciliidae: Cyprinodontiformes). Molecular phylogenetics and evolution, 59(1), 2011. 148-157.
dc.relation.referencesMEYER, A., AND WILSON, A.C. Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J. Mol. Evol. 3l: 359-364. 1990.
dc.relation.referencesMILLER, R. R. Checklist and key to the mollies of Mexico (Pisces: Poeciliidae: Poecilia, subgenus Mollienesia).Copeia, 817-822. 1983.
dc.relation.referencesNELSON, J. S., GRANDE, T. C., & WILSON, M. V. 2016. Fishes of the World. John Wiley & Sons.
dc.relation.referencesNEVES FM, MONTEIRO LR. Body shape and size divergence among populations of Poecilia vivipara in coastal lagoons of Southeastern Brazil. Journal of Fish Biology 63: 928–941. 2003.
dc.relation.referencesPIRES, M. N., ARENDT, J., & REZNICK, D. N. The evolution of placentas and superfetation in the fish genus Poecilia (Cyprinodontiformes: Poeciliidae: subgenera Micropoecilia and Acanthophacelus). Biological Journal of the Linnean Society, 99(4), 784-796. 2010.
dc.relation.referencesRAUCHENBERGER, M. Systematics and biogeography of the genus Gambusia (Cyprinodontiformes: Poeciliidae). Am. Mus. Novita tés 2951, 1–74. 1989.
dc.relation.referencesREZNICK D. N, GHALAMBOR C. K, CROOKS K. Experimental studies of evolution in guppies: a model for understanding the evolutionary consequences of predator removal in natural communities. Mol Ecol, 17(1):97–107. 2008.
dc.relation.referencesROSEN, D. E., & BAILEY, R. M. The poeciliid fishes (Cyprinidontiformes), their structure, zoogeography and systematics. 1963.
dc.relation.referencesSAMBROOK, J., & RUSSELL, D. W. Molecular cloning: a laboratory manual 3rd edition. Coldspring-Harbour Laboratory Press, UK. 2001.
dc.relation.referencesSTOCKWELL, C. A., & HENKANATHTHEGEDARA, S. Evolutionary conservation biology. In: Ecology and evolution of poeciliid fishes. University of Chicago Press, Chicago, 128-141. 2011.
dc.relation.referencesWALKER JA. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biological Journal of the Linnean Society 61: 3–50. 1997.
dc.relation.referencesZELDITCH, M. L., D. L. SWIDERSKI, H. D. SHEETS, AND W. L. FINK. Geo- metric morphometrics for biologists: a primer. Elsevier Academic Press, London. 2004.
dc.subject.proposalMorphometric variation
dc.subject.proposalvariación morfométrica

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit