Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorVargas Hernández, Carlos
dc.contributor.authorMontenegro Moreno, Giselle Alejandra
dc.date.accessioned2020-11-09T18:20:46Z
dc.date.available2020-11-09T18:20:46Z
dc.date.issued2020
dc.identifier.citationG. Montenegro Moreno, "Análisis de macromoléculas de sangre canina mediante Espectroscopías Infrarroja y Uv-Visible"
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78599
dc.description.abstractCon la tecnología disponible, los protocolos y las metodologías para el diagnóstico clínico en caninos, aún no se dispone de criterios definitivos en las etapas tempranas de formación de algunas enfermedades como cáncer, diabetes, daño hepático, etc que permitan a los especialistas tomar decisiones al respecto. Aún se continúa usando como método definitivo y acertado para la evaluación de enfermedades métodos clínicos de tipo invasivo como las biopsias con las respectivas dificultades en el diagnóstico, que sumado a la experticia y experiencia del patólogo; posibilita el incremento de error en el proceso. Los resultados de este trabajo mediante Espectroscopias Infrarroja y UV-Visible muestran que las técnicas de caracterización estudiadas son viables para el análisis de macromoléculas presentes en tejido sanguíneo, lo que permitió obtener un protocolo mediante el pico de control asociado a hemoglobina en espectroscopía UV-Visible y a degradación de proteínas en espectroscopía Infrarroja. Adicional a esto, con el fin de estudiar los efectos de materiales nanoestructurados en la caracterización de este tejido, se produjeron y añadieron a las muestras nanopartículas de plata formando complejos que fueron obtenidas por dos métodos de síntesis, el primer tipo preparada con síntesis asistida por microondas y la segunda utilizando el método tradicional de Creighton en donde se usa un agente reductor (borohidruro de sodio) para producir nanopartículas esféricas mono-dispersas. De forma más general, en el trabajo se discute la posibilidad de diagnosticar el daño hepático en caninos mediante el protocolo del pico de control, discusión basada en los resultados obtenidos y reportes de la literatura.
dc.description.abstractSpectroscopy techniques have been used to provide information. In order to evaluate changes on the chemical components in biological samples like blood tissue, this techniques can be used as an important clinical tool for in vivo diagnosis, where spectral peaks can be related such as biological markers. In the present study, we present canine blood samples analysis, methodology and protocol using non-invasive optical techniques like Infrared and UV-Visible spectroscopy for monitoring and identification of possible diseases. As a case study canine blood tissue samples from three patients were obtained on preprandial and postprandial state and analyzed under power conditions that do not cause any modification. On the other hand, in order to study how nanostructures enhance the signal tissue, we synthesized silver nanoparticles by two methods: synthesis microwave-assisted and Creighton synthesis method that was added to blood samples. The software tool Origin was used to determinate representative peaks in each spectrum. Evaluating areas under the curve and radio analysis were realized considering that absorption bands represent a group of macromolecules. The results show that methodologies used are viable for blood macromolecules tissue evaluation due to differences presented. In general, we discuss canine liver damage diagnosis possibility based on results obtained and literature reports.
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.extent53
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc530 - Física
dc.titleAnálisis de macromoléculas de sangre canina mediante Espectroscopías Infrarroja y Uv-Visible
dc.title.alternativeInfrared and UV-Visible spectroscopy analysis of entire canine blood macromolecules
dc.typeReporte
dc.rights.spaAcceso abierto
dc.description.additionalInforme final de trabajo de grado presentado como requisito para optar al título de: Ingeniera Física. -- Director: Ph.D Carlos Vargas Hernández, Asesor: M.V.Alejandro Clavijo Maldonado. -- Línea de Investigación: Biofísica. -- Ganadora Versión XXIX Concurso Mejores Trabajos de Grado de Pregrado de la Universidad Nacional de Colombia (2020).
dc.type.driverinfo:eu-repo/semantics/report
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ciencias Exactas y Naturales - Ingeniería Física
dc.contributor.corporatenameUniversidad Nacional de Colombia
dc.contributor.researchgroupPropiedades Ópticas de Materiales
dc.description.degreelevelPregrado
dc.publisher.departmentDepartamento de Física y Química
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesM. Ernst and J. Roukema, “Diagnosis of non-palpable breast cancer: a review”, The Breast, vol. 11, no. 1, pp. 13–22, 2002
dc.relation.referencesJ. Pichardo-Molina et al., “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,”Lasers in Medical Science, vol. 22, no. 4, pp. 229–36, 2007
dc.relation.referencesD. Panciera, “Conditions associated with canine hypothyroidism,” VeterinaryClinics of North America: Small Animal Practice, vol. 31, no. 5, pp. 935–50,2001
dc.relation.referencesA. Enejder et al., “Blood analysis by Raman spectroscopy,”Optics Letters,vol. 27, no. 22, pp. 2004–06, 2002
dc.relation.referencesH. Gremlich and B. Yan, Infrared and Raman spectroscopy of biological materials. New York: M. Dekker: Practical spectroscopy, 2001
dc.relation.referencesS. Olsztynska-Janus et al., “Spectroscopic techniques in the study of human tissues and their components. part i: Ir spectroscopy,” Acta of Bioengineering and Biomechanics, vol. 14, no. 3, pp. 101–15, 2012
dc.relation.referencesU. Zelig et al., “Early detection of breast cancer using total biochemical analysis of peripheral blood components: A preliminary study,” BMC Cancer, vol. 15, no. 408, 2015
dc.relation.referencesM. Baker et al., “Developing and understanding biofluid vibrational spectroscopy: a critical review,” Chem Soc Rev, vol. 45, no. 7, pp. 1803–18, 2016
dc.relation.referencesM. Paraskevaidi et al., “Differential diagnosis of Alzheimer's disease using spectrochemical analysis of blood,” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 38, pp. 7929–38, 2017
dc.relation.referencesC. Berthomieu and R. Hienerwadel, “Fourier transform infrared (FTIR) spectroscopy,” Photosynthesis Research, vol. 101, pp. 157–70, 2009
dc.relation.referencesF. Elmi et al., “Application of FTIR spectroscopy on breast cancer serum analysis,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 187, pp. 87–91, 2017
dc.relation.referencesA. Bonifacio et al., “Surface-enhanced Raman spectroscopy of blood plasma and serum using ag and au nanoparticles: A systematic study,” Analytical and bioanalytical Chemistry, vol. 406, pp. 2355–65, 2014
dc.relation.referencesY. Tan et al., “Surface-enhanced Raman spectroscopy of blood serum-based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma,”Lipids in Health and Disease, vol. 16, no. 73, 2017
dc.relation.referencesK. A. El-Nour et al., “Synthesis and applications of silver nanoparticles,” Arabian Journal of Chemistry, vol. 3, no. 3, pp. 135–40, 2010
dc.relation.referencesW. Zapata-Builes and H. Fajardo-Rincon, “Manual de química sanguínea veterinaria.”
dc.relation.referencesW. Colburn, “Biomarkers in drug discovery and development: From target identification through drug marketing,” The Journal of Clinical Pharmacology, vol. 43, no. 4, pp. 329–41, 2013
dc.relation.referencesJ. Iwasa and W. Marshall,Karp. Biología celular y molecular: conceptos y experimentos. McGraw-Hill Interamericana, 2019
dc.relation.referencesMayo-Clinic et al., Encyclopedia of foods: a guide to healthy nutrition. SanDiego, California: Academic Press, 2002
dc.relation.referencesA. Fuentes,Bioquímica clínica y patología molecular. II., Reverte, Ed., 1998
dc.relation.referencesN. Allewellet al., Molecular Biophysics for the Life Sciences, S. S. . B. Media, Ed., 2013
dc.relation.referencesP. Lasch and J. Kneipp, Biomedical Vibrational Spectroscopy, J. W. . Sons, Ed.,2018
dc.relation.referencesJ. Henao-Marín, “Implementación de una metodología por espectrofotometría uv-visible, para el análisis de química sanguínea en el centro integral de diagnóstico agropecuario de risaralda (cidar), dependencia de la secretaría de desarrollo agropecuario de la gobernación de risaralda,” Master’s thesis, Universidad Tecnológica de Pereira. Facultad de Tecnologías, Pereira, Colombia,2015
dc.relation.referencesG. Bellisola and C.Sorio, “Infrared spectroscopy and microscopy in cancer research and diagnosis,” American Journal of Cancer Research, vol. 2, no. 1,2012
dc.relation.referencesC. Petibois et al., “Plasma protein contents determined by Fourier-transform infrared spectrometry,” Clinical Chemistry, vol. 47, no. 4, pp. 730–38, 2001
dc.relation.referencesV. Escobar-Falconí, “Síntesis y caracterización de nanopartículas de plata porespectroscopia de infrarrojos (FTIR), UV-Vis, absorción atómica de llama (FAAS) y microscopía de barrido electrónico (SEM),” Master’s thesis, Pontificia Universidad Católica del Ecuador .Facultad de Ciencias Exactas y Naturales, Ecuador, 2015
dc.relation.referencesC. Flores, “Nanopartículas de plata con potenciales aplicaciones en materiales implantables: síntesis, caracterización fisicoquímica y actividad bactericida,” Ph.D. dissertation, Universidad Nacional de La Plata, Argentina, 2014
dc.relation.referencesM. Sánchez, “Trabajo de fin de máster. máster universitario en ciencia y tecnología química. especialidad de química inorgánica e ingeniería química,” Master’s thesis, Universidad Nacional de Educación a Distancia. Facultad de Ciencias. Departamento de Química Inorgánica y Química Técnica, España, 2017
dc.relation.referencesG.Kahrilas et al., “Microwave-assisted green synthesis of silver nanoparticles using orange peel extract,” vol. 2, no. 3, pp. 367–76, 2014
dc.relation.referencesJ. Depciuch and M. Parlinska-Wojtan, “Comparing dried and liquid blood serum samples of depressed patients: An analysis by Raman and infrared spectroscopy methods,” Journal of Pharmaceutical and Biomedical Analysis, vol.150, pp. 80–6, 2018
dc.relation.referencesC. Petiboiset al., “Differentiation of populations with different physiologic profiles by plasma Fourier-transform infrared spectra classification,” Journal of Laboratory and Clinical Medicine, vol. 137, no. 3, pp. 184–90, 2001
dc.relation.referencesJ. Backhaus et al., “Diagnosis of breast cancer with infrared spectroscopy from serum samples,” Vibrational Spectroscopy, vol. 52, no. 2, pp. 173–7, 2010
dc.relation.referencesP. Srividya et al., “Ftir spectral study on diabetic blood samples-monotherapy and combination therapy,” OJP, vol. 4, no. 1, pp. 17–26, 2012
dc.relation.referencesA. Mukunthan and S. Sudha, “FTIR spectroscopic features of blood serum of diseased and healthy subjects (animals),” International Journal of innovative research in Science, Engineering and Technology, vol. 2, 2013
dc.relation.referencesK. Lima et al., “Segregation of ovarian cancer stage exploiting spectral biomarkers derived from blood plasma or serum analysis: ATR-FTIR spectroscopy coupled with variable selection methods,” Biotechnology Progress, vol. 31, no. 3, pp.832–9, 2015
dc.relation.referencesJ. González-Domínguez et al., “Absorption peaks: α, β, γ and their covariance with age and hemoglobin in human blood samples using photoacoustic spectroscopy,” International Journal of Thermophysics, vol. 33, pp. 1827–33, 2012
dc.relation.referencesM. Alvarado-Noguez et al., “Obtaining and analysis of optical absorption spectrum of fisher rat blood with hepatic damage by photoacoustic spectroscopy,” Revista Mexicana de ingeniería biomédica, vol. 38, no. 1, pp. 357–62, 2016
dc.relation.referencesK. Gajjar et al., “Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer,” The Analyst, no. 138, pp. 3917–26, 2013
dc.relation.referencesA. Bunaciuet al., “Cancer diagnosis by FTIR spectrophotometry,” Revue Roumaine de Chimie, vol. 60, pp. 415–26, 2015
dc.relation.referencesL. Allain and T. Vo-Dinh, “Surface-enhanced Raman scattering detection of the breast cancer susceptibility gene brca1 using a silver-coated microarray platform,” Analytica Chimica Acta, vol. 469, pp. 149–54, 2002
dc.relation.referencesP. Gao et al., “The clinical application of Raman spectroscopy for breast cancer detection,” Journal of Spectroscopy, 2017
dc.relation.referencesY. Krutyakov et al., “Synthesis and properties of silver nanoparticles: advances and prospects,” Russian Chemical Reviews, vol. 77, no. 3, 2008
dc.relation.referencesA. Berger et al., “Multicomponent blood analysis by near-infrared Raman spectroscopy,” Applied Optics, vol. 38, no. 13, pp. 2916–26, 1999
dc.relation.referencesK. Aslan et al., “Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence,” The Journal of physical chemistry B, vol. 109, no. 13, pp. 6247–51, 2005
dc.relation.referencesJ. Gallo-Ramírez and C. Ossa-Orozco, “Fabricación y caracterización de nanopartículas de plata con potencial uso en el tratamiento del cáncer de piel,” Revista Científica Ingeniería y Desarrollo, vol. 37, no. 1, pp. 88–104, 2019
dc.relation.referencesJ. Soret, “Analyse spectrale: Sur le spectre d’absorption du sang dans la partieviolette et ultra-violette,”Comptes rendus de l’Acad ́emie des sciences, vol. 97,pp. 1269–70, 1883
dc.relation.referencesWiley-Liss, Infrared of Spectroscopy of Biomolecules, H. Mantsch and D. Chap-man, Eds. New York, NY, USA: Wiley-Liss, 1996
dc.relation.referencesA. Barth and C. Zscherp, “What vibrations tell us about proteins,” Quarterly Reviews of Biophysics, vol. 35, no. 4, pp. 369–430, 2002
dc.relation.referencesB. Schrader, Infrared and Raman spectroscopy: methods and applications. NewYork, NY, USA: VCH, 1995
dc.relation.referencesJ. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation, 2nd ed. Amsterdam, Netherlands: Elsevier, 2018
dc.relation.referencesL. Mostaco-Guidolin and L. Bachmann, “Application of FTIR spectroscopy for identification of blood and leukemia biomarkers: A review over the past 15years”, Applied Spectroscopy Reviews, vol. 46, no. 5, pp. 388–404, 2011
dc.relation.referencesM. Cohenford et al., “Infrared spectroscopy of normal and abnormal cervical smears: Evaluation by principal component analysis”, Gynecologic Oncology, vol. 66, pp. 59–65, 1997
dc.relation.referencesS. Cohn et al., “Dietary phospholipids, hepatic lipid metabolism and cardiovascular disease, current opinion in lipidology”, Current Opinion in Lipidology, vol. 19, pp. 257–62, 2008
dc.relation.referencesM. Aceves-Martins, “Cuidado nutricional de pacientes con cirrosis hepática,”Nutrición Hospitalaria, vol. 29, no. 2, pp. 246–58, 2014
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalInfrared Spectroscopy
dc.subject.proposalEspectroscopía infrarroja
dc.subject.proposalUV-Visible Spectroscopy
dc.subject.proposalEspectrofotometría UV-Visible
dc.subject.proposalblood canine tissue
dc.subject.proposalsangre canina
dc.subject.proposalnanopartículas
dc.subject.proposalnanoparticles
dc.subject.proposalbiomarkers
dc.subject.proposalbiomarcadores
dc.subject.proposalmacromoléculas
dc.subject.proposalmacromolecules
dc.subject.proposalhemoglobina
dc.subject.proposalhemoglobin
dc.type.coarhttp://purl.org/coar/resource_type/c_93fc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTCASO
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit