Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMattar Velilla, Salim del Cristo
dc.contributor.advisorVargas Córdoba, Manuel
dc.contributor.authorGaleano Anaya, Ketty Esther
dc.date.accessioned2021-01-19T23:03:57Z
dc.date.available2021-01-19T23:03:57Z
dc.date.issued2020-08-19
dc.identifier.citationGaleano, K. (2020). Búsqueda de virus zoonóticos en roedores y murciélagos de algunas zonas del Caribe colombiano [Tesis de Maestría en Ciencias - Microbiología, Universidad Nacional de Colombia] Repositorio Institucional
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78834
dc.description.abstractLas zoonosis son enfermedades infecciosas transmisibles desde animales vertebrados al ser humano bajo condiciones naturales y representan un problema de salud pública. La etiología de las zoonosis incluye bacterias, virus, hongos, parásitos y priones. Dentro de las zoonosis virales se encuentran alrededor de 23 familias de virus RNA de cadena sencilla que, algunas de ellas causan las fiebres hemorrágicas. Estas zoonosis suelen ser mortales y han sido motivo de estudios eco-epidemiológicos en busca de animales reservorios y el nicho ecológico de estas entidades. El objetivo de este estudio fue el de buscar Orthohantavirus, Mammarenavirus, Phlebovirus y Orthobunyavirus en tejidos de roedores y murciélagos procedentes de algunas áreas del Caribe colombiano. A través de PCR convencionales se llevó a cabo un análisis para detectar esos virus en tejidos de 283 murciélagos y 120 roedores capturados de algunas áreas del Caribe colombiano. A partir, de murciélagos no se logró detectar genoma viral, sin embargo, en tejidos de roedores, uno de pulmón y otro de riñón capturados en Urumita y Villanueva (Guajira) respectivamente, se detectó un amplicón de 264 pb que correspondió al gen S de Orthohantavirus. Las dos muestras fueron secuenciadas por secuenciación de nueva generación (NGS), con el fin de identificar a que secuencias del género Orthohantavirus estaban relacionadas. No obstante, las secuencias no correspondieron a Orthohantavirus. La vigilancia epidemiológica de virus zoonóticos en murciélagos y roedores es importante por su posible capacidad de cruzar a otras especies de animales silvestres y de ahí a los humanos.
dc.description.abstractZoonoses are infectious diseases that can be transmitted from vertebrate animals to humans under natural conditions and represent a public health problem. The etiology of zoonoses includes bacteria, viruses, fungi, parasites, and prions. Within the viral zoonoses there are about 23 families of single-stranded RNA viruses, some of which cause hemorrhagic fevers. These zoonoses are usually fatal and have been the subject of eco-epidemiological studies in search of reservoir animals and the ecological niche of these entities. The objective of this study was to search for Orthohantavirus, Mammarenavirus, Phlebovirus and Orthobunyavirus in tissues of rodents and bats from some areas of the Colombian Caribbean. Through conventional PCR, an analysis was carried out to detect these viruses in tissues of 283 bats and 120 rodents captured from some areas of the Colombian Caribbean. From bats, it was not possible to detect the viral genome, however, in rodent tissues, one from the lung and the other from the kidney captured in Urumita and Villanueva (Guajira) respectively, a 264 bp amplicon was detected that corresponded to the S gene of Orthohantavirus. The two samples were sequenced by next generation sequencing (NGS), in order to identify which sequences of the genus Orthohantavirus were related. However, the sequences did not correspond to Orthohantavirus. Epidemiological surveillance of zoonotic viruses in bats and rodents is important because of their potential ability to cross over to other species of wild animals and from there to humans.
dc.format.extent133
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc590 - Animales
dc.subject.ddc616 - Enfermedades
dc.titleBúsqueda de virus zoonóticos en roedores y murciélagos de algunas zonas del Caribe colombiano
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Enfermedades emergentes y reemergentes
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.contributor.researchgroupInstituto de Investigaciones Biológicas del Trópico
dc.description.degreelevelMaestría
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S. V., Avšič-Županc, T., Ballinger, M. J., … Kuhn, J. H. (2019a). Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 164(7), 1949–1965. https://doi.org/10.1007/s00705-019-04253-6
dc.relation.referencesAbudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S. V., Avšič-Županc, T., Ballinger, M. J., … Kuhn, J. H. (2019b). Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 164(7), 1949–1965. https://doi.org/10.1007/s00705-019-04253-6
dc.relation.referencesAcero-Aguilar, M. (2016). Zoonosis y otros problemas de salud pública relacionados con los animales: Reflexiones a propósito de sus aproximaciones teóricas y metodológicas. Revista Gerencia y Politicas de Salud, 15(31), 232–245. https://doi.org/10.11144/Javeriana.rgyps15-31.zpsp
dc.relation.referencesAcevedo, M. de los Á., & Arrivillaga, J. (2008). Eco-epidemiología de flebovirus (Bunyaviridae, Phlebovirus) transmitidos por flebótomos (Psychodidae, Phlebotominae). Boletín de Malariología y Salud Ambiental, 48(1), 3–16.
dc.relation.referencesAlbornoz, A., Hoffmann, A. B., Lozach, P. Y., & Tischler, N. D. (2016). Early bunyavirus-host cell interactions. Viruses, 8(5). https://doi.org/10.3390/v8050143
dc.relation.referencesAlemán, A., Iguarán, H., Puerta, H., Cantillo, C., Mills, J., Ariz, W., & Mattar, S. (2006). [First serological evidence of Hantavirus infection in rodents in Colombia]. Revista de Salud Publica (Bogota, Colombia), 8 Suppl 1(1), 1–12. https://doi.org/10.1590/S0124-00642006000400001
dc.relation.referencesAlkan, C., Bichaud, L., De Lamballerie, X., Alten, B., Gould, E. A., & Charrel, R. N. (2013). Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antiviral Research, 100(1), 54–74. https://doi.org/10.1016/j.antiviral.2013.07.005
dc.relation.referencesAlmendra, A. L., González-Cózatl, F. X., Engstrom, M. D., & Rogers, D. S. (2018). Evolutionary relationships and climatic niche evolution in the genus Handleyomys (Sigmodontinae: Oryzomyini). Molecular Phylogenetics and Evolution, 128(June 2017), 12–25. https://doi.org/10.1016/j.ympev.2018.06.018
dc.relation.referencesAmaral, C. D., Costa, G. B., de Souza, W. M., Alves, P. A., Borges, I. A., Tolardo, A. L., … de Souza Trindade, G. (2018a). Silent Orthohantavirus Circulation Among Humans and Small Mammals from Central Minas Gerais, Brazil. EcoHealth, 15(3), 577–589. https://doi.org/10.1007/s10393-018-1353-2
dc.relation.referencesAmaral, C. D., Costa, G. B., de Souza, W. M., Alves, P. A., Borges, I. A., Tolardo, A. L., … de Souza Trindade, G. (2018b). Silent Orthohantavirus Circulation Among Humans and Small Mammals from Central Minas Gerais, Brazil. EcoHealth, 15(3), 577–589. https://doi.org/10.1007/s10393-018-1353-2
dc.relation.referencesArai, S., & Yanagihara, R. (2020). Genetic diversity and geographic distribution of bat-borne hantaviruses. Current Issues in Molecular Biology, 39(February), 1–28. https://doi.org/10.21775/cimb.039.001
dc.relation.referencesBallinger, M. J., Bruenn, J. A., Hay, J., Czechowski, D., & Taylor, D. J. (2014). Discovery and Evolution of Bunyavirids in Arctic Phantom Midges and Ancient Bunyavirid-Like Sequences in Insect Genomes. Journal of Virology, 88(16), 8783–8794. https://doi.org/10.1128/jvi.00531-14
dc.relation.referencesBandouchova, H., Bartonička, T., Berkova, H., Brichta, J., Kokurewicz, T., Kovacova, V., … Zukal, J. (2018). Alterations in the health of hibernating bats under pathogen pressure. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-24461-5
dc.relation.referencesBarrios, J. M., Rego-García, I., Muñoz Martínez, C., Romero-Fábrega, J. C., Rivero Rodríguez, M., Ruiz Giménez, J. A., … Fernández Pérez, M. D. (2020). Ischaemic stroke and SARS-CoV-2 infection: A causal or incidental association? Neurologia, 35(5), 295–302. https://doi.org/10.1016/j.nrl.2020.05.002
dc.relation.referencesBattisti, A. J., Chu, Y.-K., Chipman, P. R., Kaufmann, B., Jonsson, C. B., & Rossmann, M. G. (2011). Structural Studies of Hantaan Virus. Journal of Virology, 85(2), 835–841. https://doi.org/10.1128/jvi.01847-10
dc.relation.referencesBennett, R. S., Ton, D. R., Hanson, C. T., Murphy, B. R., & Whitehead, S. S. (2007). Genome sequence analysis of La Crosse virus and in vitro and in vivo phenotypes. Virology Journal, 4, 1–10. https://doi.org/10.1186/1743-422X-4-41
dc.relation.referencesBlanco, P., Arroyo, S., & Corrales, H. (2012). Evidencia serológica de infección por hantavirus in rodents from the Sucre Deparment in Colombia. 14(5), 755–764.
dc.relation.referencesBlanco, P., Corrales, A., & Castellar, A. (2013). Hantavirus (Bunyaviridae: Hantavirus) en roedores murinos de Sincelejo, departamento de Sucre. Revista Colombiana de Ciencia Animal - RECIA, 5(2), 408. https://doi.org/10.24188/recia.v5.n2.2013.452
dc.relation.referencesBodewes, R., Kik, M. J. L., Stalin Raj, V., Schapendonk, C. M. E., Haagmans, B. L., Smits, S. L., & Osterhaus, A. D. M. E. (2013). Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands. Journal of General Virology, 94(PART 6), 1206–1210. https://doi.org/10.1099/vir.0.051995-0
dc.relation.referencesBonvicino, C., Oliveira, J., & D’Andrea, O. (2008). Guia dos Roedores do Brasil. Rio de Janeiro: Or, 120. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Guia+dos+roedores+do+Brasil#1
dc.relation.referencesBriese, T., Calisher, C. H., & Higgs, S. (2013). Viruses of the family Bunyaviridae: Are all available isolates reassortants? Virology, 446(1–2), 207–216. https://doi.org/10.1016/j.virol.2013.07.030
dc.relation.referencesBrook, C. E., & Dobson, A. P. (2015). Bats as “special” reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 23(3), 172–180. https://doi.org/10.1016/j.tim.2014.12.004
dc.relation.referencesCabello C, C., & Cabello C, F. (2008). Zoonosis con reservorios silvestres: Amenazas a la salud pública y a la economía. Revista Medica de Chile, 136(3), 385–393. https://doi.org/10.4067/s0034-98872008000300016
dc.relation.referencesCalderon, A., Guzman, C., Salazar, J., Figueiredo, L. T., & Mattar, S. (2016). Viral Zoonoses That Fly with Bats: A Review. MANTER: Journal of Parasite Biodiversity. https://doi.org/10.13014/k2bg2kwf
dc.relation.referencesCalisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., & Schountz, T. (2006). Bats: Important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19(3), 531–545. https://doi.org/10.1128/CMR.00017-06
dc.relation.referencesCastellar, A., Guevara, M., Rodas, J. D., Londoño, A. F., Arroyave, E., Díaz, F. J., … Blanco, P. J. (2017). Primera evidencia de infección por el virus de la coriomeningitis linfocítica (arenavirus) en roedores Mus musculus capturados en la zona urbana del municipio de Sincelejo, Sucre, Colombia. Biomedica, 37, 75–85. https://doi.org/10.7705/biomedica.v37i2.3226
dc.relation.referencesCharrel, R. N., Gallian, P., Navarro-Marí, J. M., Nicoletti, L., Papa, A., Sánchez-Seco, M. P., … De Lamballerie, X. (2005). Emergence of Toscana virus in Europe. Emerging Infectious Diseases, 11(11), 1657–1663. https://doi.org/10.3201/eid1111.050869
dc.relation.referencesCharrel, R. N., Lemasson, J. J., Garbutt, M., Khelifa, R., De Micco, P., Feldmann, H., & De Lamballerie, X. (2003). New insights into the evolutionary relationships between arenaviruses provided by comparative analysis of small and large segment sequences. Virology, 317(2), 191–196. https://doi.org/10.1016/j.virol.2003.08.016
dc.relation.referencesCiota, A. T. (2019). The role of co-infection and swarm dynamics in arbovirus transmission. Virus Research, 265(March), 88–93. https://doi.org/10.1016/j.virusres.2019.03.010
dc.relation.referencesColombo, V. C., Brignone, J., Sen, C., Previtali, M. A., Martin, M. L., Levis, S., … Beldomenico, P. M. (2019). Orthohantavirus genotype Lechiguanas in Oligoryzomys nigripes (Rodentia: Cricetidae): New evidence of host-switching. Acta Tropica, 191(December 2018), 133–138. https://doi.org/10.1016/j.actatropica.2018.12.040
dc.relation.referencesCrispin, M., Zeltina, A., Zitzmann, N., & Bowden, T. A. (2016). Native functionality and therapeutic targeting of arenaviral glycoproteins. Current Opinion in Virology, 18(Figure 2), 70–75. https://doi.org/10.1016/j.coviro.2016.04.001
dc.relation.referencesCunningham, A. A., Daszak, P., & Wood, J. L. N. (2017). One health, emerging infectious diseases and wildlife: Two decades of progress? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1725).
dc.relation.referencesD’Elía, G., Pardiñas, U. F. J., Jayat, J. P., & Salazar-Bravo, J. (2008). Systematics of Necromys (Rodentia, Cricetidae, Sigmodontinae): species limits and groups, with comments on historical biogeography. Journal of Mammalogy, 89(3), 778–790. https://doi.org/10.1644/07-mamm-a-246r1.1
dc.relation.referencesDabanch, J. (2013). Zoonosis. Rev Chil Infect, 20(Supl 1), 5. Retrieved from https://scielo.conicyt.cl/pdf/rci/v20s1/art08.pdf
dc.relation.referencesDe Araujo, J., Thomazelli, L. M., Henriques, D. A., Lautenschalager, D., Ometto, T., Dutra, L. M., … Durigon, E. L. (2012). Detection of hantavirus in bats from remaining rain forest in São Paulo, Brazil. BMC Research Notes, 5. https://doi.org/10.1186/1756-0500-5-690
dc.relation.referencesDe Carvalho, M. S., De Lara Pinto, A. Z., Pinheiro, A., Rodrigues, J. S. V., Melo, F. L., Da Silva, L. A., … Dezengrini-Slhessarenko, R. (2018). Viola phlebovirus is a novel Phlebotomus fever serogroup member identified in Lutzomyia (Lutzomyia) longipalpis from Brazilian Pantanal. Parasites and Vectors, 11(1), 1–10. https://doi.org/10.1186/s13071-018-2985-3
dc.relation.referencesDelgado, S., Erickson, B. R., Agudo, R., Blair, P. J., Vallejo, E., Albariño, C. G., … Nichol, S. T. (2008). Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathogens, 4(4), 1–6. https://doi.org/10.1371/journal.ppat.1000047
dc.relation.referencesDemchyshyna, I. V., Glass, G. E., Hluzd, O. A., Kutseva, V. V., Taylor, M. K., Williams, E. P., … Jonsson, C. B. (2020). Cocirculation of two orthohantavirus species in small mammals of the Northwestern Ukraine. Journal of Wildlife Diseases, 56(3), 640–645. https://doi.org/10.7589/2019-09-238
dc.relation.referencesEitan, O., Kosa, G., & Yovel, Y. (2019). Sensory gaze stabilization in echolocating bats. Proceedings of the Royal Society B: Biological Sciences, 286(1913). https://doi.org/10.1098/rspb.2019.1496
dc.relation.referencesEjiri, H., Lim, C. K., Isawa, H., Yamaguchi, Y., Fujita, R., Takayama-Ito, M., … Sawabe, K. (2018). Isolation and characterization of Kabuto Mountain virus, a new tick-borne phlebovirus from Haemaphysalis flava ticks in Japan. Virus Research, 244(November 2017), 252–261. https://doi.org/10.1016/j.virusres.2017.11.030
dc.relation.referencesElelu, N., Aiyedun, J. O., Mohammed, I. G., Oludairo, O. O., Odetokun, I. A., Mohammed, K. M., … Nuru, S. (2019). Neglected zoonotic diseases in nigeria: Role of the public health veterinarian. Pan African Medical Journal, 32, 1–12. https://doi.org/10.11604/pamj.2019.32.36.15659
dc.relation.referencesElliott, R. M. (2014). Orthobunyaviruses: recent genetic and structural insights. Nature Reviews. Microbiology, 12(10), 673–685. https://doi.org/10.1038/nrmicro3332
dc.relation.referencesFagre, A. C., & Kading, R. C. (2019). Can bats serve as reservoirs for Arboviruses? Viruses, 11(3). https://doi.org/10.3390/v11030215
dc.relation.referencesFernandes, J., de Oliveira, R. C., Guterres, A., Barreto-Vieira, D. F., Terças, A. C. P., Teixeira, B. R., … de Lemos, E. R. S. (2018). Detection of Latino virus (Arenaviridae: Mammarenavirus) naturally infecting Calomys callidus. Acta Tropica, 179(October 2017), 17–24. https://doi.org/10.1016/j.actatropica.2017.12.003
dc.relation.referencesFigueiredo, G. G., Borges, A. A., Campos, G. M., Machado, A. M., Saggioro, F. P., Sabino, S., … Figueiredo, L. T. M. (2010). Diagnosis of hantavirus infection in humans and rodents in Ribeirão. Revista Da Sociedade Brasileira de Medicina Tropical, 43(4), 348–354.
dc.relation.referencesFlores, Carter, G. G., Halczok, T. K., Kerth, G., & Page, R. A. (2020). Social structure and relatedness in the fringe-lipped bat (Trachops cirrhosus). Royal Society Open Science, 7(4). https://doi.org/10.1098/rsos.192256
dc.relation.referencesFlores, J. W., & Chumacero, L. M. (2010). Perspectivas sobre el origen y la filogenia de los murciélagos. ContactoS, 77, 5–9.
dc.relation.referencesFukushi, S., Tani, H., Yoshikawa, T., Saijo, M., & Morikawa, S. (2012). Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses, 4(10), 2097–2114. https://doi.org/10.3390/v4102097
dc.relation.referencesFulhorst, C. F., Cajimat, M. N. B., Utrera, A., Milazzo, M. L., & Duno, G. M. (2004). Maporal virus, a hantavirus associated with the fulvous pygmy rice rat (Oligoryzomys fulvescens) in western Venezuela. Virus
dc.relation.referencesGarcin, D., Rochat, S., & Kolakofsky, D. (1993). The Tacaribe arenavirus small zinc finger protein is required for both mRNA synthesis and genome replication. Journal of Virology, 67(2), 807–812.
dc.relation.referencesGolender, N., Bumbarov, V. Y., Erster, O., Beer, M., Khinich, Y., & Wernike, K. (2018). Development and validation of a universal S-segment-based real-time RT-PCR assay for the detection of Simbu serogroup viruses. Journal of Virological Methods, 261(May), 80–85. https://doi.org/10.1016/j.jviromet.2018.08.008
dc.relation.referencesGorbunova, V., Seluanov, A., & Kennedy, B. K. (2020). The World Goes Bats: Living Longer and Tolerating Viruses. Cell Metabolism, 32(1), 31–43. https://doi.org/10.1016/j.cmet.2020.06.013
dc.relation.referencesGroot, H. (2017). Estudios sobre virus transmitidos por artrópodos en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(Suplemento), 12. https://doi.org/10.18257/raccefyn.565
dc.relation.referencesGryseels, S., Baird, S. J. E., Borremans, B., Makundi, R., Leirs, H., & Goüy de Bellocq, J. (2017). When Viruses Don’t Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLoS Pathogens, 13(1), 1–22. https://doi.org/10.1371/journal.ppat.1006073
dc.relation.referencesGuzmán, C., Calderón, A., González, M., & Mattar, S. (2017). Infecciones por hantavirus. Revista MVZ Córdoba, 22, 6101–6117. https://doi.org/10.21897/rmvz.1079
dc.relation.referencesGuzmán, C., Mattar, S., Levis, S., Pini, N., Figueiredo, T., Mills, J., & Salazar-Bravo, J. (2013). Prevalence of antibody to hantaviruses in humans and rodents in the Caribbean region of Colombia determined using Araraquara and Maciel virus antigens. Memorias Do Instituto Oswaldo Cruz, 108(2), 167–171. https://doi.org/10.1590/0074-0276108022013007
dc.relation.referencesHanadhita, D., Rahma, A., Prawira, A. Y., Mayasari, N. L. P. I., Satyaningtijas, A. S., Hondo, E., & Agungpriyono, S. (2019). The spleen morphophysiology of fruit bats. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 48(4), 315–324. https://doi.org/10.1111/ahe.12442
dc.relation.referencesHancke, D., & Suárez, O. V. (2018). Structure of parasite communities in urban environments: The case of helminths in synanthropic rodents. Folia Parasitologica, 65. https://doi.org/10.14411/fp.2018.009
dc.relation.referencesHepojoki, J., Salmenperä, P., Sironen, T., Hetzel, U., Korzyukov, Y., Kipar, A., & Vapalahti, O. (2015). Arenavirus Coinfections Are Common in Snakes with Boid Inclusion Body Disease. Journal of Virology, 89(16), 8657–8660. https://doi.org/10.1128/jvi.01112-15
dc.relation.referencesHetzel, U., Sironen, T., Laurinmaki, P., Liljeroos, L., Patjas, A., Henttonen, H., … Hepojoki, J. (2013). Isolation, Identification, and Characterization of Novel Arenaviruses, the Etiological Agents of Boid Inclusion Body Disease. Journal of Virology, 87(20), 10918–10935. https://doi.org/10.1128/jvi.01123-13
dc.relation.referencesHiggins, R. (2004). Emerging or re-emerging bacterial zoonotic diseases: bartonellosis, leptospirosis, Lyme borreliosis, plague. In Rev. sci. tech. Off. int. Epiz (Vol. 23).
dc.relation.referencesHinson, E. R., Shone, S. M., Zink, M. C., Glass, G. E., & Klien, S. L. (2004). Wounding: The primary mode of Seoul virus transmission among male Norway rats. American Journal of Tropical Medicine and Hygiene, 70(3), 310–317. https://doi.org/10.4269/ajtmh.2004.70.310
dc.relation.referencesHolmes, E. C. (2007). Viral evolution in the genomic age. PLoS Biology, 5(10), 2104–2105. https://doi.org/10.1371/journal.pbio.0050278
dc.relation.referencesHughes, H. R., Adkins, S., Alkhovskiy, S., Beer, M., Blair, C., Calisher, C. H., … Ictv Report Consortium. (2020). ICTV Virus Taxonomy Profile: Peribunyaviridae. The Journal of General Virology, 101(1), 1–2. https://doi.org/10.1099/jgv.0.001365
dc.relation.referencesHughes, H. R., Lanciotti, R. S., Blair, C. D., & Lambert, A. J. (2017). Full genomic characterization of California serogroup viruses, genus Orthobunyavirus, family Peribunyaviridae including phylogenetic relationships. Virology, 512(October), 201–210. https://doi.org/10.1016/j.virol.2017.09.022
dc.relation.referencesHuiskonen, J. T., Hepojoki, J., Laurinmaki, P., Vaheri, A., Lankinen, H., Butcher, S. J., & Grunewald, K. (2010). Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses. Journal of Virology, 84(10), 4889–4897. https://doi.org/10.1128/jvi.00057-10
dc.relation.referencesIllumina. (2011). Sequencing Library qPCR Quantification Guide. Illumina Technical Manuals, (February), 1–27.
dc.relation.referencesIllumina. (2015). TruSeq RNA Sample Preparation v2 Guide. Illumina, 3(2), 141–148. https://doi.org/10.1016/j.canlet.2015.06.003
dc.relation.referencesİnci, A., Doğanay, M., Özdarendeli, A., Düzlü, Ö., & Yıldırım, A. (2018). Overview of Zoonotic Diseases in Turkey: The One Health Concept and Future Threats. Turkiye Parazitolojii Dergisi, 42(1), 39–80. https://doi.org/10.5152/tpd.2018.5701
dc.relation.referencesIppolito, G., Feldmann, H., Lanini, S., Vairo, F., Di Caro, A., Capobianchi, M. R., & Nicastri, E. (2012). Viral hemorrhagic fevers: Advancing the level of treatment. BMC Medicine, 10. https://doi.org/10.1186/1741-7015-10-31
dc.relation.referencesJesús Ballesteros, C., & Racero-Casarrubia, J. (2012). Murciélagos del área urbana en la ciudad de Montería, Córdoba - Colombia. Revista MVZ Cordoba, 17(3), 3193–3199.
dc.relation.referencesJohnston, S. C., Zhang, H., Messina, L. M., Lawton, M. T., & Dean, D. (2005). Chlamydia pneumoniae burden in carotid arteries is associated with upregulation of plaque interleukin-6 and elevated C-reactive protein in serum. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(12), 2648–2653. https://doi.org/10.1161/01.ATV.0000189157.88630.d1
dc.relation.referencesJones, G., Jacobs, D. S., Kunz, T. H., Wilig, M. R., & Racey, P. A. (2009). Carpe noctem: The importance of bats as bioindicators. Endangered Species Research, 8(1–2), 93–115. https://doi.org/10.3354/esr00182
dc.relation.referencesJonsson, C. B., Figueiredo, L. T. M., & Vapalahti, O. (2010). A global perspective on hantavirus ecology, epidemiology, and disease. Clinical Microbiology Reviews, 23(2), 412–441. https://doi.org/10.1128/CMR.00062-09
dc.relation.referencesKaresh, W. B., Dobson, A., Lloyd-Smith, J. O., Lubroth, J., Dixon, M. A., Bennett, M., … Heymann, D. L. (2012). Ecology of zoonoses: Natural and unnatural histories. The Lancet, 380(9857), 1936–1945. https://doi.org/10.1016/S0140-6736(12)61678-X
dc.relation.referencesKim, D., Langmead, B., & Salzberg1, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements Daehwan HHS Public Access. Nature Methods, 12(4), 357–360. https://doi.org/110.1016/j.bbi.2017.04.008
dc.relation.referencesKosoy, M., Khlyap, L., Cosson, J. F., & Morand, S. (2015). Aboriginal and invasive rats of genus rattus as hosts of infectious agents. Vector-Borne and Zoonotic Diseases, 15(1), 3–12. https://doi.org/10.1089/vbz.2014.1629
dc.relation.referencesKruger, D. H., Figueiredo, L. T. M., Song, J. W., & Klempa, B. (2015). Hantaviruses-Globally emerging pathogens. Journal of Clinical Virology, 64, 128–136. https://doi.org/10.1016/j.jcv.2014.08.033
dc.relation.referencesKukkonen, S. K. J., Vaheri, A., & Plyusnin, A. (2005). L protein, the RNA-dependent RNA polymerase of hantaviruses. Archives of Virology, 150(3), 533–556. https://doi.org/10.1007/s00705-004-0414-8
dc.relation.referencesKuno, G., Mitchell, C. J., Chang, G. J., & Smith, G. C. (1996). Detecting bunyaviruses of the Bunyamwera and California serogroups by a PCR technique . Updated information and services can be found at : These include : Detecting Bunyaviruses of the Bunyamwera and California Serogroups by a PCR Technique. Journal of Clinical Microbiology, 34(5), 1184–1188. https://doi.org/10.1145/800027.808431
dc.relation.referencesLaenen, L., Vergote, V., Calisher, C. H., Klempa, B., Klingström, J., Kuhn, J. H., & Maes, P. (n.d.). Hantaviridae : Current Classification and Future Perspectives. 1–17.
dc.relation.referencesLambert, A. J., & Lanciotti, R. S. (2009). Consensus amplification and novel multiplex sequencing method for S segment species identification of 47 viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus genera of the family Bunyaviridae. Journal of Clinical Microbiology, 47(8), 2398–2404. https://doi.org/10.1128/JCM.00182-09
dc.relation.referencesLanciotti, R. S., Kosoy, O. I., Bosco-Lauth, A. M., Pohl, J., Stuchlik, O., Reed, M., & Lambert, A. J. (2013). Isolation of a novel orthobunyavirus (Brazoran virus) with a 1.7kb S segment that encodes a unique nucleocapsid protein possessing two putative functional domains. Virology, 444(1–2), 55–63. https://doi.org/10.1016/j.virol.2013.05.031
dc.relation.referencesLee, Baek, L. J., & Johnson, K. M. (1982). Isolation of Hantaan Virus, the Etiologic Agent of Korean Hemorrhagic Fever, from Wild Urban Rats. Journal of Infectious Diseases, 146(5), 638–644. https://doi.org/10.1093/infdis/146.5.638
dc.relation.referencesLee, Lee, P. W., & Johnson, K. M. (2004). Isolation of the etiologic agent of Korean hemorrhagic fever. 1978. The Journal of Infectious Diseases, 190(9), 1711–1721. https://doi.org/10.1093/infdis/190.9.1711
dc.relation.referencesLee, S. H., Kim, W. K., Park, K., No, J. S., Lee, G. Y., Kim, H. C., … Song, J. W. (2020). Genetic diversity and phylogeography of Jeju Orthohantavirus (Hantaviridae) in the Republic of Korea. Virology, 543(September 2019), 13–19. https://doi.org/10.1016/j.virol.2020.01.012
dc.relation.referencesLinares, J. 1998. Roedores, Sociedad Conservacionista Audubon de Venezuela. Mamiferos de Venuezula, Caracas, 205-348.
dc.relation.referencesLi, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., … Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
dc.relation.referencesLiphardt, S. W., Kang, H. J., Dizney, L. J., Ruedas, L. A., Cook, J. A., & Yanagihara, R. (2019). Complex history of codiversification and host switching of a newfound soricid-borne orthohantavirus in north america. Viruses, 11(7). https://doi.org/10.3390/v11070637
dc.relation.referencesLiu, M. M., Li, L. L., Wang, X. F., & Duan, Z. J. (2017). Complete genome sequence of a novel variant of Wenzhou mammarenavirus. Genome Announcements, 5(47), 5–6. https://doi.org/10.1128/genomeA.01303-17
dc.relation.referencesLondoño, A. F., Levis, S., & Rodas, J. D. (2011). Hantavirus como agentes emergentes de importancia en Suramérica. Biomedica, 31(3), 451–464. https://doi.org/10.7705/biomedica.v31i3.370
dc.relation.referencesLópez, N., Jácamo, R., & Franze, M. T. (2001). Transcription and RNA Replication of Tacaribe Virus Genome and Antigenome Analogs Require N and L Proteins: Z Protein Is an Inhibitor of These Processes. Journal of Virology, 75(24), 12241–12251. https://doi.org/10.1128/jvi.75.24.12241-12251.2001
dc.relation.referencesLozach, P. Y., Kühbacher, A., Meier, R., Mancini, R., Bitto, D., Bouloy, M., & Helenius, A. (2011). DC-SIGN as a receptor for phleboviruses. Cell Host and Microbe, 10(1), 75–88. https://doi.org/10.1016/j.chom.2011.06.007
dc.relation.referencesLozano, J. C., Mattar, S., Guzmán, C., & Calderón, A. (2017). Infecciones por arenavirus. Revista MVZ Córdoba, 22(supl), 6089. https://doi.org/10.21897/rmvz.1078
dc.relation.referencesLuis, A. D., Hayman, D. T. S., O’Shea, T. J., Cryan, P. M., Gilbert, A. T., Pulliam, J. R. C., … Webb, C. T. (2013). A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proceedings of the Royal Society B: Biological Sciences, 280(1756). https://doi.org/10.1098/rspb.2012.2753
dc.relation.referencesMaes, P., Alkhovsky, S. V., Bào, Y., Beer, M., Birkhead, M., Briese, T., … Kuhn, J. H. (2018). Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 163(8), 2295–2310. https://doi.org/10.1007/s00705-018-3843-5
dc.relation.referencesMahmutovic, S., Clark, L., Levis, S. C., Briggiler, A. M., Enria, D. A., Harrison, S. C., & Abraham, J. (2015). Molecular Basis for Antibody-Mediated Neutralization of New World Hemorrhagic Fever Mammarenaviruses. Cell Host and Microbe, 18(6), 705–713. https://doi.org/10.1016/j.chom.2015.11.005
dc.relation.referencesMarklewitz, M., Dutari, L. C., Paraskevopoulou, S., Page, R. A., Loaiza, J. R., & Junglen, S. (2019a). Diverse novel phleboviruses in sandflies from the Panama Canal area, Central Panama. Journal of General Virology, 100(6), 938–949. https://doi.org/10.1099/jgv.0.001260
dc.relation.referencesMarklewitz, M., Dutari, L. C., Paraskevopoulou, S., Page, R. A., Loaiza, J. R., & Junglen, S. (2019b). Diverse novel phleboviruses in sandflies from the Panama Canal area, Central Panama. Journal of General Virology, 100(6), 938–949. https://doi.org/10.1099/jgv.0.001260
dc.relation.referencesMarklewitz, M., Zirkel, F., Rwego, I. B., Heidemann, H., Trippner, P., Kurth, A., … Junglen, S. (2013). Discovery of a Unique Novel Clade of Mosquito-Associated Bunyaviruses. Journal of Virology, 87(23), 12850–12865. https://doi.org/10.1128/jvi.01862-13
dc.relation.referencesMartinez-Sobrido, L., Emonet, S., Giannakas, P., Cubitt, B., Garcia-Sastre, A., & de la Torre, J. C. (2009). Identification of Amino Acid Residues Critical for the Anti-Interferon Activity of the Nucleoprotein of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus. Journal of Virology, 83(21), 11330–11340. https://doi.org/10.1128/jvi.00763-09
dc.relation.referencesMatsuno, K., Kajihara, M., Nakao, R., Nao, N., Mori-Kajihara, A., Muramatsu, M., … Ebihara, H. (2018). The Unique Phylogenetic Position of a Novel Tick-Borne Phlebovirus Ensures an Ixodid Origin of the Genus Phlebovirus . MSphere, 3(3). https://doi.org/10.1128/msphere.00239-18
dc.relation.referencesMattar, S., Garzon, D., Tadeu, L., Faccini-Martínez, A. A., & Mills, J. N. (2014). Serological diagnosis of hantavirus pulmonary syndrome in a febrile patient in Colombia. International Journal of Infectious Diseases, 25, 201–203. https://doi.org/10.1016/j.ijid.2014.03.1396
dc.relation.referencesMattar, S., & González, M. (2017). Los sorprendentes murciélagos: ¿Amigos, enemigos o aliados? Revista MVZ Córdoba, 22(3), 6177. https://doi.org/10.21897/rmvz.1125
dc.relation.referencesMattar, S., Guzmán, C., Arrazola, J., Soto, E., Barrios, J., Pini, N., … Mills, J. N. (2011, July). Antibody to arenaviruses in rodents, Caribbean Colombia. Emerging Infectious Diseases, Vol. 17, pp. 1315–1317. https://doi.org/10.3201/eid1707.101961
dc.relation.referencesMattar, S., Guzmán, C., Calderón, A., & González, M. (2017). Infecciones por arenavirus. Revista MVZ Córdoba, 22, 6089–6100. https://doi.org/10.21897/rmvz.1078
dc.relation.referencesMattar, S., Tique, V., Miranda, J., Montes, E., & Garzon, D. (2017). Undifferentiated tropical febrile illness in Cordoba, Colombia: Not everything is dengue. Journal of Infection and Public Health, 10(5), 507–512. https://doi.org/10.1016/j.jiph.2016.09.014
dc.relation.referencesMatthys, V. S., Gorbunova, E. E., Gavrilovskaya, I. N., & Mackow, E. R. (2010). Andes Virus Recognition of Human and Syrian Hamster 3 Integrins Is Determined by an L33P Substitution in the PSI Domain. Journal of Virology, 84(1), 352–360. https://doi.org/10.1128/jvi.01013-09
dc.relation.referencesMcArthur, D. B. (2019). Emerging Infectious Diseases. Nursing Clinics of North America, 54(2), 297–311. https://doi.org/10.1016/j.cnur.2019.02.006
dc.relation.referencesMcLay, L., Liang, Y., & Ly, H. (2014). Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. Journal of General Virology, 95(PART 1), 1–15. https://doi.org/10.1099/vir.0.057000-0
dc.relation.referencesMills, J., Childs, J., Ksiazek, T., & Peters, C. J. (1998). Métodos para trampeo y muestreo de pequeños mamíferos para estudios virológicos. Centros Para El Control y Prevención de Enfermedades de Los EStados Unidos de América, 64.
dc.relation.referencesMonroy, M. C., De La Ossa, A., & De La Ossa, J. (2015). Tasa De Atropellamiento De Fauna Silvestre En La Vía San Onofre – María La Baja , Caribe Colombiano Runover Rate. Asociación Colombiana de Ciencias Biológicas, 1(27), 88–95. Retrieved from http://www.ojs.asociacioncolombianadecienciasbiologicas.org/index.php/accb/article/view/106
dc.relation.referencesMonsalve, Mattar, & González. (2009). Zoonosis transmitidas por animales silvestres y su impacto en las enfermedades emergentes y reemergentes. Revista MVZ Cordoba, 14(2), 1762–1773.
dc.relation.referencesMoreli, M. L., Moro De Sousa, R. L., & Figueiredo, L. T. M. (2004). Detection of Brazilian hantavirus by reverse transcription polymerase chain reaction amplification of N gene in patients with hantavirus cardiopulmonary syndrome. Memorias Do Instituto Oswaldo Cruz, 99(6), 633–638. https://doi.org/10.1590/S0074-02762004000600018
dc.relation.referencesMoriconi, M., Rugna, G., Calzolari, M., Bellini, R., Albieri, A., Angelini, P., … Varani, S. (2017). Phlebotomine sand fly–borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections. PLoS Neglected Tropical Diseases, 11(8), 1–19. https://doi.org/10.1371/journal.pntd.0005660
dc.relation.referencesMourya, D. T., Yadav, P. D., Basu, A., Shete, A., Patil, D. Y., Zawar, D., … Jadhav, S. M. (2014). Malsoor Virus, a Novel Bat Phlebovirus, Is Closely Related to Severe Fever with Thrombocytopenia Syndrome Virus and Heartland Virus. Journal of Virology, 88(6), 3605–3609. https://doi.org/10.1128/jvi.02617-13
dc.relation.referencesNaveca, F. G., do Nascimento, V. A., de Souza, V. C., Nunes, B. T. D., Rodrigues, D. S. G., & da Costa Vasconcelos, P. F. (2017). Multiplexed reverse transcription real-time polymerase chain reaction for simultaneous detection of Mayaro, Oropouche, and oropouche-like viruses. Memorias Do Instituto Oswaldo Cruz, 112(7), 510–513. https://doi.org/10.1590/0074-02760160062
dc.relation.referencesNo, J. S., Kim, W. K., Cho, S., Lee, S. H., Kim, J. A., Lee, D., … Song, J. W. (2019). Comparison of targeted next-generation sequencing for whole-genome sequencing of Hantaan orthohantavirus in Apodemus agrarius lung tissues. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-53043-2
dc.relation.referencesNunes-Neto, J. P., De Souza, W. M., Acrani, G. O., Romeiro, M. F., Fumagalli, M., Vieira, L. C., … Da Costa Vasconcelos, P. F. (2017). Characterization of the bujaru, frijoles and tapara antigenic complexes into the sandfly fever group and two unclassified phleboviruses from Brazil. Journal of General Virology, 98(4), 585–594. https://doi.org/10.1099/jgv.0.000724
dc.relation.referencesNunes, M. R. T., Weaver, S. C., Tesh, R. B., & Vasconcelos, P. F. C. (2005). Molecular Epidemiology of Group C Viruses (Bunyaviridae,. Society, 79(16), 10561–10570. https://doi.org/10.1128/JVI.79.16.10561
dc.relation.referencesOverbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., … Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(D1), 206–214. https://doi.org/10.1093/nar/gkt1226
dc.relation.referencesPaessler, S., & Walker, D. H. (2013). Pathogenesis of the Viral Hemorrhagic Fevers. Annual Review of Pathology: Mechanisms of Disease, 8(1), 411–440. https://doi.org/10.1146/annurev-pathol-020712-164041
dc.relation.referencesParvate, A., Williams, E. P., Taylor, M. K., Chu, Y. K., Lanman, J., Saphire, E. O., & Jonsson, C. B. (2019). Diverse morphology and structural features of old and New World hantaviruses. Viruses, 11(9). https://doi.org/10.3390/v11090862
dc.relation.referencesPiacenza, M. F., Calderón, G. E., Enría, D., Provensal, M. C., & Polop, J. J. (2018). Diferencia espacial de la incidencia de fiebre hemorrágica argentina y la composición y abundancia de roedores en el ensamble. Revista Chilena de Infectología, 35(4), 386–394. https://doi.org/10.4067/s0716-10182018000400386
dc.relation.referencesRadford, A. D., Chapman, D., Dixon, L., Chantrey, J., Darby, A. C., & Hall, N. (2012). Application of next-generation sequencing technologies in virology. Journal of General Virology, 93(PART 9), 1853–1868. https://doi.org/10.1099/vir.0.043182-0
dc.relation.referencesReguera, J., Gerlach, P., Rosenthal, M., Gaudon, S., Coscia, F., Günther, S., & Cusack, S. (2016). Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathogens, 12(6), 1–24. https://doi.org/10.1371/journal.ppat.1005636
dc.relation.referencesRengifo, E. M., Calderón, W., & Aquino, R. (2013). Características de refugios de algunas especies de murciélagos en la cuenca alta del río Itaya, Loreto, Perú. UNED Research Journal, 5(1), 143–150. https://doi.org/10.22458/urj.v5i1.20
dc.relation.referencesRestrepo, B., Rodas, J. D., Montoya-Ruiz, C., Zuluaga, A. M., Parra-Henao, G., & Agudelo-Flórez, P. (2016). Evidencia serológica retrospectiva de infecciones por Leptospira spp., dengue, hantavirus y arenavirus en indígenas Emberá-Katío, Colombia. Revista Chilena de Infectologia, 33(4), 472–473. https://doi.org/10.4067/S0716-10182016000400015
dc.relation.referencesRojek, J. M., & Kunz, S. (2008). Cell entry by human pathogenic arenaviruses. Cellular Microbiology, 10(4), 828–835. https://doi.org/10.1111/j.1462-5822.2007.01113.x
dc.relation.referencesRomero-Alvarez, D., & Escobar, L. E. (2018). Oropouche fever, an emergent disease from the Americas. Microbes and Infection, 20(3), 135–146. https://doi.org/10.1016/j.micinf.2017.11.013
dc.relation.referencesSabino-Santos, G., Maia, F. G. M., Martins, R. B., Gagliardi, T. B., De Souza, W. M., Muylaert, R. L., … Figueiredo, L. T. M. (2018). Natural infection of Neotropical bats with hantavirus in Brazil. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-27442-w
dc.relation.referencesSahley, C. T., Cervantes, K., Pacheco, V., Salas, E., Paredes, D., & Alonso, A. (2015). Diet of a Sigmodontine Rodent Assemblage in a Peruvian Montane Forest. Journal of Mammalogy, 96(5), 1071–1080. https://doi.org/10.1093/jmammal/gyv112
dc.relation.referencesSakkas, H., Bozidis, P., Franks, A., & Papadopoulou, C. (2018). Oropouche fever: A review. Viruses, 10(4), 1–16. https://doi.org/10.3390/v10040175
dc.relation.referencesSalim Mattar, V., & Marco González, T. (2015). Oropuche virus: A virus present but ignored. Revista MVZ Cordoba, 20(3), 4675–4676. https://doi.org/10.4269/ajtmh.14-0702.2.
dc.relation.referencesSánchez-Seco, M. P., Echevarría, J. M., Hernández, L., Estévez, D., Navarro-Marí, J. M., & Tenorio, A. (2003). Detection and identification of Toscana and other phleboviruses by RT-nested-PCR assays with degenerated primers. Journal of Medical Virology, 71(1), 140–149. https://doi.org/10.1002/jmv.10465
dc.relation.referencesSantos, R. I. M., Rodrigues, A. H., Silva, M. L., Mortara, R. A., Rossi, M. A., Jamur, M. C., … Arruda, E. (2008). Oropouche virus entry into HeLa cells involves clathrin and requires endosomal acidification. Virus Research, 138(1–2), 139–143. https://doi.org/10.1016/j.virusres.2008.08.016
dc.relation.referencesSchlie, K., Strecker, T., & Garten, W. (2010). Maturation cleavage within the ectodomain of Lassa virus glycoprotein relies on stabilization by the cytoplasmic tail. FEBS Letters, 584(21), 4379–4382. https://doi.org/10.1016/j.febslet.2010.09.032
dc.relation.referencesShi, J., Hu, Z., Deng, F., & Shen, S. (2018). Tick-Borne Viruses. Virologica Sinica, 33(1), 21–43. https://doi.org/10.1007/s12250-018-0019-0
dc.relation.referencesSoto, E., & Mattar, S. (2010). Fiebres hemorrágicas por Arenavirus en Latinoamérica. Salud Uninorte, 26(2), 298–310.
dc.relation.referencesSpiegel, M., Plegge, T., & Pöhlmann, S. (2016). The role of phlebovirus glycoproteins in viral entry, assembly and release. Viruses, 8(7). https://doi.org/10.3390/v8070202
dc.relation.referencesStefan, C. P., Chase, K., Coyne, S., Kulesh, D. A., Minogue, T. D., & Koehler, J. W. (2016). Development of real-time reverse transcriptase qPCR assays for the detection of Punta Toro virus and Pichinde virus. Virology Journal, 13(1), 1–6. https://doi.org/10.1186/s12985-016-0509-3
dc.relation.referencesStrandin, T., Smura, T., Ahola, P., Aaltonen, K., Sironen, T., Hepojoki, J., … Forbes, K. M. (2020). Orthohantavirus isolated in reservoir host cells displays minimal genetic changes and retains wild-type infection properties. Viruses, 12(4), 1–14. https://doi.org/10.3390/v12040457
dc.relation.referencesSuárez Larreinaga, C. L., & Berdasquera Corcho, D. (2000). Enfermedades emergentes y reemergentes: Factores causales y vigilancia. Revista Cubana de Medicina General Integral, 16(6), 593–597.
dc.relation.referencesSubudhi, S., Rapin, N., & Misra, V. (2019). Immune system modulation and viral persistence in bats: Understanding viral spillover. Viruses, 11(2). https://doi.org/10.3390/v11020192
dc.relation.referencesTauro, L. B., de Souza, W. M., Rivarola, M. E., de Oliveira, R., Konigheim, B., Silva, S. P., … Contigiani, M. S. (2019). Genomic characterization of orthobunyavirus of veterinary importance in America. Infection, Genetics and Evolution, 73(February), 205–209. https://doi.org/10.1016/j.meegid.2019.04.030
dc.relation.referencesTorii, S., Matsuno, K., Qiu, Y., Mori-Kajihara, A., Kajihara, M., Nakao, R., … Sawa, H. (2019). Infection of newly identified phleboviruses in ticks and wild animals in Hokkaido, Japan indicating tick-borne life cycles. Ticks and Tick-Borne Diseases, 10(2), 328–335. https://doi.org/10.1016/j.ttbdis.2018.11.012
dc.relation.referencesWeaver, S. C., Salas, R. A., De Manzione, N., Fulhorst, C. F., Duno, G., Utrera, A., … Tesh, R. B. (2000). Guanarito virus (Arenaviridae) isolates from endemic and outlying localities in Venezuela: Sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virology, 266(1), 189–195. https://doi.org/10.1006/viro.1999.0067
dc.relation.referencesYadav, P. D., Nyayanit, D. A., Shete, A. M., Jain, S., Majumdar, T. P., Chaubal, G. Y., … Mourya, D. T. (2019). Complete genome sequencing of Kaisodi virus isolated from ticks in India belonging to Phlebovirus genus, family Phenuiviridae. Ticks and Tick-Borne Diseases, 10(1), 23–33. https://doi.org/10.1016/j.ttbdis.2018.08.012
dc.relation.referencesZhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., … Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalVigilancia epidemiológica
dc.subject.proposalZoonoses
dc.subject.proposalReservoirs
dc.subject.proposalAgentes infecciosos
dc.subject.proposalReservorios
dc.subject.proposalInfectious agents
dc.subject.proposalEpidemiological surveillance
dc.subject.proposalZoonosis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit