Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMora Huertas, Claudia Elizabeth
dc.contributor.authorPuentes Parra, Alexander
dc.date.accessioned2020-12-03T21:18:24Z
dc.date.available2020-12-03T21:18:24Z
dc.date.issued2020-08-16
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78670
dc.description.abstractEl almidón es un polímero biodegradable y biocompatible cuyas investigaciones durante los últimos años lo proyectan como un material de partida prometedor para el desarrollo de sistemas de entrega de moléculas en el campo farmacéutico. En este contexto, en la presente investigación se extrae y caracteriza el almidón de una fuente poco convencional como el bambú y se evalúa su posible uso como hospedador en la formación de complejos de inclusión molecular con el ibuprofeno, de igual manera se empleó almidón de maíz con fines comparativos. El almidón de bambú está constituido de gránulos con formas irregulares y un tamaño medio de 15 μm ± 1.0 μm, con un contenido de amilosa de 18.3% ± 1.2%, exhibe un patrón cristalográfico correspondiente al polimorfo A con una alta temperatura de gelatinización (79.1 °C) y una baja entalpía (ΔH = 8.8 J g-1). Por su parte, el almidón de maíz presenta el mismo patrón cristalográfico del polimorfo A y en contraste con el almidón de bambú, tiene un menor contenido de amilosa (16.30% ± 2.24%), una menor temperatura de gelatinización (71.10 °C) y una mayor entalpía (ΔH = 22.35 J g-1). Para la formación de los complejos molécula activa - almidón se emplearon tres métodos: acidificación de una solución alcalina, calentamiento - sellado y calentamiento - sellado por rotaevaporación, siendo este último una propuesta de esta tesis. Las cantidades de agua y los tiempos de reacción utilizados en cada procedimiento influencian el rendimiento de los complejos obtenidos; los que se encuentran entre 16.3% y 89.6% para el almidón de bambú y entre 30.3% y 74.5% para el almidón de maíz. Igualmente, la eficiencia de complejación es influenciada por dichas variables alcanzando valores de hasta 10.30% ± 0.02% cuando se trabaja almidón de bambú y de hasta el 22.35% ± 0.04% en el caso de almidón de maíz. Las estructuras semicristalinas de los complejos obtenidos evidencian algunas diferencias importantes, principalmente en sus comportamientos térmico y de liberación del activo. Los complejos parecen mantener una estructura más compacta en condiciones gástricas simuladas pH 1.2 con porcentajes de liberación bajos obtenidos por un transporte de difusión predominantemente Fickiana. Por otro lado, en condiciones simuladas del intestino (pH 6.8 y 7.2) en presencia de amilasa pancreática, se observó una liberación de aproximadamente el 90% al cabo de 6 h con una cinética de liberación principalmente de primer orden, probablemente como consecuencia de la escisión de los enlaces α(1-4) en cualquier punto de las cadenas poliméricas. Estos resultados sugieren que los almidones investigados podrían ser empleados como sistemas transportadores de moléculas activas cuya liberación sea requerida a nivel intestinal, lo cual abre posibilidades de generación de valor agregado a fuentes nativas de almidón, especialmente para el diseño de nuevos sistemas de entrega de fármacos.
dc.description.abstractStarch is a biodegradable and biocompatible polymer whose recent research projects it as a promising starting material for the development of drug delivery systems in the pharmaceutical field. In this context, the present investigation extracts and characterizes the starch from an unconventional source such as bamboo and evaluates its possible use as a host in the formation of molecular inclusion complexes with ibuprofen, in the same way corn starch was used for comparative purposes. Bamboo starch consists of granules with irregular shapes, an average size of 15 μm ± 1.0 μm, an amylose content of 18.3% ± 1.2%, and a crystallographic pattern corresponding to polymorph A exhibiting a high gelatinization temperature (79.1 ° C) and a low enthalpy (ΔH = 8.8 J g-1). On its part, corn starch presents the same crystallographic pattern of polymorph A but in contrast to bamboo starch, characterizes by a lower amylose content (16.30% ± 2.24 %), a lower gelatinization temperature (71.10 ° C) and a higher enthalpy (ΔH = 22.35 J g-1). Three methods were used to form the drug - starch complexes: acidification of an alkaline solution, heating - sealing and heating - sealing by rotavaporation, the latter being proposed in this thesis. The amounts of water and the reaction times used in each procedure influence the yield of the complexes obtained which varies between 16.3% and 89.6% for bamboo starch and 30.3% and 74.5%, for the corn starch. Likewise, the complexing efficiency is influenced by these variables reaching values of up to 10.30% ± 0.02% when bamboo starch was used and of up to 22.35% ± 0.04% for corn starch. The semicrystalline structures of the obtained complexes show some important differences, mainly in their thermal and drug release behaviors. Probably, the complexes maintain a more compact structure under simulated gastric conditions pH 1.2 with low release percentages delivered predominantly by Fickian diffusion transport. On the other hand, under simulated conditions of the intestine (pH 6.8 and 7.2) in the presence of pancreatic amylase, a drug release of approximately 90% was observed after 6 h mainly following a first order release kinetics, probably because of the excision of the α (1-4) bonds at any point in the polymer chains. These results suggest that the investigated starches could be used as carriers for active molecules whose release is intended at the intestinal level which offers attractive possibilities for generating added value to native starch source, particularly to design of new drug delivery systems.
dc.format.extent159
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleDesarrollo de un complejo de inclusión molecular de fármacos a partir de almidón nativo
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Farmacotecnia
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.contributor.researchgroupDesarrollo y calidad de productos farmacéuticos y cosméticos
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references’t Lam, R.U.E. (2010) «Scrutiny of variance results for outliers: Cochran’s test optimized», Analytica Chimica Acta, 659(1-2), pp. 68-84. doi: 10.1016/j.aca.2009.11.032
dc.relation.referencesAi, Y., Gong, L., Reed, M., Huang, J., Zhang, Y. y Jane, J. (2016) «Characterization of starch from bamboo seeds», Starch, 68(1-2), pp. 131-139. doi: 10.1002/star.201500206
dc.relation.referencesAlbert, C., Beladjine, M., Tsapis, N., Fattal, E., Agnely, F. y Huang, N. (2019) «Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications», Journal of Controlled Release, 309, pp. 302-332. doi: 10.1016/j.jconrel.2019.07.003
dc.relation.referencesAlvani, K., Qi, X., Tester, R.F. y Snape, C.E. (2011) «Physicochemical properties of potato starches», Food Chemistry, 125(3), pp. 958-965. doi: 10.1016/j.foodchem.2010.09.088
dc.relation.referencesAo, Z. y Jane, J. (2007) «Characterization and modeling of the A and B granule starches of wheat, triticale, and barley», Carbohydrate Polymers, 67(1), pp. 46-55. doi: 10.1016/j.carbpol.2006.04.013
dc.relation.referencesArijaje, E.O. y Wang, Y.J. (2016) «Effects of enzymatic modifications and botanical source on starch-stearic acid complex formation», Starch, 68(7-8), pp. 700-708. doi: 10.1002/star.201500249
dc.relation.referencesAsaoka, M., Okuno, K., Hara, K., Oba, M. y Fuwa, H. (1989) «Effects of environmental temperature at the early developmental stage of seeds on the characteristics of endosperm starches of rice (Oryza sativa L.)», Journal of the Japanese Society of Starch Science, 36(1), pp. 1-8. doi: 10.5458/jag1972.36.1
dc.relation.referencesAsaoka, M., Okuno, K. y Fuwa, H. (1985) «Effect of environmental temperature at the milky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice (Oryza sativa L.)», Agricultural and Biological Chemistry, 49(2), pp. 373-379. doi: 10.1080/00021369.1985.10866741
dc.relation.referencesAsaoka, M., Okuno, K., Sugimoto, Y., Kawakami, J. y Fuwa, H. (1984) «Effect of environmental temperature during development of rice plants on some properties of endosperm starch», Starch, 36(6), pp. 189-193. doi: 10.1002/star.19840360602
dc.relation.referencesAOAC. (2003) Official methods of analysis, (17th ed). Association of Official Analytical Chemists. Gaithersburg, MD, USA
dc.relation.referencesAuda, S.H. (2014) «Nimesulide/methyl β-cyclodextrin inclusion complexes: Physicochemical characterization, solubility, dissolution, and biological studies», Drug Development Research, 75(2), pp. 68-75. doi: 10.1002/ddr.21156
dc.relation.referencesBaker, A.A., Miles, M.J. y Helbert, W. (2001) «Internal structure of the starch granule revealed by AFM», Carbohydrate Research, 330(2), pp. 249-256. doi: 10.1016/S0008-6215(00)00275-5
dc.relation.referencesBanks, W. y Greenwood, C.T. (1971) «The conformation of amylose in dilute solution», Starch, 23(9), pp. 300-314. doi: 10.1002/star.19710230903
dc.relation.referencesBanks, W. y Greenwood, C.T. (1967) «The fractionation of labortory-isolated cereal starches using dimethyl sulphoxide», Starch, 19(12), pp. 394-398. doi: 10.1002/star.19670191202
dc.relation.referencesBanks, W., Greenwood, C.T. y Thomson, J. (1959) «The properties of amylose as related to the fractionation and subfractionation of starch», Die Makromolekulare. doi: 10.1002/macp.1959.020310113
dc.relation.referencesBeekman, A., Shan, D., Ali, A., Dai, W., Ward-Smith, S. y Goldenberg, M. (2005) «Micrometer-scale particle sizing by laser diffraction: Critical impact of the imaginary component of refractive index», Pharmaceutical Research, 22(4), pp. 518-522. doi: 10.1007/s11095-005-2494-x
dc.relation.referencesBertoft, E. (2017) «Understanding Starch Structure: Recent Progress», Agronomy, 7(3), p. 56. doi: 10.3390/agronomy7030056
dc.relation.referencesBertoft, E. (2015) «Fine Structure of Amylopectin», en Nakamura, Y. (ed.) Starch. Tokyo: Springer Japan, pp. 3-40. doi: 10.1007/978-4-431-55495-0_1
dc.relation.referencesBertoft, E., Piyachomkwan, K., Chatakanonda, P. y Sriroth, K. (2008) «Internal unit chain composition in amylopectins», Carbohydrate Polymers, 74(3), pp. 527-543. doi: 10.1016/j.carbpol.2008.04.011
dc.relation.referencesBertoft, E. (2004) «On the nature of categories of chains in amylopectin and their connection to the super helix model», Carbohydrate Polymers, 57(2), pp. 211-224. doi: 10.1016/j.carbpol.2004.04.015
dc.relation.referencesBhosale, R.G. y Ziegler, G.R. (2010) «Preparation of spherulites from amylose-palmitic acid complexes», Carbohydrate Polymers, 80(1), pp. 53-64. doi: 10.1016/j.carbpol.2009.10.069
dc.relation.referencesBiais, B., Le Bail, P., Robert, P., Pontoire, B. y Buléon, A. (2006) «Structural and stoichiometric studies of complexes between aroma compounds and amylose. Polymorphic transitions and quantification in amorphous and crystalline areas», Carbohydrate Polymers, 66(3), pp. 306-315. doi: 10.1016/j.carbpol.2006.03.019
dc.relation.referencesBlazek, J. y Gilbert, E.P. (2011) «Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: A review», Carbohydrate Polymers, pp. 281-293. doi: 10.1016/j.carbpol.2011.02.041
dc.relation.referencesBourne, E.J., Donnison, G.H., Haworth, N. y Peat, S. (1948) «Thymol and cyclohexanol as fractionating agents for starch», Journal of the Chemical Society (Resumed), p. 1687. doi: 10.1039/jr9480001687
dc.relation.referencesBraga, S.S., Gonçalves, I.S., Herdtweck, E. y Teixeira-Dias, J.J.C. (2003) «Solid state inclusion compound of S-ibuprofen in β-cyclodextrin: Structure and characterisation», New Journal of Chemistry, 27(3), pp. 597-601. doi: 10.1039/b207272f
dc.relation.referencesBuléon, A., Véronèse, G. y Putaux, J.-L. (2007) «Self-association and crystallization of amylose», Australian Journal of Chemistry, 60(10), pp. 706-718. doi: 10.1071/ch07168
dc.relation.referencesBuléon, A., Colonna, P., Planchot, V. y Ball, S. (1998) «Starch granules: Structure and biosynthesis», International Journal of Biological Macromolecules, 23(2), pp. 85-112. doi: 10.1016/s0141-8130(98)00040-3
dc.relation.referencesBuléon, A., Delage, M.M., Brisson, J. y Chanzy, H. (1990) «Single crystals of V-amylose complexed with isopropanol and acetone», International Journal of Biological Macromolecules, 12(1), pp. 25-33. doi: 10.1016/0141-8130(90)90078-o
dc.relation.referencesByrn, S.R., Stahly, G.P., McKenzie, A.T., Andres, M.C., Russell, C.A. y Johnson, P. (1997) «Determination of the optical purity of ibuprofen using X-ray powder diffraction», Journal of Pharmaceutical Sciences, 86(8), pp. 970-971. doi: 10.1021/js9700715
dc.relation.referencesCael, J.J., Koenig, J.L. y Blackwell, J. (1975) «Infrared and Raman spectroscopy of carbohydrates. Part VI: Normal coordinate analysis of V‐amylose», Biopolymers, 14(9), pp. 1885-1903. doi: 10.1002/bip.1975.360140909
dc.relation.referencesCai, L. y Shi, Y.-C. (2013) «Self-assembly of short linear chains to A and B type starch spherulites and their enzymatic Digestibility», Journal of Agricultural and Food Chemistry, 61(45), pp. 10787-10797. doi: 10.1021/jf402570e
dc.relation.referencesCailliau, J., Vézina, G., Fortin, F. y Batigne, S. (2007) The visual guide to understanding plants & the vegetable kingdom. Editado por I. QA. Eslovaquia: Jacques Fortin
dc.relation.referencesCarbinatto, F.M., Ribeiro, T.S., Colnago, L.A., Evangelista, R.C. y Cury, B.S.F. (2016) «Preparation and characterization of amylose inclusion complexes for drug delivery applications», Journal of Pharmaceutical Sciences, 105(1), pp. 231-241. doi: 10.1002/jps.24702
dc.relation.referencesCarbinatto, F.M., de Castro, A.D., Evangelista, R.C. y Cury, B.S.F. (2014) «Insights into the swelling process and drug release mechanisms from cross-linked pectin/high amylose starch matrices», Asian Journal of Pharmaceutical Sciences, 9(1), pp. 27-34. doi: 10.1016/j.ajps.2013.12.002
dc.relation.referencesCardoso, M.B., Putaux, J.-L., Nishiyama, Y., Helbert, W., Hÿtch, M., Silveira, N.P. y Chanzy, H. (2007) «Single crystals of V-amylose complexed with α-naphthol», Biomacromolecules, 8(4), pp. 1319-1326. doi: 10.1021/bm0611174
dc.relation.referencesCheetham, N.W.H. y Tao, L. (1998) «Variation in crystalline type with amylose content in maize starch granules: An X-ray powder diffraction study», Carbohydrate Polymers, 36(4), pp. 277-284. doi: 10.1016/s0144-8617(98)00007-1
dc.relation.referencesChen, M., Ye, L., Li, H., Wang, G., Chen, Q., Fang, C., Dai, C. y Fei, B. (2020) «Flexural strength and ductility of moso bamboo», Construction and Building Materials, 246, p. 118418. doi: 10.1016/j.conbuildmat.2020.118418
dc.relation.referencesChen, B., Zeng, S., Zeng, H., Guo, Z., Zhang, Y. y Zheng, B. (2017) «Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization», Food Chemistry, 226, pp. 119-127. doi: 10.1016/j.foodchem.2017.01.018
dc.relation.referencesChen, M.H. y Bergman, C.J. (2007) «Method for determining the amylose content, molecular weights, and weight and molar based distributions of degree of polymerization of amylose and fine structure of amylopectin», Carbohydrate Polymers, 69(3), pp. 562-578. doi: 10.1016/j.carbpol.2007.01.018
dc.relation.referencesCheng, L., Feng, T., Zhang, B., Zhu, X., Hamaker, B., Zhang, H. y Campanella, O. (2018) «A molecular dynamics simulation study on the conformational stability of amylose- linoleic acid complex in water», Carbohydrate Polymers, 196, pp. 56-65. doi: 10.1016/j.carbpol.2018.04.102
dc.relation.referencesChoudhury, S. y Nelson, K.F. (1992) «Improvement of oral bioavailability of carbamazepine by inclusion in 2-hydroxypropyl-β-cyclodextrin», International Journal of Pharmaceutics, 85(1-3), pp. 175-180. doi: 10.1016/0378-5173(92)90146-s
dc.relation.referencesChung, H.J. y Liu, Q. (2009) «Impact of molecular structure of amylopectin and amylose on amylose chain association during cooling», Carbohydrate Polymers, 77(4), pp. 807- 815. doi: 10.1016/j.carbpol.2009.03.004
dc.relation.referencesCohen, R., Schwartz, B., Peri, I. y Shimoni, E. (2011) «Improving bioavailability and stability of genistein by complexation with high amylose corn starch», Journal of Agricultural and Food Chemistry, 59(14), pp. 7932-7938. doi: 10.1021/jf2013277
dc.relation.referencesCohen, R., Orlova, Y., Kovalev, M., Ungar, Y. y Shimoni, E. (2008) «Structural and functional properties of amylose complexes with genistein», Journal of Agricultural and Food Chemistry, 56(11), pp. 4212-4218. doi: 10.1021/jf800255c
dc.relation.referencesConde-Petit, B., Escher, F. y Nuessli, J. (2006) «Structural features of starch-flavor complexation in food model systems», Trends in Food Science & Technology, 17(5), pp. 227-235. doi: 10.1016/j.tifs.2005.11.007
dc.relation.referencesCopeland, L., Blazek, J., Salman, H. y Tang, M.C. (2009) «Form and functionality of starch», Food Hydrocolloids, 23(6), pp. 1527-1534. doi: 10.1016/j.foodhyd.2008.09.016
dc.relation.referencesCosta, P. y Sousa, J.M. (2001) «Modeling and comparison of dissolution profiles», European Journal of Pharmaceutical Sciences, 13(2), pp. 123-133. doi: 10.1016/s0928-0987(01)00095-1
dc.relation.referencesCozzolino, D. y Degner, S. (2016) «An overview on the role of lipids and fatty acids in barley grain and their products during beer brewing», Food Research International, 81, pp. 114-121. doi: 10.1016/j.foodres.2016.01.003
dc.relation.referencesCozzolino, D., Roumeliotis, S. y Eglinton, J. (2013) «Relationships between swelling power, water solubility and near infrared spectra in whole grain barley: A feasibility study», Food and Bioprocess Technology, 6(10), pp. 2732-2738. doi: 10.1007/s11947- 012-0948-9
dc.relation.referencesCrowe, T.C., Seligman, S.A. y Copeland, L. (2000) «Inhibition of enzymic digestion of amylose by free fatty acids in vitro contributes to resistant starch formation», The Journal of Nutrition, 130(8), pp. 2006-2008. doi: 10.1093/jn/130.8.2006
dc.relation.referencesCui, R. y Oates, C.G. (1999) «The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch», Food Chemistry, 65(4), pp. 417-425. doi: 10.1016/s0308-8146(97)00174-x
dc.relation.referencesCullity, B.D. y Stock, S.R. (2014) Elements of X-Ray Diffraction. 3.a ed. United States of America: Pearson Education Limited
dc.relation.referencesDoblado-Maldonado, A.F., Gomand, S.V., Goderis, B. y Delcour, J.A. (2017) «Methodologies for producing amylose: A review», Critical Reviews in Food Science and Nutrition, 57(2), pp. 407-417. doi: 10.1080/10408398.2014.954030
dc.relation.referencesDries, D.M., Gomand, S.V., Pycarelle, S.C., Smet, M., Goderis, B. y Delcour, J.A. (2017) «Development of an infusion method for encapsulating ascorbyl palmitate in V-type granular cold water swelling starch», Carbohydrate Polymers, 165, pp. 229-237. doi: 10.1016/j.carbpol.2017.02.054
dc.relation.referencesEliasson, A.-C. (1988) «On the thermal transitions of the amylose-cetyltrimethylammonium bromide complex», Carbohydrate Research, 172(1), pp. 83-95. doi: 10.1016/s0008- 6215(00)90844-9
dc.relation.referencesErlander, S.R. y Purvinas, R.M. (1968) «The polyelectrolyte behavior of amylose and its helix‐to‐coil transition in aqueous alkaline solutions», Starch, 20(2), pp. 37-45. doi: 10.1002/star.19680200203
dc.relation.referencesFanta, G.F., Felker, F.C. y Shogren, R.L. (2002) «Formation of crystalline aggregates in slowly-cooled starch solutions prepared by steam jet cooking», Carbohydrate Polymers, 48(2), pp. 161-170. doi: 10.1016/s0144-8617(01)00230-2
dc.relation.referencesFanta, G., Shogren, R.L. y Salch, J.H. (1999) «Steam jet cooking of high-amylose starch- fatty acid mixtures. An investigation of complex formation», Carbohydrate Polymers, 38(1), pp. 1-6. doi: 10.1016/s0144-8617(98)00104-0
dc.relation.referencesFelisberto, M.H.F., Beraldo, A.L., Costa, M.S., Boas, F.V., Franco, C.M.L. y Clerici, M.T.P.S. (2018) «Characterization of young bamboo culm starch from Dendrocalamus asper», Food Research International, (2017). doi: 10.1016/j.foodres.2018.03.074
dc.relation.referencesFelisberto, M.H.F., Beraldo, A.L. y Clerici, M.T.P.S. (2017a) «Young bamboo culm flour of Dendrocalamus asper: Technological properties for food applications», LWT - Food Science and Technology, 76, pp. 230-235. doi: 10.1016/j.lwt.2016.06.015
dc.relation.referencesFelisberto, M.H.F., Miyake, P.S.E., Beraldo, A.L. y Clerici, M.T.P.S. (2017b) «Young bamboo culm: Potential food as source of fiber and starch», Food Research International, 101, pp. 96-102. doi: 10.1016/j.foodres.2017.08.058
dc.relation.referencesFeng, T., Wang, H., Wang, K., Liu, Y., Rong, Z., Ye, R., Zhuang, H., Xu, Z. y Sun, M. (2018) «Preparation and structural characterization of different amylose-flavor molecular inclusion complexes», Starch, 70(1-2), pp. 1700101-1700111. doi: 10.1002/star.201700101
dc.relation.referencesFiedler, J.O., Carmona, Ó.G., Carmona, C.G., José Lis, M., Plath, A.M.S., Samulewski, R.B. y Bezerra, F.M. (2020) «Application of Aloe vera microcapsules in cotton nonwovens to obtain biofunctional textiles», The Journal of the Textile Institute, 111(1), pp. 68-74. doi: 10.1080/00405000.2019.1625607
dc.relation.referencesGallant, D.J., Bouchet, B. y Baldwin, P.M. (1997) «Microscopy of starch: Evidence of a new level of granule organization», Carbohydrate Polymers, 32(3-4), pp. 177-191. doi: 10.1016/s0144-8617(97)00008-8
dc.relation.referencesGallant, D.J., Bewa, H., Buy, Q.H., Bouchet, B., Szylit, O. y Sealy, L. (1982) «On ultrastructural and nutritional aspects of some tropical tuber starches», Starch, 34(8), pp. 255-262. doi: 10.1002/star.19820340803
dc.relation.referencesGBIF Backbone Taxonomy. (2019) Rhipidocladum harmonicum (Parodi) McClure. Disponible en: https://www.gbif.org/es/species/4143058 (Accedido: 1 de abril de 2020)
dc.relation.referencesGelders, G.G., Vanderstukken, T.C., Goesaert, H. y Delcour, J.A. (2004) «Amylose-lipid complexation: A new fractionation method», Carbohydrate Polymers, 56(4), pp. 447- 458. doi: 10.1016/j.carbpol.2004.03.012
dc.relation.referencesGidley, M.J. (2014) «Starch NMR», en Halley, P.J. y Averóus, L. (eds.) Starch Polymers. Elsevier, pp. 243-253. doi: 10.1016/b978-0-444-53730-0.00029-4
dc.relation.referencesGidley, M.J., Hanashiro, I., Hani, N.M., Hill, S.E., Huber, A., Jane, J.L., Liu, Q., Morris, G.A., Rolland-Sabaté, A., Striegel, A.M. y Gilbert, R.G. (2010) «Reliable measurements of the size distributions of starch molecules in solution: Current dilemmas and recommendations», Carbohydrate Polymers, 79(2), pp. 255-261. doi: 10.1016/j.carbpol.2009.07.056
dc.relation.referencesGodet, M.C., Bizot, H. y Buléon, A. (1995) «Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths», Carbohydrate Polymers, 27(1), pp. 47-52. doi: 10.1016/0144-8617(95)00034-5
dc.relation.referencesGouin, S. (2004) «Microencapsulation: Industrial appraisal of existing technologies and trends», Trends in Food Science & Technology, 15(7-8), pp. 330-347. doi: 10.1016/j.tifs.2003.10.005
dc.relation.referencesGreenwood, C.T. y Thomson, J. (1962) «Physicochemical studies on starches. Part XXIV. The fractionation and characterization of starches of various plant origins», Journal of the Chemical Society (Resumed), 2(0), pp. 222-229. doi: 10.1039/jr9620000222
dc.relation.referencesHan, S., Choi, S.-H., Kim, W., Kim, B.-Y. y Baik, M.-Y. (2015) «Infusion of catechin into native corn starch granules for drug and nutrient delivery systems», Food Science and Biotechnology, 24(6), pp. 2035-2040. doi: 10.1007/s10068-015-0270-1
dc.relation.referencesHanashiro, I. (2015) «Fine structure of amylose», en Nakamura, Y. (ed.) Starch. Tokyo: Springer Japan, pp. 41-60. doi: 10.1007/978-4-431-55495-0_2
dc.relation.referencesHanashiro, I., Abe, J. y Hizukuri, S. (1996) «A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography», Carbohydrate Research, 283, pp. 151-159. doi: 10.1016/0008-6215(95)00408-4
dc.relation.referencesHancock, R.D. y Tarbet, B.J. (2000) «The other double helix-the fascinating chemistry of starch», Journal of Chemical Education, 77(8), pp. 988-992. doi: 10.1021/ed077p988
dc.relation.referencesHarding, S.E., Adams, G.G. y Gillis, R.B. (2016) «Molecular weight analysis of starches: Which technique?», Starch, 68(9-10), pp. 846-853. doi: 10.1002/star.201600042
dc.relation.referencesHassanzadeh, A.M., Khiabani, M.S., Sadrnia, M., Divband, B., Rahmanpour, O., Jabbari, V., Gholizadeh, P. y Kafil, H.S. (2017) «Immobilization and microencapsulation of Lactobacillus caseii and Lactobacillus plantarum using zeolite base and evaluating their viability in gastroesophageal-intestine simulated condition», Ars Pharmaceutica, 58(4), pp. 163-170. doi: 10.4321/s2340-98942017000400003
dc.relation.referencesHayashi, A., Kinoshita, K. y Miyake, Y. (1981) «The conformation of amylose in solution. I.», Polymer Journal, 13(6), pp. 537-541. doi: 10.1295/polymj.13.537
dc.relation.referencesHe, X.-Q., Suzuki, K., Kitamura, S., Lin, J.-X., Cui, K.-M. y Itoh, T. (2002) «Toward understanding the different function of two types of parenchyma cells in bamboo culms», Plant and Cell Physiology, 43(2), pp. 186-195. doi: 10.1093/pcp/pcf027
dc.relation.referencesHeinemann, C., Conde-Petit, B., Nuessli, J. y Escher, F. (2001) «Evidence of starch inclusion complexation with lactones», Journal of Agricultural and Food Chemistry, 49(3), pp. 1370-1376. doi: 10.1021/jf001079u
dc.relation.referencesHelbert, W. y Chanzy, H. (1994) «Single crystals of V amylose complexed with n-butanol or n-pentanol: Structural features and properties», International Journal of Biological Macromolecules, 16(4), pp. 207-213. doi: 10.1016/0141-8130(94)90052-3
dc.relation.referencesHizukuri, S. (1991) «Properties of hot-water-extractable amylose», Carbohydrate Research, 217, pp. 251-253. doi: 10.1016/0008-6215(91)84136-3
dc.relation.referencesHong, C., Li, H., Xiong, Z., Lorenzo, R., Corbi, I., Corbi, O., Wei, D., Yuan, C., Yang, D. y Zhang, H. (2020) «Review of connections for engineered bamboo structures», Journal of Building Engineering, 30, p. 101324. doi: 10.1016/j.jobe.2020.101324
dc.relation.referencesHoover, R. (2001) «Composition, molecular structure, and physicochemical properties of tuber and root starches: A review», Carbohydrate Polymers, 45(3), pp. 253-267. doi: 10.1016/s0144-8617(00)00260-5
dc.relation.referencesHu, L., Zhang, H., Song, W., Gu, D. y Hu, Q. (2012) «Investigation of inclusion complex of cilnidipine with hydroxypropyl-β-cyclodextrin», Carbohydrate Polymers, 90(4), pp. 1719-1724. doi: 10.1016/j.carbpol.2012.07.057
dc.relation.referencesHussein, K., Türk, M. y Wahl, M.A. (2007) «Comparative evaluation of ibuprofen/β- cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods», Pharmaceutical Research, 24(3), pp. 585-592. doi: 10.1007/s11095-006-9177-0
dc.relation.referencesICH Harmonised Tripartite Guideline (2005) «Validation of Analytical Procedures: Text and methodology, Q2 (R1)», International Conference on Harmonization. Disponible en: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1_Guideline.pdf (Accedido: 8 de marzo de 2020)
dc.relation.referencesImberty, A., Buléon, A., Tran, V. y Péerez, S. (1991) «Recent advances in knowledge of starch structure», Starch, 43(10), pp. 375-384. doi: 10.1002/star.19910431002
dc.relation.referencesImmel, S. y Lichtenthaler, F.W. (2000) «The hydrophobic topographies of amylose and its blue iodine complex», Starch, 52(1), pp. 1-8. doi: 10.1002/(sici)1521- 379x(200001)52:1<1::aid-star1>3.0.co;2-h
dc.relation.referencesJacob, S. y Nair, A.B. (2018) «Cyclodextrin complexes: Perspective from drug delivery and formulation», Drug Development Research, 79(5), pp. 201-217. doi: 10.1002/ddr.21452
dc.relation.referencesJane, J. (2009) «Structural features of starch granules II», en James, B. y Whistler, R. (eds.) Starch. 3.a ed. Academic Press, pp. 193-236. doi: 10.1016/b978-0-12-746275-2.00006- 9
dc.relation.referencesJenkins, P.J. y Donald, A.M. (1998) «Gelatinisation of starch: A combined SAXS/WAXS/DSC and SANS study», Carbohydrate Research, 308(1-2), pp. 133- 147. doi: 10.1016/s0008-6215(98)00079-2
dc.relation.referencesJiang, F., Du, C., Guo, Y., Fu, J., Jiang, W. y Du, S. (2020) «Physicochemical and structural properties of starches isolated from quinoa varieties», Food Hydrocolloids, 101, p. 105515. doi: 10.1016/j.foodhyd.2019.105515
dc.relation.referencesKaneko, Y. y Kadokawa, J. (2005) «Vine-twining polymerization: A new preparation method for well-defined supramolecules composed of amylose and synthetic polymers», The Chemical Record, 5(1), pp. 36-46. doi: 10.1002/tcr.20031
dc.relation.referencesKarve, M.S., Bhide, S.V. y Kale, N.R. (1981) «Separation of starch components by affinity chromatography», en Solution properties of polysaccharides, pp. 559-570. doi: 10.1021/bk-1981-0150.ch037
dc.relation.referencesKawada, J. y Marchessault, R.H. (2004) «Solid state NMR and X-ray studies on amylose complexes with small organic molecules», Starch, 56(1), pp. 13-19. doi: 10.1002/star.200300222
dc.relation.referencesKenar, J.A., Compton, D.L., Little, J.A. y Peterson, S.C. (2016) «Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking», Carbohydrate Polymers, 140, pp. 246-252. doi: 10.1016/j.carbpol.2015.12.048
dc.relation.referencesKennedy, J.F., Rivera, Z.S., Lloyd, L.L. y Warner, F.P. (1992) «Fractionation of starch amylopectin and amylose by high performance gel filtration chromatography», Starch, 44(2), pp. 53-55. doi: 10.1002/star.19920440205
dc.relation.referencesKim, H.I., Kim, H.R., Choi, S.J., Park, C.-S. y Moon, T.W. (2017) «Preparation and characterization of the inclusion complexes between amylosucrase-treated waxy starch and palmitic acid», Food Science and Biotechnology, 26(2), pp. 323-329. doi: 10.1007/s10068-017-0044-z
dc.relation.referencesKlucinec, J.D. y Thompson, D.B. (1998) «Fractionation of high-amylose maize starches by differential alcohol precipitation and chromatography of the fractions», Cereal Chemistry Journal, 75(6), pp. 887-896. doi: 10.1094/cchem.1998.75.6.887
dc.relation.referencesKobayashi, S., Schwartz, S.J. y Lineback, D.R. (1985) «Rapid analysis of starch, amylose and amylopectin by high-performance size-exclusion chromatography», Journal of Chromatography A, 319, pp. 205-214. doi: 10.1016/S0021-9673(01)90555-2
dc.relation.referencesKong, X., Zhu, P., Sui, Z. y Bao, J. (2015) «Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations», Food Chemistry, 172, pp. 433-440. doi: 10.1016/j.foodchem.2014.09.085
dc.relation.referencesKong, L. y Ziegler, G.R. (2014a) «Formation of starch-guest inclusion complexes in electrospun starch fibers», Food Hydrocolloids, 38, pp. 211-219. doi: 10.1016/j.foodhyd.2013.12.018
dc.relation.referencesKong, L. y Ziegler, G.R. (2014b) «Molecular encapsulation of ascorbyl palmitate in preformed V-type starch and amylose», Carbohydrate Polymers, 111, pp. 256-263. doi: 10.1016/j.carbpol.2014.04.033
dc.relation.referencesKong, L., Lee, C., Kim, S.H. y Ziegler, G.R. (2014c) «Characterization of starch polymorphic structures using vibrational sum frequency generation spectroscopy», Journal of Physical Chemistry B, 118(7), pp. 1775-1783. doi: 10.1021/jp411130n
dc.relation.referencesKuge, T. y Takeo, K. (1968) «Complexes of starchy materials with organic compounds», Agricultural and Biological Chemistry, 32(10), pp. 1232-1238. doi: 10.1080/00021369.1968.10859210
dc.relation.referencesKugimiya, M., Donovan, J.W. y Wong, R.Y. (1980) «Phase transitions of amylose‐lipid complexes in starches: A calorimetric study», Starch, 32(8), pp. 265-270. doi: 10.1002/star.19800320805
dc.relation.referencesKumar, K. y Loos, K. (2019) «Deciphering structures of inclusion complexes of amylose with natural phenolic amphiphiles», ACS Omega, 4(18), pp. 17807-17813. doi: 10.1021/acsomega.9b02388
dc.relation.referencesLalush, I., Bar, H., Zakaria, I., Eichler, S. y Shimoni, E. (2005) «Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic acid», Biomacromolecules, 6(1), pp. 121-130. doi: 10.1021/bm049644f
dc.relation.referencesLao, L.L., Peppas, N.A., Boey, F.Y.C. y Venkatraman, S.S. (2011) «Modeling of drug release from bulk-degrading polymers», International Journal of Pharmaceutics, 418(1), pp. 28-41. doi: 10.1016/j.ijpharm.2010.12.020
dc.relation.referencesLawton (Retired), J.W. (2016) «Starch: Uses of native starch», en Wrigley, C., Corke, H., Seetharaman, K., y Jon, F. (eds.) Encyclopedia of Food Grains. 2.a ed. Academic Press, pp. 274-281. doi: 10.1016/b978-0-12-394437-5.00146-7
dc.relation.referencesLay Ma, U.V., Floros, J.D. y Ziegler, G.R. (2011a) «Effect of starch fractions on spherulite formation and microstructure», Carbohydrate Polymers, 83(4), pp. 1757-1765. doi: 10.1016/j.carbpol.2010.10.041
dc.relation.referencesLay Ma, U.V., Floros, J.D. y Ziegler, G.R. (2011b) «Formation of inclusion complexes of starch with fatty acid esters of bioactive compounds», Carbohydrate Polymers, 83(4), pp. 1869-1878. doi: 10.1016/j.carbpol.2010.10.055
dc.relation.referencesLe Bail, P., Rondeau, C. y Buléon, A. (2005) «Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability», International Journal of Biological Macromolecules, 35(1-2), pp. 1- 7. doi: 10.1016/j.ijbiomac.2004.09.001
dc.relation.referencesLe, C.A.K. (2019) Inclusion complexes of amylose : morphogenesis , crystal structure and release of bioactive molecules (Doctoral Dissertation). Université Grenoble Alpes. Disponible en: https://tel.archives-ouvertes.fr/tel-02018878/document
dc.relation.referencesLee, B.-J. y Lee, J.-R. (1995) «Enhancement of solubility and dissolution rate of poorly water-soluble naproxen by complexation with 2-hydroxypropyl-β-cyclodextrin», Archives of Pharmacal Research, 18(1), pp. 22-26. doi: 10.1007/bf02976502
dc.relation.referencesLi, X., Wu, M., Xiao, M., Lu, S., Wang, Z., Yao, J. y Yang, L. (2019) «Microencapsulated β-carotene preparation using different drying treatments», Journal of Zhejiang University-SCIENCE B, 20(11), pp. 901-909. doi: 10.1631/jzus.b1900157
dc.relation.referencesLi, J.-Y. y Yeh, A.-I. (2001) «Relationships between thermal, rheological characteristics and swelling power for various starches», Journal of Food Engineering, 50(3), pp. 141- 148. doi: 10.1016/s0260-8774(00)00236-3
dc.relation.referencesLiese, W. y Weiner, G. (1996) «Ageing of bamboo culms. A review», Wood Science and Technology, 30(2), pp. 77-89. doi: 10.1007/bf00224958
dc.relation.referencesLima, B.Dos S., Shanmugam, S., Quintans, J.De S., Quintans-Júnior, L.J. y Araújo, A.A.De S. (2019a) «Inclusion complex with cyclodextrins enhances the bioavailability of flavonoid compounds: a systematic review», Phytochemistry Reviews, 18(5), pp. 1337- 1359. doi: 10.1007/s11101-019-09650-y
dc.relation.referencesLima, B.Dos S., Campos, C.De A., Santos, A.C.R.Da S., Santos, V.C., Trindade, G.Das G., Shanmugam, S., Pereira, E.W., Marreto, R.N., Duarte, M.C., Almeida, J.R.G.Da S., Quintans, J. de S., Quintans-Júnior, L.J. y Araújo, A.A. de S. (2019b) «Development of morin/hydroxypropyl-β-cyclodextrin inclusion complex: Enhancement of bioavailability, antihyperalgesic and anti-inflammatory effects», Food and Chemical Toxicology, 126(February), pp. 15-24. doi: 10.1016/j.fct.2019.01.038
dc.relation.referencesLiu, L. y Gao, H. (2012) «Molecular structure and vibrational spectra of ibuprofen using density function theory calculations», Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 89, pp. 201-209. doi: 10.1016/j.saa.2011.12.068
dc.relation.referencesLoh, G.O.K., Tan, Y.T.F. y Peh, K.-K. (2016) «Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β- cyclodextrin», Asian Journal of Pharmaceutical Sciences, 11(4), pp. 536-546. doi: 10.1016/j.ajps.2016.02.009
dc.relation.referencesLopez-Rubio, A., Flanagan, B.M., Gilbert, E.P. y Gidley, M.J. (2008) «A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study», Biopolymers, 89(9), pp. 761-768. doi: 10.1002/bip.21005
dc.relation.referencesLourdin, D., Putaux, J.-L., Potocki-Véronèse, G., Chevigny, C., Rolland-Sabaté, A. y Buléon, A. (2015) «Crystalline structure in starch», en Nakamura, Y. (ed.) Starch. Tokyo: Springer Japan, pp. 61-90. doi: 10.1007/978-4-431-55495-0_3
dc.relation.referencesLuo, J., Lian, C., Liu, R., Zhang, S., Yang, F. y Fei, B. (2019) «Comparison of metaxylem vessels and pits in four sympodial bamboo species», Scientific Reports, 9(1), p. 10876. doi: 10.1038/s41598-019-47419-7
dc.relation.referencesManners, D.J. (1989) «Recent developments in our understanding of amylopectin structure: A review», Carbohydrate Polymers, 11(2), pp. 87-112. doi: 10.1016/0144- 8617(89)90018-0
dc.relation.referencesMarinopoulou, A., Christofilos, D., Arvanitidis, J. y Raphaelides, S.N. (2019a) «Study of molecular inclusion complex formation of amylose with indomethacin», Starch, 71(7- 8), p. 1800295. doi: 10.1002/star.201800295
dc.relation.referencesMarinopoulou, A., Papastergiadis, E. y Raphaelides, S.N. (2019b) «Inclusion complexes of non-granular maize starch with fatty acids and ibuprofen. A comparative study of their morphology and structure», Starch, 71(1-2), p. 1800100. doi: 10.1002/star.201800100
dc.relation.referencesMarinopoulou, A., Papastergiadis, E. y Raphaelides, S.N. (2016a) «An investigation into the structure, morphology and thermal properties of amylomaize starch-fatty acid complexes prepared at different temperatures», Food Research International, 90, pp. 111-120. doi: 10.1016/j.foodres.2016.10.035
dc.relation.referencesMarinopoulou, A., Papastergiadis, E., Raphaelides, S.N. y Kontominas, M.G. (2016b) «Structural characterization and thermal properties of amylose-fatty acid complexes prepared at different temperatures», Food Hydrocolloids, 58, pp. 224-234. doi: 10.1016/j.foodhyd.2016.02.034
dc.relation.referencesMarinopoulou, A., Papastergiadis, E., Raphaelides, S.N. y Kontominas, M.G. (2016c) «Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose- fatty acid complexes», Carbohydrate Polymers, 141, pp. 106-115. doi: 10.1016/j.carbpol.2015.12.062
dc.relation.referencesMarques, H.M. (2010) «A review on cyclodextrin encapsulation of essential oils and volatiles», Flavour and Fragrance Journal, 25(5), pp. 313-326. doi: 10.1002/ffj.2019
dc.relation.referencesMatheson, N.K. (1996) «The chemical structure of amylose and amylopectin fractions of starch from tobacco leaves during development and diurnally-nocturnally», Carbohydrate Research, 282(2), pp. 247-262. doi: 10.1016/0008-6215(95)00381-9
dc.relation.referencesMatheson, N.K. y Welsh, L.A. (1988) «Estimation and fractionation of the essentially unbranched (amylose) and branched (amylopectin) components of starches with concanavalin A», Carbohydrate Research, 180(2), pp. 301-313. doi: 10.1016/0008- 6215(88)80087-9
dc.relation.referencesMatsushima, R., Maekawa, M. y Sakamoto, W. (2015) «Geometrical formation of compound starch grains in rice implements Voronoi diagram», Plant and Cell Physiology, 56(11), pp. 2150-2157. doi: 10.1093/pcp/pcv123
dc.relation.referencesMaxwell, R. y Chickos, J. (2012) «An examination of the thermodynamics of fusion, vaporization, and sublimation of ibuprofen and naproxen by correlation gas chromatography», Journal of Pharmaceutical Sciences, 101(2), pp. 805-814. doi: 10.1002/jps.22803
dc.relation.referencesMcGrance, S.J., Cornell, H.J. y Rix, C.J. (1998) «A simple and rapid colorimetric method for the determination of amylose in starch products», Starch, 50(4), pp. 158-163. doi: 10.1002/(sici)1521-379x(199804)50:4<158::aid-star158>3.0.co;2-7
dc.relation.referencesMcNaught, A.D. y Wilkinson, A. (2009) IUPAC compendium of chemical terminology (the «Gold Book»). 2.a ed. Editado por M. Nič, J. Jirát, B. Košata, A. Jenkins, y A. McNaught. Research Triagle Park, NC: IUPAC. doi: 10.1351/goldbook
dc.relation.referencesMeng, S., Ma, Y., Cui, J. y Sun, D.-W. (2014a) «Preparation of corn starch-fatty acid complexes by high-pressure homogenization», Starch, 66(9-10), pp. 809-817. doi: 10.1002/star.201400022
dc.relation.referencesMeng, S., Ma, Y., Sun, D.-W., Wang, L. y Liu, T. (2014b) «Properties of starch-palmitic acid complexes prepared by high pressure homogenization», Journal of Cereal Science, 59(1), pp. 25-32. doi: 10.1016/j.jcs.2013.10.012
dc.relation.referencesMeyer, K.H., Bernfeld, P. y Wolf, E. (1940) «Recherches sur l’amidon III. Fractionnement et purification de l’amylose de maïs naturel», Helvetica Chimica Acta, 23(1), pp. 854- 864. doi: 10.1002/hlca.194002301110
dc.relation.referencesMoriwaki, C., Costa, G.L., Ferracini, C.N., Moraes, F.F. de, Zanin, G.M., Pineda, E.A.G. y Matioli, G. (2008) «Enhancement of solubility of albendazole by complexation with β- cyclodextrin», Brazilian Journal of Chemical Engineering, 25(2), pp. 255-267. doi: 10.1590/s0104-66322008000200005
dc.relation.referencesMorrison, W.R., Law, R.V. y Snape, C.E. (1993) «Evidence for inclusion complexes of lipids with V-amylose in maize, rice and oat starches», Journal of Cereal Science, 18(2), pp. 107-109. doi: 10.1006/jcrs.1993.1039
dc.relation.referencesMuankaew, C. y Loftsson, T. (2018) «Cyclodextrin-based formulations: A non-invasive platform for targeted drug delivery», Basic & Clinical Pharmacology & Toxicology, 122(1), pp. 46-55. doi: 10.1111/bcpt.12917
dc.relation.referencesNair, A.B., Attimarad, M., Al-Dhubiab, B.E., Wadhwa, J., Harsha, S. y Ahmed, M. (2014) «Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin», Drug Delivery, 21(7), pp. 540-547. doi: 10.3109/10717544.2013.853213
dc.relation.referencesNgobese, N.Z., Wokadala, O.C., Plessis, B.Du., Da Silva, L.S., Hall, A., Lepule, S.P., Penter, M., Ngcobo, M.E.K. y Swart, H.C. (2018) «Physicochemical and morphological properties of a small granule legume starch with atypical properties from wild mango (Cordyla africana L .) seeds: A comparison to maize, pea, and kidney bean starch», Starch, 70(11-12), p. 1700345. doi: 10.1002/star.201700345
dc.relation.referencesNishiyama, Y., Mazeau, K., Morin, M., Cardoso, M.B., Chanzy, H. y Putaux, J.-L. (2010) «Molecular and crystal structure of 7-fold V-amylose complexed with 2-propanol», Macromolecules, 43(20), pp. 8628-8636. doi: 10.1021/ma101794w
dc.relation.referencesNordmark, T.S. y Ziegler, G.R. (2002) «Structural features of non-granular spherulitic maize starch», Carbohydrate Research, 337(16), pp. 1467-1475. doi: 10.1016/S0008- 6215(02)00192-1
dc.relation.referencesNuessli, J., Putaux, J.L., Le Bail, P. y Buléon, A. (2003) «Crystal structure of amylose complexes with small ligands», International Journal of Biological Macromolecules, 33(4-5), pp. 227-234. doi: 10.1016/j.ijbiomac.2003.08.009
dc.relation.referencesNuessli, J., Sigg, B., Conde-Petit, B. y Escher, F. (1997) «Characterization of amylose- flavour complexes by DSC and X-ray diffraction», Food Hydrocolloids, 11(1), pp. 27- 34. doi: 10.1016/s0268-005x(97)80007-0
dc.relation.referencesObiro, W.C., Ray, S.S. y Emmambux, M.N. (2012) «V-amylose structural characteristics, methods of preparation, significance, and potential applications», Food Reviews International, 28(4), pp. 412-438. doi: 10.1080/87559129.2012.660718
dc.relation.referencesOcampo‐Salinas, I.O., Gómez‐Aldapa, C.A., Castro‐Rosas, J., Vargas‐León, E.A., Guzmán‐ Ortiz, F.A., Calcáneo‐Martínez, N. y Falfán‐Cortés, R.N. (2020) «Development of wall material for the microencapsulation of natural vanilla extract by spray drying», Cereal Chemistry, 97(3), pp. 555-565. doi: 10.1002/cche.10269
dc.relation.referencesOguchi, T., Yamasato, H., Limmatvapirat, S., Yonemochi, E. y Keiji Yamamoto, A. (1998) «Structural change and complexation of strictly linear amylose induced by sealed- heating with salicylic acid», Journal of the Chemical Society, Faraday Transactions, 94(7), pp. 923-927. doi: 10.1039/a707848j
dc.relation.referencesOhdan, K., Fujii, K., Yanase, M., Takaha, T. y Kuriki, T. (2006) «Enzymatic synthesis of amylose», Biocatalysis and Biotransformation, 24(1-2), pp. 77-81. doi: 10.1080/10242420600598152
dc.relation.referencesPacheco, P.A., Rodrigues, L.N.C., Ferreira, J.F.S., Gomes, A.C.P., Veríssimo, C.J., Louvandini, H., Costa, R.L.D. y Katiki, L.M. (2018) «Inclusion complex and nanoclusters of cyclodextrin to increase the solubility and efficacy of albendazole», Parasitology Research, 117(3), pp. 705-712. doi: 10.1007/s00436-017-5740-3
dc.relation.referencesPanyoo, A.E. y Emmambux, M.N. (2017) «Amylose-lipid complex production and potential health benefits: A mini-review», Starch, 69(7-8), p. 1600203. doi: 10.1002/star.201600203
dc.relation.referencesPereva, S., Nikolova, V., Sarafska, T., Angelova, S., Spassov, T. y Dudev, T. (2020) «Inclusion complexes of ibuprofen and β-cyclodextrin: Supramolecular structure and stability», Journal of Molecular Structure, 1205, p. 127575. doi: 10.1016/j.molstruc.2019.127575
dc.relation.referencesPérez, S. y Bertoft, E. (2010) «The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review», Starch, 62(8), pp. 389-420. doi: 10.1002/star.201000013
dc.relation.referencesPérez, S., Baldwin, P.M. y Gallant, D.J. (2009) «Structural features of starch granules I», en BeMiller, J. y Roy, W. (eds.) Starch. 3.a ed. San Diego: Academic Press, pp. 149-192. doi: 10.1016/b978-0-12-746275-2.00005-7
dc.relation.referencesPreiss, J. (2018) «Plant starch synthesis», en Sjöö, M. y Nilsson, L. (eds.) Starch in Food. 2.a ed. Woodhead Publishing, pp. 3-95. doi: 10.1016/b978-0-08-100868-3.00001-9
dc.relation.referencesPubchem (2016) ibuprofen_C13H18O2 - PubChem, The Pubchem Project. Disponible en: https://pubchem.ncbi.nlm.nih.gov/compound/Ibuprofen#section=Computed- Properties (Accedido: 5 de mayo de 2020)
dc.relation.referencesPutaux, J.-L., Cardoso, M.B., Dupeyre, D., Morin, M., Nulac, A. y Hu, Y. (2008) «Single crystals of V-amylose inclusion complexes», Macromolecular Symposia, 273(1), pp. 1-8. doi: 10.1002/masy.200851301
dc.relation.referencesPutseys, J.A., Lamberts, L. y Delcour, J.A. (2010) «Amylose-inclusion complexes: Formation, identity and physico-chemical properties», Journal of Cereal Science, 51(3), pp. 238-247. doi: 10.1016/j.jcs.2010.01.011
dc.relation.referencesQi, X. y Tester, R.F. (2019) «Starch granules as active guest molecules or microorganism delivery systems», Food Chemistry, 271, pp. 182-186. doi: 10.1016/j.foodchem.2018.07.177
dc.relation.referencesQuattrocchi, O., Andrizzi, S. y Laba, R. (1992) Introducción a la HPLC, aplicación y práctica. 1.a ed. Buenos Aires: Artes Graficas Farro
dc.relation.referencesRagheb, A.A., Abdel-Thalouth, I. y Tawfik, S. (1995) «Gelatinization of starch in aqueous alkaline solutions», Starch, 47(9), pp. 338-345. doi: 10.1002/star.19950470904
dc.relation.referencesRajbanshi, B., Dutta, A., Mahato, B., Roy, D., Maiti, D.K., Bhattacharyya, S. y Roy, M.N. (2020) «Study to explore host guest inclusion complexes of vitamin B1 with CD molecules for enhancing stability and innovative application in biological system», Journal of Molecular Liquids, 298, p. 111952. doi: 10.1016/j.molliq.2019.111952
dc.relation.referencesRaphaelides, S.N., Dimitreli, G., Exarhopoulos, S., Ilia, E. y Koutsomihali, P. (2015) «A process designed for the continuous production of starch inclusion complexes on an industrial scale», Food and Bioproducts Processing, 96, pp. 245-255. doi: 10.1016/j.fbp.2015.09.001
dc.relation.referencesRappenecker, G. y Zugenmaier, P. (1981) «Detailed refinement of the crystal structure of Vh-amylose», Carbohydrate Research, 89(1), pp. 11-19. doi: 10.1016/s0008- 6215(00)85225-8
dc.relation.referencesReddy, C.K., Choi, S.M., Lee, D.J. y Lim, S.T. (2018) «Complex formation between starch and stearic acid: Effect of enzymatic debranching for starch», Food Chemistry, 244, pp. 136-142. doi: 10.1016/j.foodchem.2017.10.040
dc.relation.referencesRidout, M.J., Parker, M.L., Hedley, C.L., Bogracheva, T.Y. y Morris, V.J. (2006) «Atomic force microscopy of pea starch: Granule architecture of the rug3-a, rug4-b, rug5-a and lam-c mutants», Carbohydrate Polymers, 65(1), pp. 64-74. doi: 10.1016/j.carbpol.2005.12.016
dc.relation.referencesRidout, M.J., Parker, M.L., Hedley, C.L., Bogracheva, T.Y. y Morris, V.J. (2003) «Atomic force microscopy of pea starch granules: granule architecture of wild-type parent, r and rb single mutants, and the rrb double mutant», Carbohydrate Research, 338(20), pp. 2135-2147. doi: 10.1016/s0008-6215(03)00309-4
dc.relation.referencesRocha, G.A., Fávaro-Trindade, C.S. y Grosso, C.R.F. (2012) «Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules», Food and Bioproducts Processing, 90(1), pp. 37-42. doi: 10.1016/j.fbp.2011.01.001
dc.relation.referencesRocha, T.S., Cunha, V.A.G., Jane, J. y Franco, C.M.L. (2011) «Structural characterization of peruvian carrot (Arracacia xanthorrhiza) starch and the effect of annealing on its semicrystalline structure», Journal of Agricultural and Food Chemistry, 59(8), pp. 4208-4216. doi: 10.1021/jf104923m
dc.relation.referencesRodríguez-García, M.E., Londoño-Restrepo, S.M., Ramirez-Gutierrez, C.F. y Millan-Malo, B.M. (2018) «Effect of the crystal size on the X-ray diffraction patterns of isolated starches». Preprint. Corpus ID: 119495259
dc.relation.referencesRoss, S.M. (2010) «Linear regression», en Introductory Statistics. 3.a ed. Boston: Academic Press, pp. 537-604. doi: 10.1016/b978-0-12-374388-6.00012-0
dc.relation.referencesSaifullah, M., Shishir, M.R.I., Ferdowsi, R., Tanver Rahman, M.R. y Van Vuong, Q. (2019) «Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review», Trends in Food Science & Technology, 86, pp. 230- 251. doi: 10.1016/j.tifs.2019.02.030
dc.relation.referencesSchoch, T.J. (1945) «The fractionation of starch», en Pigman, W.W. y Wolfrom, M.L. (eds.). Academic Press, pp. 247-277. doi: 10.1016/s0096-5332(08)60411-7
dc.relation.referencesSchoch, T.J. (1942) «Fractionation of starch by selective precipitation with butanol», Journal of the American Chemical Society, 64(12), pp. 2957-2961. doi: 10.1021/ja01264a065
dc.relation.referencesSeo, T.-R., Kim, H.-Y. y Lim, S.-T. (2016) «Preparation and characterization of aqueous dispersions of high amylose starch and conjugated linoleic acid complex», Food Chemistry, 211, pp. 530-537. doi: 10.1016/j.foodchem.2016.05.078
dc.relation.referencesSharma, N. y Baldi, A. (2016) «Exploring versatile applications of cyclodextrins: An overview», Drug Delivery, 23(3), pp. 729-747. doi: 10.3109/10717544.2014.938839
dc.relation.referencesSrichuwong, S., Sunarti, T., Mishima, T., Isono, N. y Hisamatsu, M. (2005) «Starches from different botanical sources I: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility», Carbohydrate Polymers, 60(4), pp. 529-538. doi: 10.1016/j.carbpol.2005.03.004
dc.relation.referencesTakeda, Y., Hizukuri, S., Takeda, C. y Suzuki, A. (1987) «Structures of branched molecules of amyloses of various origins, and molar fractions of branched and unbranched molecules», Carbohydrate Research, 165(1), pp. 139-145. doi: 10.1016/0008- 6215(87)80089-7
dc.relation.referencesTakeo, K., Tokumura, A. y Kuge, T. (1973) «Complexes of starch and its related materials with organic compounds. Part. X. X-ray diffraction of amylose-fatty acid complexes», Starch, 25(11), pp. 357-362. doi: 10.1002/star.19730251102
dc.relation.referencesTakeo, K. y Kuge, T. (1971) «Complexes of starchy materials with organic compounds», Agricultural and Biological Chemistry, 35(4), pp. 537-542. doi: 10.1080/00021369.1971.10859944
dc.relation.referencesTakeo, K. y Kuge, T. (1969) «Complexes of starchy materials with organic compounds», Agricultural and Biological Chemistry, 33(8), pp. 1174-1180. doi: 10.1080/00021369.1969.10859434
dc.relation.referencesTang, H., Mitsunaga, T. y Kawamura, Y. (2006) «Molecular arrangement in blocklets and starch granule architecture», Carbohydrate Polymers, 63(4), pp. 555-560. doi: 10.1016/j.carbpol.2005.10.016
dc.relation.referencesTester, R.F., Karkalas, J. y Qi, X. (2004) «Starch composition, fine structure and architecture», Journal of Cereal Science, 39(2), pp. 151-165. doi: 10.1016/j.jcs.2003.12.001
dc.relation.referencesThe United States Pharmacopeia (2019) The National Formulary. Vol 3. (USP 43-NF 37). USP43-NF38 ed. Rockville, Md : United States, Pharmacopeial Convention
dc.relation.referencesTian, Y., Yang, N., Li, Y., Xu, X., Zhan, J. y Jin, Z. (2010) «Potential interaction between β-cyclodextrin and amylose-lipid complex in retrograded rice starch», Carbohydrate Polymers, 80(2), pp. 581-584. doi: 10.1016/j.carbpol.2009.12.010
dc.relation.referencesToledo, M.C.F., Azzini, A. y Reyes, F.G.R. (1987) «Isolation and characterization of starch from bamboo culm (Guadua flabellata)», Starch, 39(5), pp. 158-160. doi: 10.1002/star.19870390504
dc.relation.referencesTomasik, P. y Schilling, C.H. (1998a) «Complexes of starch with organic guests», en Horton, D. (ed.). Academic Press, pp. 345-426. doi: 10.1016/s0065-2318(08)60047-5
dc.relation.referencesTomasik, P. y Schilling, C.H. (1998b) «Complexes of starch with inorganic guests», en Horton, D. (ed.). Academic Press, pp. 263-343. doi: 10.1016/s0065-2318(08)60046-3
dc.relation.referencesTozuka, Y., Takeshita, A., Nagae, A., Wongmekiat, A., Moribe, K., Oguchi, T. y Yamamoto, K. (2006) «Specific inclusion mode of guest compounds in the amylose complex analyzed by solid state NMR spectroscopy», Chemical and Pharmaceutical Bulletin, 54(8), pp. 1097-1101. doi: 10.1248/cpb.54.1097
dc.relation.referencesTufvesson, F., Wahlgren, M. y Eliasson, A.-C. (2003) «Formation of amylose-lipid complexes and effects of temperature treatment. Part 1. Monoglycerides», Starch, 55(2), pp. 61-71. doi: 10.1002/star.200390018
dc.relation.referencesUchino, T., Tozuka, Y., Oguchi, T. y Yamamoto, K. (2001) «The change of the structure of amylose during the inclusion of 2-naphthol in sealed-heating process», Journal of Inclusion Phenomena and Macrocyclic Chemistry, 39(1-2), pp. 145-149. doi: 10.1023/a:1008145407085
dc.relation.referencesVamadevan, V. y Bertoft, E. (2015) «Structure function relationships of starch components», Starch, 67(1-2), pp. 55-68. doi: 10.1002/star.201400188
dc.relation.referencesVan Hung, P., Phat, N.H. y Phi, N.T.L. (2013) «Physicochemical properties and antioxidant capacity of debranched starch-ferulic acid complexes», Starch, 65(5-6), pp. 382-389. doi: 10.1002/star.201200168
dc.relation.referencesWang, M., Wichienchot, S., He, X., Fu, X., Huang, Q. y Zhang, B. (2019) «In vitro colonic fermentation of dietary fibers: Fermentation rate, short-chain fatty acid production and changes in microbiota», Trends in Food Science & Technology, 88, pp. 1-9. doi: 10.1016/j.tifs.2019.03.005
dc.relation.referencesWang, S., Zhan, J., Jin, Z. y Tian, Y. (2017) «Enhanced fluorescence of starch-fluorescence guest complexes enables evaluation of the encapsulation properties of maize starches», Food Hydrocolloids, 63, pp. 286-292. doi: 10.1016/j.foodhyd.2016.09.007
dc.relation.referencesWang, S. y Copeland, L. (2013) «Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: A review», Food & Function, 4(11), p. 1564. doi: 10.1039/c3fo60258c
dc.relation.referencesWongprayoon, S., Tran, T., Gibert, O., Dubreucq, E., Piyachomkwan, K. y Sriroth, K. (2018) «Pullulanase debranching of various starches upgrades the crystalline structure and thermostability of starch-lauric acid complexes», Starch, 70(7-8), p. 1700351. doi: 10.1002/star.201700351
dc.relation.referencesWulff, G., Avgenaki, G. y Guzmann, M.S.P. (2005) «Molecular encapsulation of flavours as helical inclusion complexes of amylose», Journal of Cereal Science, 41(3), pp. 239- 249. doi: 10.1016/j.jcs.2004.06.002
dc.relation.referencesXie, Y.L., Jiang, W., Li, F., Zhang, Y., Liang, X.Y., Wang, M., Zhou, X., Wu, S.Y. y Zhang, C.H. (2020) «Controlled release of spirotetramat using starch-chitosan-alginate- encapsulation», Bulletin of Environmental Contamination and Toxicology, 104(1), pp. 149-155. doi: 10.1007/s00128-019-02752-5
dc.relation.referencesXie, F., Ji, S. y Cheng, Z. (2015) «In vitro dissolution similarity factor (f2) and in vivo bioequivalence criteria, how and when do they match? Using a BCS class II drug as a simulation example», European Journal of Pharmaceutical Sciences, 66, pp. 163-172. doi: 10.1016/j.ejps.2014.10.002
dc.relation.referencesYamada, T. y Taki, M. (1976) «Fractionation of maize starch by gel-chromatography», Starch, 28(11), pp. 374-377. doi: 10.1002/star.19760281103
dc.relation.referencesYamashita, Y.H., Ryugo, J. y Monobe, K. (1973) «An electron microscopic study on crystals of V-amylose complexes», Journal of Electron Microscopy, 22(1), pp. 19-26. doi: 10.1093/oxfordjournals.jmicro.a049858
dc.relation.referencesYamashita, Y. (1965) «Single crystals of amylose V complexes», Journal of Polymer Science Part A: General Papers, 3(9), pp. 3251-3260. doi: 10.1002/pol.1965.100030919
dc.relation.referencesYanase, M., Takata, H., Fujii, K., Takaha, T. y Kuriki, T. (2005) «Cumulative effect of amino acid replacements results in enhanced thermostability of potato type L α-glucan phosphorylase», Applied and Environmental Microbiology, 71(9), pp. 5433-5439. doi: 10.1128/aem.71.9.5433-5439.2005
dc.relation.referencesYang, L., Zhang, B., Yi, J., Liang, J., Liu, Y. y Zhang, L.-M. (2013) «Preparation, characterization, and properties of amylose-ibuprofen inclusion complexes», Starch, 65(7-8), pp. 593-602. doi: 10.1002/star.201200161
dc.relation.referencesYe, J., Hu, X., Luo, S., McClements, D.J., Liang, L. y Liu, C. (2018) «Effect of endogenous proteins and lipids on starch digestibility in rice flour», Food Research International, 106, pp. 404-409. doi: 10.1016/j.foodres.2018.01.008
dc.relation.referencesYildiz, Z.I., Celebioglu, A., Kilic, M.E., Durgun, E. y Uyar, T. (2018a) «Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity», Journal of Materials Science, 53(23), pp. 15837-15849. doi: 10.1007/s10853-018-2750-1
dc.relation.referencesYildiz, Z.I., Celebioglu, A., Kilic, M.E., Durgun, E. y Uyar, T. (2018b) «Menthol/cyclodextrin inclusion complex nanofibers: Enhanced water-solubility and high-temperature stability of menthol», Journal of Food Engineering, 224, pp. 27-36. doi: 10.1016/j.jfoodeng.2017.12.020
dc.relation.referencesYoo, S.H. y Jane, J.L. (2002) «Molecular weights and gyration radio of amylopectins determined by high-performance size-exclusion chromatography equipped with multi- angle laser-light scattering and refractive index detectors», Carbohydrate Polymers, 49(3), pp. 307-314. doi: 10.1016/s0144-8617(01)00339-3
dc.relation.referencesYun, S.-H. y Matheson, N.K. (1990) «Estimation of amylose content of starches after precipitation of amylopectin by concanavalin-A», Starch, 42(8), pp. 302-305. doi: 10.1002/star.19900420805
dc.relation.referencesZabar, S., Lesmes, U., Katz, I., Shimoni, E. y Bianco-Peled, H. (2010) «Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method», Food Hydrocolloids, 24(4), pp. 347-357. doi: 10.1016/j.foodhyd.2009.10.015
dc.relation.referencesZabar, S., Lesmes, U., Katz, I., Shimoni, E. y Bianco-Peled, H. (2009) «Studying different dimensions of amylose-long chain fatty acid complexes: Molecular, nano and micro level characteristics», Food Hydrocolloids, 23(7), pp. 1918-1925. doi: 10.1016/j.foodhyd.2009.02.004
dc.relation.referencesZaki Rizkalla, C.M., latif Aziz, R. y Ibrahim Soliman, I. (2013) «Microencapsulation of hydroxyzine HCl by thermal phase separation: in vitro release enhancement and in vivo pharmacodynamic evaluation», Pharmaceutical Development and Technology, 18(1), pp. 196-209. doi: 10.3109/10837450.2012.693506
dc.relation.referencesZhang, L., Cheng, H., Zheng, C., Dong, F., Man, S., Dai, Y. y Yu, P. (2016) «Structural and release properties of amylose inclusion complexes with ibuprofen», Journal of Drug Delivery Science and Technology, 31, pp. 101-107. doi: 10.1016/j.jddst.2015.12.006
dc.relation.referencesZhang, P. y Hamaker, B.R. (2012) «Banana starch structure and digestibility», Carbohydrate Polymers, 87(2), pp. 1552-1558. doi: 10.1016/j.carbpol.2011.09.053
dc.relation.referencesZhang, L., Yang, X., Li, S. y Gao, W. (2011) «Preparation, physicochemical characterization and in vitro digestibility on solid complex of maize starches with quercetin», LWT - Food Science and Technology, 44(3), pp. 787-792. doi: 10.1016/j.lwt.2010.09.001
dc.relation.referencesZhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C. y Xie, S. (2010) «DDSolver: An add- in program for modeling and comparison of drug dissolution profiles», The AAPS Journal, 12(3), pp. 263-271. doi: 10.1208/s12248-010-9185-1
dc.relation.referencesZhao, Y., Sun, C., Shi, F., Firempong, C.K., Yu, J., Xu, X. y Zhang, W. (2016) «Preparation, characterization, and pharmacokinetics study of capsaicin via hydroxypropyl-beta- cyclodextrin encapsulation», Pharmaceutical Biology, 54(1), pp. 130-138. doi: 10.3109/13880209.2015.1021816
dc.relation.referencesZhu, F. (2017a) «Atomic force microscopy of starch systems», Critical Reviews in Food Science and Nutrition, 57(14), pp. 3127-3144. doi: 10.1080/10408398.2015.1094650
dc.relation.referencesZhu, F. (2017b) «NMR spectroscopy of starch systems», Food Hydrocolloids, 63, pp. 611- 624. doi: 10.1016/j.foodhyd.2016.10.015
dc.relation.referencesZobel, H.F. (1988) «Starch crystal transformations and their industrial importance», Starch, 40(1), pp. 1-7. doi: 10.1002/star.19880400102
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAlmidón
dc.subject.proposalStarch
dc.subject.proposalBamboo
dc.subject.proposalBambú
dc.subject.proposalComplejos de inclusión molecular
dc.subject.proposalMolecular inclusion complexes
dc.subject.proposalIbuprofen
dc.subject.proposalIbuprofeno
dc.subject.proposalActive release
dc.subject.proposalLiberación de activos
dc.subject.proposalMolecular encapsulation
dc.subject.proposalEncapsulación molecular
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit