Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorJalil Barney, Munir Andrés
dc.contributor.authorPedraza Quiñones, Sergio Daniel
dc.date.accessioned2021-01-15T21:10:30Z
dc.date.available2021-01-15T21:10:30Z
dc.date.issued2020-10-16
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78785
dc.description.abstractEl documento presenta un índice de incertidumbre de política económica (o índice EPU) para Colombia construido mediante técnicas de Procesamiento de Lenguaje Natural (NLP). La hipótesis es que existe una relación significativa entre el índice EPU y variables como el crecimiento y la inflación y que choques de incertidumbre de política económica tienen un efecto adverso en el desempeño económico del país. Así mismo, se presume que un índice construido con técnicas de NLP recoge de mejor forma la información sobre incertidumbre que un índice construido simplemente con la búsqueda de palabras clave. El uso de herramientas de NLP, así como de modelos de aprendizaje supervisado y no supervisado constituye, tan lejos como sé, la primera aplicación de este tipo de modelos para Colombia en relación con la medición de incertidumbre de política económica. Se obtiene que el índice EPU, construido con un modelo de aprendizaje supervisado, exhibe la mejor capacidad explicativa con respecto a diversos indicadores macroeconómicos. Esta investigación se desarrolla con base en los artículos del archivo del periódico El Tiempo, el único en Colombia que cuenta con una hemeroteca digital desde el año 2000 hasta 2018, periodo comprendido por el estudio.
dc.description.abstractThis document introduces an economic policy uncertainty index (or EPU index) for Colombia built on Natural Language Processing (NLP) techniques. The hypothesis is that there exists a significant relationship between the EPU index and indicators like economic growth and inflation, and that economic policy uncertainty shocks have a prejudicial effect over the country’s economic performance. Likewise, it is supposed that an index built on NLP techniques captures more appropriately information about uncertainty than an index built just through search for keywords. The use of NLP tools, as well as of supervised and unsupervised learning models constitutes, as far as I know, the first application of this kind of models for Colombia, within the scope of the measuring economic policy uncertainty. It is obtained that EPU index, when built with a supervised learning model, exhibits the best explaining capability with respect to diverse macroeconomic indicators. This research is done by the means of extracting articles from El Tiempo newspaper, the only one in Colombia that holds a digital newspaper library from 2000 until 2018, which is the period covered by the study.
dc.format.extent43
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc330 - Economía
dc.titleEstimación de un índice de incertidumbre de política económica para Colombia mediante el uso de NLP y modelos de aprendizaje supervisado y no supervisado
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Ciencia de Datos
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Ciencias Económicas
dc.description.degreelevelMaestría
dc.publisher.departmentEscuela de Economía
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAzqueta-Gavaldon, A. (2017). Developing News-Based Economic Policy Uncertainty Index with Unsupervised Machine Learning. Economics Letters, 158, 47–50. Retrieved from http://www.sciencedirect.com/science/journal/01651765
dc.relation.referencesBaker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring Economic Policy Uncertainty. Quarterly Journal of Economics, 131(4), 1593–1636. Retrieved from https://academic.oup.com/qje/issue
dc.relation.referencesBlei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. In Journal of Machine Learning Research (Vol. 3). https://doi.org/10.1016/b978-0-12-411519-4.00006-9
dc.relation.referencesBreiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
dc.relation.referencesGil, M., Silva D. (2018). Economic Policy Uncertainty Indicex for Colombia. Retreived from https://www.policyuncertainty.com/colombia.html
dc.relation.referencesHalko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288. https://doi.org/10.1137/090771806
dc.relation.referencesHodrick, R. J., & Prescott, E. C. (1997). Postwar U.S. Business Cycles: An Empirical Investigation. Journal of Money, Credit and Banking, 29(1), 1–16. https://doi.org/10.2307/2953682
dc.relation.referencesInternational Monetary Fund. (2016). World Economic Outlook: Too Slow for Too Long. Washington, April 2016. Retrieved from https://www.imf.org/en/Publications/WEO/Issues/2016/12/31/Too-Slow-for-Too-Long
dc.relation.referencesIoffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. 32nd International Conference on Machine Learning, ICML 2015, 1, 448–456. International Machine Learning Society (IMLS).
dc.relation.referencesLuetkepohl, H. (2005). The New Introduction to Multiple Time Series Analysis. In New Introduction to Multiple Time Series Analysis. https://doi.org/10.1007/978-3-540-27752-1
dc.relation.referencesOrphanides, A., & Wei, M. (2012). Evolving Macroeconomic Perceptions and the Term Structure of Interest Rates. Journal of Economic Dynamics and Control, 36(2), 239–254. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=eoh&AN=1278070&lang=es&site=ehost-live
dc.relation.referencesRaschka, S. (2014). Naive Bayes and Text Classification {I} - Introduction and Theory. CoRR, abs/1410.5. Retrieved from http://arxiv.org/abs/1410.5329
dc.relation.referencesSkansi, S. (2018). Introduction to Deep Learning (1st ed.). https://doi.org/10.1007/978-3-319-73004-2
dc.relation.referencesTobback, E., Naudts, H., Daelemans, W., Fortuny, E. J. de, & Martens, D. (2018). Belgian Economic Policy Uncertainty Index: Improvement through Text Mining. International Journal of Forecasting, 34(2), 355–365. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=eoh&AN=1722032&lang=es&site=ehost-live
dc.relation.referencesWeiss, S., Indurkhya, N., & Zhang, T. (2015). Fundamentals of Predictive Text Mining. https://doi.org/10.1007/978-1-4471-6750-1
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalUncertainty
dc.subject.proposalIncertidumbre
dc.subject.proposalNeural Networks
dc.subject.proposalRedes Neuronales
dc.subject.proposalNatural Language Processing
dc.subject.proposalProcesamiento de Lenguaje Natural
dc.subject.proposalPolítica económica
dc.subject.proposalEconomic policy
dc.subject.proposalInflation
dc.subject.proposalInflación
dc.subject.proposalCrecimiento económico
dc.subject.proposalEconomic growth
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit