Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorHernández Rodríguez, Félix
dc.contributor.authorDíazgranados Beltrán, Jasson Alejandro
dc.date.accessioned2021-01-15T20:00:36Z
dc.date.available2021-01-15T20:00:36Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78776
dc.description.abstractEste documento muestra el desarrollo de la simulación numérica de la construcción de un túnel superficial, excavado con máquina tuneladora tipo TBM de doble escudo en una arcilla blanda, cuyo comportamiento es representado adecuadamente por el modelo de endurecimiento del suelo con variación de rigidez al corte a bajas deformaciones. La simulación consistió de cinco modelos tridimensionales desarrollados en Plaxis 3D, en los que se obtuvieron resultados de esfuerzos principales y convergencias radiales en una sección de control para diferentes posiciones del frente de excavación. La toma de datos se realizó en tres puntos ubicados en la solera, la clave y la pared de túneles con distintas rigideces de revestimiento. Con los resultados obtenidos se analizó la variación de las convergencias radiales y los esfuerzos principales en función de la distancia entre el frente de excavación y la sección de control establecida. Se analizaron las trayectorias de esfuerzos con el criterio de falla de Mohr-Coulomb y se interpretó la relación entre los esfuerzos principales y las convergencias desarrolladas durante la excavación de cada túnel.
dc.description.abstractThis document presents the development of the numerical shallow tunnel construction's simulation excavated with double shield TBM in soft clay, whose behavior is adequately represented by the Hardening Soil Model Small Strain Stiffness. The simulation is based on five three-dimensional models using Plaxis 3D, in which principal stresses and radial convergences were obtained in a control section for different positions of the excavation face. Data collection was carried out through three points located in the invert, the crown and the walls in tunnels with different stiffness of the lining. Radial convergences and principal stresses were subjected to analysis as a distance's function between the heading and the control section. Furthermore, there were two analysis on each tunnel, the stress paths were analyzed with Mohr-Coulomb criterion, likewise the principal stresses' relationship with the convergences.
dc.format.extent60
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleRelación carga - Convergencia para túneles en suelos
dc.typeOtro
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesO. Arnau and C. Molins. Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2: Numerical simulation. Tunnelling and Underground Space Technology, 26(6):778–788, 2011.
dc.relation.referencesO. Arnau and C. Molins. Three dimensional structural response of segmental tunnel linings. Engineering Structures, 44:210–221, 2012.
dc.relation.referencesK.J. Bakker. Report K100-06 Second Heinenoord Tunnel Evaluation Report. Technical report, COB, Gouda, 2000.
dc.relation.referencesK.J. Bakker. Structural Design of Lining for Bored Tunnels in Soft Grond. HERON, 48(1):33–63, 2003.
dc.relation.referencesS. Bernat and B. Cambou. Soil-structure interaction in shield tunnelling in soft soil. Computers and Geotechnics, 22(3-4):221–242, 1998.
dc.relation.referencesC.B.M. Blom. Design philosophy of concrete linings for tunnels in soft soils. PhD thesis, Delft University of Technology, 2002.
dc.relation.referencesC.B.M. Blom, E.J. Van der Horst, and P.S. Jovanovic.\\ Three-dimensional Structural Analyses of the ShieldDriven "Green Heart" Tunnel of the High-Speed Line South. Tunnelling and Underground Space Technology, 14(2):217–224, 1999.
dc.relation.referencesP.J. Bogaards. Liggerwerkig boortunnels. Msc., Delft University of Technology, 1998.
dc.relation.referencesA.L. Bouma. Mechanica van constructies. Delftse Uitgevers Maatschappij b.v., Delft, 1993.
dc.relation.referencesR.B.J. Brinkgreve. Hypoplastic model, 2016.
dc.relation.referencesR.B.J. Brinkgreve, S. Kumarswamy, and W.M. Swolfs. Plaxis 2016. Plaxis bv, Delft, 2016.
dc.relation.referencesH. Chakeri and B. Ünver. A new equation for estimating the maximum surface settlement above tunnels excavated in soft ground. Environmental Earth Sciences, 71(7):3195–3210, 2014.
dc.relation.referencesCOB-F220/230. 4D-Groutdrukmodel Plaxis. Technical report, COB, Gouda, 2005.
dc.relation.referencesCOB-K100. Bored railway tunnels in the Netherlands. Technical report, COB, Gouda, 1995.
dc.relation.referencesN.A. Do, D. Dias, P. Oreste, and I. Djeran-Maigre. 2D numerical investigation of segmental tunnel lining behavior. Tunnelling and Underground Space Technology, 37(August 2013):115–127, 2013.
dc.relation.referencesH. Duddeck and J. Erdmann. Structural design models for tunnels in soft soils. In Tunnelling 1982, Proceedings of the 3rd International Sumposium, pages 83–91, London, 1982. Insitution of Mining and Metallurgy.
dc.relation.referencesR.J. Finno and G.W. Clough. Evaluation of Soil Response to EPB Shield Tunneling. Journal of Geotechnical Engineering, 111(2):155–173, 1985.
dc.relation.referencesA. Fioranelli Jr, A. Cavalcante, T. Pessoa, and A. Ferreira. Plugin for Tunneling and Geotechnical Analysis in Abaqus. In SIMULIA Customer Conference, Providence, 2012.
dc.relation.referencesJ.N. Franzius. Behaviour of buildings due to tunnel induced subsidence. Phd., University of London, 2003.
dc.relation.referencesG Galli, A Grimaldi, and A Leonardi. Three-dimensional modelling of tunnel excavation and lining. Computers and Geotechnics, 31(3):171–183, 2004.
dc.relation.referencesG.M.L. Gladwell. Contact problems in the classical theory of elasticity. Springer Science & Business Media, Alphen aan de Rijn, 1980.
dc.relation.referencesY. Hejazi, D. Dias, and R. Kastner. Impact of constitutive models on the numerical analysis of underground constructions. Acta Geotechnica, 3(4):251–258, 2008.
dc.relation.referencesF.J.M. Hoefsloot and A. Verweij. 4D grouting pressure model PLAXIS. In 5th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, pages 529–534, Amsterdam, 2006.
dc.relation.referencesI.T.A. Guidelines for the design of shield tunnel lining. Tunnelling and Underground Space Technology, 15(3):303–331, 2000.
dc.relation.referencesItech. Cesar-LCPC, 2016.
dc.relation.referencesItech. Constitutive models for materials, 2016.
dc.relation.referencesP. Janssen. Tragverhalten von tunnelausbauten mit gelenktubbings. PhD thesis, University of Braunschweig, 1983.
dc.relation.referencesM. Kalhor and M. Azadi. Assessment of changes in elasticity module and soil Poisson’s Ratio on applied forces to tunnel lining during seismic loading. International Research Journal of Applied and Basic Sciences, 4(9):2756–2761, 2013.
dc.relation.referencesT. Kasper and G. Meschke. A 3D finite element simulation model for TBM tunnelling in soft ground. International Journal for Numerical and Analytical Methods in Geomechanics, 28(14):1441–1460, 2004.
dc.relation.referencesH. Katebi, A. H. Rezaei, M. Hajialilue-Bonab, and A. Tarifard. Assessment the influence of ground stratification, tunnel and surface buildings specifications on shield tunnel lining loads (by FEM). Tunnelling and Underground Space Technology, 49(June):67–78, 2015.
dc.relation.referencesC. Klappers, F. Grübl, and B. Ostermeier. Structural analyses of segmental lining – coupled beam and spring analyses versus 3D-FEM calculations with shell elements. Tunnelling and Underground Space Technology, 21(3-4):254–255, 2006.
dc.relation.referencesA.J. Koek. Axial pre-stresses in the lining of a bored tunnel. In Geotechnical Aspects of Underground Construction in Soft Ground, pages 559–564, 2006.
dc.relation.referencesK.M. Lee and X.W. Ge. The equivalence of a jointed shield-driven tunnel lining to a continuous ring structure. Canadian Geotechnical Journal, 38(3):461–483, 2001.
dc.relation.referencesH.J. Lengkeek. Analyse grond-tunnelinteractie: Analytische en numerieke bepaling van veerstijfheid van de grond voor toepassing in ring- en liggermodel. Msc., Delft University of Technology, 1997.
dc.relation.referencesH. Y. Liu, J. C. Small, and J. P. Carter. Full 3D modelling for effects of tunnelling on existing support systems in the Sydney region. Tunnelling and Underground Space Technology, 23(4):399–420, 2008.
dc.relation.referencesA. Luttikholt. Ultimate limit state analysis of a segmented tunnel lining: Results of full-scale tests compared to finite element analysis. PhD thesis, Delft University of Technology, 2007.
dc.relation.referencesB. Maidl, L. Schmid, W. Ritz, and M. Herrenknecht. Joint Detailing. In Hardrock Tunnel Boring Machines, pages 282–288. Ernst, Berlin, 2008.
dc.relation.referencesR.J. Mair and R.N. Taylor. Theme lecture: Bored tunnelling in the urban environment. In Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering (Hamburg, 1997), pages 2353–2385. Balkema, 1999.
dc.relation.referencesMIDAS Information Technology. Tunnels, 2016. URL http://midasgtsnx.com/solutions/tunnels.asp.
dc.relation.referencesMIDAS Information Technology. Analysis Reference. 2016.
dc.relation.referencesMIDAS Information Technology. Printing out the analysis, 2016. URL http://midasgtsnx.com/.
dc.relation.referencesS.C. Möller. Tunnel induced settlements and structural forces in linings. Phd, Universität Stuttgart, 2006.
dc.relation.referencesS.C. Möller and P.A. Vermeer. On numerical simulation of tunnel installation. Tunnelling and Underground Space Technology, 23(4):461–475, 2008.
dc.relation.referencesH. Schulze and H. Duddeck. Statische Berechnung Schieldvorgetriebener Tunnel (Structural analysis of tunnels excavated with shield support). In Beton- und Monierbau AG 1889-1964, pages 87–114. 1964.
dc.relation.referencesC. Surarak. Geotechnical Aspects of the Bangkok MRT Blue Line Project. Phd, Griffith University, 2010.
dc.relation.referencesC. Surarak, S. Likitlersuang, D. Wanatowski, A. Balasubramaniam, E. Oh, and H. Guan. Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Soils and Foundations, 52 (4):682–697, 2012.
dc.relation.referencesS. Teachavorasinskun and T. Chub-uppakarn. Influence of segmental joints on tunnel lining. Tunnelling and Underground Space Technology, 25(4):490–494, 2010.
dc.relation.referencesP.A. Vermeer, P.G. Bonnier, and S.C. Möller. On a smart use of 3D-FEM in tunnelling. Numerical Models in Geomechanics, pages 361–366, 2002.
dc.relation.referencesT. Schanz, P.A. Vermeer and P.G. Bonnier. Hardening Soil Model: Formulation and Verification, 2000.
dc.relation.referencesN. Vlachopoulos, and M.S. Diederichs. Improved longitudinal displacement profiles for convergence-confinement analysis of deep tunnels. Rock Mechanics and Rock Engineering, 2009.
dc.relation.referencesC. J. Sainea Vargas, & M. C. Torres Suárez. Selección de parámetros para análisis numéricos y probabilísticos de excavaciones. In ISRM 2nd International Specialized Conference on Soft Rocks. International Society for Rock Mechanics and Rock Engineering, 2016.
dc.relation.referencesF. Pacher. Deformationsmessungen im Versuchsstollen als Mittel zur Erforschung des Gebirgsverhaltens und zur Bemessung des Ausbaues. In Grundfragen auf dem Gebiete der Geomechanik/Principles in the Field of Geomechanics (pp. 149-161). Springer, Berlin, Heidelberg, 1964.
dc.relation.referencesG. Lombardi. Tunnel support (including “the problems of tunnel supports”). In 3rd International Congress of Rock Mechanics, Session IV. Denver: National Academy of Sciences (pp. 1518-1528), 1974.
dc.relation.referencesM. Panet, & P. Guellec. Contribution à l'étude du soutènement d'un tunnel à l'arrière du front de taille. In Progres en mecanique des roches-comptes rendus du 3eme Congres de la Societe Internationale de Mecanique des Roches, Denver 1974 (Vol. 2).
dc.relation.referencesR. Fenner. Untersuchungen zur erkenntnis des gebirgsdrucks. Glückauf, 1938.
dc.relation.referencesS. Babendererde, & J. Holzhäuser. Betriebszustand Druckluftstützung beim Hydroschild. Taschenbuch für den Tunnelbau, 231-252, 2020.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSimulación numérica
dc.subject.proposalTBM
dc.subject.proposalTBM
dc.subject.proposalNumerical simulation
dc.subject.proposalShallow tunnel
dc.subject.proposalvariación de convergencia radial en función de la distancia al frente de excavación
dc.subject.proposalTúnel superficial
dc.subject.proposalConvergence-confinement method
dc.subject.proposalHardening soil model
dc.subject.proposalMétodo convergencia - confinamiento
dc.subject.proposalLongitudinal displacement profile
dc.subject.proposalModelo de endurecimiento por deformación
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit