dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Mattar Velilla, Salim del Cristo |
dc.contributor.advisor | Vargas Córdoba, Manuel |
dc.contributor.author | Galeano Anaya, Ketty Esther |
dc.date.accessioned | 2021-01-19T23:03:57Z |
dc.date.available | 2021-01-19T23:03:57Z |
dc.date.issued | 2020-08-19 |
dc.identifier.citation | Galeano, K. (2020). Búsqueda de virus zoonóticos en roedores y murciélagos de algunas zonas del Caribe colombiano [Tesis de Maestría en Ciencias - Microbiología, Universidad Nacional de Colombia] Repositorio Institucional |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/78834 |
dc.description.abstract | Las zoonosis son enfermedades infecciosas transmisibles desde animales vertebrados al ser humano bajo condiciones naturales y representan un problema de salud pública. La etiología de las zoonosis incluye bacterias, virus, hongos, parásitos y priones. Dentro de las zoonosis virales se encuentran alrededor de 23 familias de virus RNA de cadena sencilla que, algunas de ellas causan las fiebres hemorrágicas. Estas zoonosis suelen ser mortales y han sido motivo de estudios eco-epidemiológicos en busca de animales reservorios y el nicho ecológico de estas entidades. El objetivo de este estudio fue el de buscar Orthohantavirus, Mammarenavirus, Phlebovirus y Orthobunyavirus en tejidos de roedores y murciélagos procedentes de algunas áreas del Caribe colombiano. A través de PCR convencionales se llevó a cabo un análisis para detectar esos virus en tejidos de 283 murciélagos y 120 roedores capturados de algunas áreas del Caribe colombiano. A partir, de murciélagos no se logró detectar genoma viral, sin embargo, en tejidos de roedores, uno de pulmón y otro de riñón capturados en Urumita y Villanueva (Guajira) respectivamente, se detectó un amplicón de 264 pb que correspondió al gen S de Orthohantavirus. Las dos muestras fueron secuenciadas por secuenciación de nueva generación (NGS), con el fin de identificar a que secuencias del género Orthohantavirus estaban relacionadas. No obstante, las secuencias no correspondieron a Orthohantavirus. La vigilancia epidemiológica de virus zoonóticos en murciélagos y roedores es importante por su posible capacidad de cruzar a otras especies de animales silvestres y de ahí a los humanos. |
dc.description.abstract | Zoonoses are infectious diseases that can be transmitted from vertebrate animals to humans under natural conditions and represent a public health problem. The etiology of zoonoses includes bacteria, viruses, fungi, parasites, and prions. Within the viral zoonoses there are about 23 families of single-stranded RNA viruses, some of which cause hemorrhagic fevers. These zoonoses are usually fatal and have been the subject of eco-epidemiological studies in search of reservoir animals and the ecological niche of these entities. The objective of this study was to search for Orthohantavirus, Mammarenavirus, Phlebovirus and Orthobunyavirus in tissues of rodents and bats from some areas of the Colombian Caribbean. Through conventional PCR, an analysis was carried out to detect these viruses in tissues of 283 bats and 120 rodents captured from some areas of the Colombian Caribbean. From bats, it was not possible to detect the viral genome, however, in rodent tissues, one from the lung and the other from the kidney captured in Urumita and Villanueva (Guajira) respectively, a 264 bp amplicon was detected that corresponded to the S gene of Orthohantavirus. The two samples were sequenced by next generation sequencing (NGS), in order to identify which sequences of the genus Orthohantavirus were related. However, the sequences did not correspond to Orthohantavirus. Epidemiological surveillance of zoonotic viruses in bats and rodents is important because of their potential ability to cross over to other species of wild animals and from there to humans. |
dc.format.extent | 133 |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.rights | Derechos reservados - Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 590 - Animales |
dc.subject.ddc | 616 - Enfermedades |
dc.title | Búsqueda de virus zoonóticos en roedores y murciélagos de algunas zonas del Caribe colombiano |
dc.type | Trabajo de grado - Maestría |
dc.rights.spa | Acceso abierto |
dc.description.additional | Línea de Investigación: Enfermedades emergentes y reemergentes |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.contributor.researchgroup | Instituto de Investigaciones Biológicas del Trópico |
dc.description.degreelevel | Maestría |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S. V., Avšič-Županc, T., Ballinger, M. J., … Kuhn, J. H. (2019a). Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 164(7), 1949–1965. https://doi.org/10.1007/s00705-019-04253-6 |
dc.relation.references | Abudurexiti, A., Adkins, S., Alioto, D., Alkhovsky, S. V., Avšič-Županc, T., Ballinger, M. J., … Kuhn, J. H. (2019b). Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 164(7), 1949–1965. https://doi.org/10.1007/s00705-019-04253-6 |
dc.relation.references | Acero-Aguilar, M. (2016). Zoonosis y otros problemas de salud pública relacionados con los animales: Reflexiones a propósito de sus aproximaciones teóricas y metodológicas. Revista Gerencia y Politicas de Salud, 15(31), 232–245. https://doi.org/10.11144/Javeriana.rgyps15-31.zpsp |
dc.relation.references | Acevedo, M. de los Á., & Arrivillaga, J. (2008). Eco-epidemiología de flebovirus (Bunyaviridae, Phlebovirus) transmitidos por flebótomos (Psychodidae, Phlebotominae). Boletín de Malariología y Salud Ambiental, 48(1), 3–16. |
dc.relation.references | Albornoz, A., Hoffmann, A. B., Lozach, P. Y., & Tischler, N. D. (2016). Early bunyavirus-host cell interactions. Viruses, 8(5). https://doi.org/10.3390/v8050143 |
dc.relation.references | Alemán, A., Iguarán, H., Puerta, H., Cantillo, C., Mills, J., Ariz, W., & Mattar, S. (2006). [First serological evidence of Hantavirus infection in rodents in Colombia]. Revista de Salud Publica (Bogota, Colombia), 8 Suppl 1(1), 1–12. https://doi.org/10.1590/S0124-00642006000400001 |
dc.relation.references | Alkan, C., Bichaud, L., De Lamballerie, X., Alten, B., Gould, E. A., & Charrel, R. N. (2013). Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antiviral Research, 100(1), 54–74. https://doi.org/10.1016/j.antiviral.2013.07.005 |
dc.relation.references | Almendra, A. L., González-Cózatl, F. X., Engstrom, M. D., & Rogers, D. S. (2018). Evolutionary relationships and climatic niche evolution in the genus Handleyomys (Sigmodontinae: Oryzomyini). Molecular Phylogenetics and Evolution, 128(June 2017), 12–25. https://doi.org/10.1016/j.ympev.2018.06.018 |
dc.relation.references | Amaral, C. D., Costa, G. B., de Souza, W. M., Alves, P. A., Borges, I. A., Tolardo, A. L., … de Souza Trindade, G. (2018a). Silent Orthohantavirus Circulation Among Humans and Small Mammals from Central Minas Gerais, Brazil. EcoHealth, 15(3), 577–589. https://doi.org/10.1007/s10393-018-1353-2 |
dc.relation.references | Amaral, C. D., Costa, G. B., de Souza, W. M., Alves, P. A., Borges, I. A., Tolardo, A. L., … de Souza Trindade, G. (2018b). Silent Orthohantavirus Circulation Among Humans and Small Mammals from Central Minas Gerais, Brazil. EcoHealth, 15(3), 577–589. https://doi.org/10.1007/s10393-018-1353-2 |
dc.relation.references | Arai, S., & Yanagihara, R. (2020). Genetic diversity and geographic distribution of bat-borne hantaviruses. Current Issues in Molecular Biology, 39(February), 1–28. https://doi.org/10.21775/cimb.039.001 |
dc.relation.references | Ballinger, M. J., Bruenn, J. A., Hay, J., Czechowski, D., & Taylor, D. J. (2014). Discovery and Evolution of Bunyavirids in Arctic Phantom Midges and Ancient Bunyavirid-Like Sequences in Insect Genomes. Journal of Virology, 88(16), 8783–8794. https://doi.org/10.1128/jvi.00531-14 |
dc.relation.references | Bandouchova, H., Bartonička, T., Berkova, H., Brichta, J., Kokurewicz, T., Kovacova, V., … Zukal, J. (2018). Alterations in the health of hibernating bats under pathogen pressure. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-24461-5 |
dc.relation.references | Barrios, J. M., Rego-García, I., Muñoz Martínez, C., Romero-Fábrega, J. C., Rivero Rodríguez, M., Ruiz Giménez, J. A., … Fernández Pérez, M. D. (2020). Ischaemic stroke and SARS-CoV-2 infection: A causal or incidental association? Neurologia, 35(5), 295–302. https://doi.org/10.1016/j.nrl.2020.05.002 |
dc.relation.references | Battisti, A. J., Chu, Y.-K., Chipman, P. R., Kaufmann, B., Jonsson, C. B., & Rossmann, M. G. (2011). Structural Studies of Hantaan Virus. Journal of Virology, 85(2), 835–841. https://doi.org/10.1128/jvi.01847-10 |
dc.relation.references | Bennett, R. S., Ton, D. R., Hanson, C. T., Murphy, B. R., & Whitehead, S. S. (2007). Genome sequence analysis of La Crosse virus and in vitro and in vivo phenotypes. Virology Journal, 4, 1–10. https://doi.org/10.1186/1743-422X-4-41 |
dc.relation.references | Blanco, P., Arroyo, S., & Corrales, H. (2012). Evidencia serológica de infección por hantavirus in rodents from the Sucre Deparment in Colombia. 14(5), 755–764. |
dc.relation.references | Blanco, P., Corrales, A., & Castellar, A. (2013). Hantavirus (Bunyaviridae: Hantavirus) en roedores murinos de Sincelejo, departamento de Sucre. Revista Colombiana de Ciencia Animal - RECIA, 5(2), 408. https://doi.org/10.24188/recia.v5.n2.2013.452 |
dc.relation.references | Bodewes, R., Kik, M. J. L., Stalin Raj, V., Schapendonk, C. M. E., Haagmans, B. L., Smits, S. L., & Osterhaus, A. D. M. E. (2013). Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands. Journal of General Virology, 94(PART 6), 1206–1210. https://doi.org/10.1099/vir.0.051995-0 |
dc.relation.references | Bonvicino, C., Oliveira, J., & D’Andrea, O. (2008). Guia dos Roedores do Brasil. Rio de Janeiro: Or, 120. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Guia+dos+roedores+do+Brasil#1 |
dc.relation.references | Briese, T., Calisher, C. H., & Higgs, S. (2013). Viruses of the family Bunyaviridae: Are all available isolates reassortants? Virology, 446(1–2), 207–216. https://doi.org/10.1016/j.virol.2013.07.030 |
dc.relation.references | Brook, C. E., & Dobson, A. P. (2015). Bats as “special” reservoirs for emerging zoonotic pathogens. Trends in Microbiology, 23(3), 172–180. https://doi.org/10.1016/j.tim.2014.12.004 |
dc.relation.references | Cabello C, C., & Cabello C, F. (2008). Zoonosis con reservorios silvestres: Amenazas a la salud pública y a la economía. Revista Medica de Chile, 136(3), 385–393. https://doi.org/10.4067/s0034-98872008000300016 |
dc.relation.references | Calderon, A., Guzman, C., Salazar, J., Figueiredo, L. T., & Mattar, S. (2016). Viral Zoonoses That Fly with Bats: A Review. MANTER: Journal of Parasite Biodiversity. https://doi.org/10.13014/k2bg2kwf |
dc.relation.references | Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., & Schountz, T. (2006). Bats: Important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 19(3), 531–545. https://doi.org/10.1128/CMR.00017-06 |
dc.relation.references | Castellar, A., Guevara, M., Rodas, J. D., Londoño, A. F., Arroyave, E., Díaz, F. J., … Blanco, P. J. (2017). Primera evidencia de infección por el virus de la coriomeningitis linfocítica (arenavirus) en roedores Mus musculus capturados en la zona urbana del municipio de Sincelejo, Sucre, Colombia. Biomedica, 37, 75–85. https://doi.org/10.7705/biomedica.v37i2.3226 |
dc.relation.references | Charrel, R. N., Gallian, P., Navarro-Marí, J. M., Nicoletti, L., Papa, A., Sánchez-Seco, M. P., … De Lamballerie, X. (2005). Emergence of Toscana virus in Europe. Emerging Infectious Diseases, 11(11), 1657–1663. https://doi.org/10.3201/eid1111.050869 |
dc.relation.references | Charrel, R. N., Lemasson, J. J., Garbutt, M., Khelifa, R., De Micco, P., Feldmann, H., & De Lamballerie, X. (2003). New insights into the evolutionary relationships between arenaviruses provided by comparative analysis of small and large segment sequences. Virology, 317(2), 191–196. https://doi.org/10.1016/j.virol.2003.08.016 |
dc.relation.references | Ciota, A. T. (2019). The role of co-infection and swarm dynamics in arbovirus transmission. Virus Research, 265(March), 88–93. https://doi.org/10.1016/j.virusres.2019.03.010 |
dc.relation.references | Colombo, V. C., Brignone, J., Sen, C., Previtali, M. A., Martin, M. L., Levis, S., … Beldomenico, P. M. (2019). Orthohantavirus genotype Lechiguanas in Oligoryzomys nigripes (Rodentia: Cricetidae): New evidence of host-switching. Acta Tropica, 191(December 2018), 133–138. https://doi.org/10.1016/j.actatropica.2018.12.040 |
dc.relation.references | Crispin, M., Zeltina, A., Zitzmann, N., & Bowden, T. A. (2016). Native functionality and therapeutic targeting of arenaviral glycoproteins. Current Opinion in Virology, 18(Figure 2), 70–75. https://doi.org/10.1016/j.coviro.2016.04.001 |
dc.relation.references | Cunningham, A. A., Daszak, P., & Wood, J. L. N. (2017). One health, emerging infectious diseases and wildlife: Two decades of progress? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1725). |
dc.relation.references | D’Elía, G., Pardiñas, U. F. J., Jayat, J. P., & Salazar-Bravo, J. (2008). Systematics of Necromys (Rodentia, Cricetidae, Sigmodontinae): species limits and groups, with comments on historical biogeography. Journal of Mammalogy, 89(3), 778–790. https://doi.org/10.1644/07-mamm-a-246r1.1 |
dc.relation.references | Dabanch, J. (2013). Zoonosis. Rev Chil Infect, 20(Supl 1), 5. Retrieved from https://scielo.conicyt.cl/pdf/rci/v20s1/art08.pdf |
dc.relation.references | De Araujo, J., Thomazelli, L. M., Henriques, D. A., Lautenschalager, D., Ometto, T., Dutra, L. M., … Durigon, E. L. (2012). Detection of hantavirus in bats from remaining rain forest in São Paulo, Brazil. BMC Research Notes, 5. https://doi.org/10.1186/1756-0500-5-690 |
dc.relation.references | De Carvalho, M. S., De Lara Pinto, A. Z., Pinheiro, A., Rodrigues, J. S. V., Melo, F. L., Da Silva, L. A., … Dezengrini-Slhessarenko, R. (2018). Viola phlebovirus is a novel Phlebotomus fever serogroup member identified in Lutzomyia (Lutzomyia) longipalpis from Brazilian Pantanal. Parasites and Vectors, 11(1), 1–10. https://doi.org/10.1186/s13071-018-2985-3 |
dc.relation.references | Delgado, S., Erickson, B. R., Agudo, R., Blair, P. J., Vallejo, E., Albariño, C. G., … Nichol, S. T. (2008). Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathogens, 4(4), 1–6. https://doi.org/10.1371/journal.ppat.1000047 |
dc.relation.references | Demchyshyna, I. V., Glass, G. E., Hluzd, O. A., Kutseva, V. V., Taylor, M. K., Williams, E. P., … Jonsson, C. B. (2020). Cocirculation of two orthohantavirus species in small mammals of the Northwestern Ukraine. Journal of Wildlife Diseases, 56(3), 640–645. https://doi.org/10.7589/2019-09-238 |
dc.relation.references | Eitan, O., Kosa, G., & Yovel, Y. (2019). Sensory gaze stabilization in echolocating bats. Proceedings of the Royal Society B: Biological Sciences, 286(1913). https://doi.org/10.1098/rspb.2019.1496 |
dc.relation.references | Ejiri, H., Lim, C. K., Isawa, H., Yamaguchi, Y., Fujita, R., Takayama-Ito, M., … Sawabe, K. (2018). Isolation and characterization of Kabuto Mountain virus, a new tick-borne phlebovirus from Haemaphysalis flava ticks in Japan. Virus Research, 244(November 2017), 252–261. https://doi.org/10.1016/j.virusres.2017.11.030 |
dc.relation.references | Elelu, N., Aiyedun, J. O., Mohammed, I. G., Oludairo, O. O., Odetokun, I. A., Mohammed, K. M., … Nuru, S. (2019). Neglected zoonotic diseases in nigeria: Role of the public health veterinarian. Pan African Medical Journal, 32, 1–12. https://doi.org/10.11604/pamj.2019.32.36.15659 |
dc.relation.references | Elliott, R. M. (2014). Orthobunyaviruses: recent genetic and structural insights. Nature Reviews. Microbiology, 12(10), 673–685. https://doi.org/10.1038/nrmicro3332 |
dc.relation.references | Fagre, A. C., & Kading, R. C. (2019). Can bats serve as reservoirs for Arboviruses? Viruses, 11(3). https://doi.org/10.3390/v11030215 |
dc.relation.references | Fernandes, J., de Oliveira, R. C., Guterres, A., Barreto-Vieira, D. F., Terças, A. C. P., Teixeira, B. R., … de Lemos, E. R. S. (2018). Detection of Latino virus (Arenaviridae: Mammarenavirus) naturally infecting Calomys callidus. Acta Tropica, 179(October 2017), 17–24. https://doi.org/10.1016/j.actatropica.2017.12.003 |
dc.relation.references | Figueiredo, G. G., Borges, A. A., Campos, G. M., Machado, A. M., Saggioro, F. P., Sabino, S., … Figueiredo, L. T. M. (2010). Diagnosis of hantavirus infection in humans and rodents in Ribeirão. Revista Da Sociedade Brasileira de Medicina Tropical, 43(4), 348–354. |
dc.relation.references | Flores, Carter, G. G., Halczok, T. K., Kerth, G., & Page, R. A. (2020). Social structure and relatedness in the fringe-lipped bat (Trachops cirrhosus). Royal Society Open Science, 7(4). https://doi.org/10.1098/rsos.192256 |
dc.relation.references | Flores, J. W., & Chumacero, L. M. (2010). Perspectivas sobre el origen y la filogenia de los murciélagos. ContactoS, 77, 5–9. |
dc.relation.references | Fukushi, S., Tani, H., Yoshikawa, T., Saijo, M., & Morikawa, S. (2012). Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses, 4(10), 2097–2114. https://doi.org/10.3390/v4102097 |
dc.relation.references | Fulhorst, C. F., Cajimat, M. N. B., Utrera, A., Milazzo, M. L., & Duno, G. M. (2004). Maporal virus, a hantavirus associated with the fulvous pygmy rice rat (Oligoryzomys fulvescens) in western Venezuela. Virus |
dc.relation.references | Garcin, D., Rochat, S., & Kolakofsky, D. (1993). The Tacaribe arenavirus small zinc finger protein is required for both mRNA synthesis and genome replication. Journal of Virology, 67(2), 807–812. |
dc.relation.references | Golender, N., Bumbarov, V. Y., Erster, O., Beer, M., Khinich, Y., & Wernike, K. (2018). Development and validation of a universal S-segment-based real-time RT-PCR assay for the detection of Simbu serogroup viruses. Journal of Virological Methods, 261(May), 80–85. https://doi.org/10.1016/j.jviromet.2018.08.008 |
dc.relation.references | Gorbunova, V., Seluanov, A., & Kennedy, B. K. (2020). The World Goes Bats: Living Longer and Tolerating Viruses. Cell Metabolism, 32(1), 31–43. https://doi.org/10.1016/j.cmet.2020.06.013 |
dc.relation.references | Groot, H. (2017). Estudios sobre virus transmitidos por artrópodos en Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41(Suplemento), 12. https://doi.org/10.18257/raccefyn.565 |
dc.relation.references | Gryseels, S., Baird, S. J. E., Borremans, B., Makundi, R., Leirs, H., & Goüy de Bellocq, J. (2017). When Viruses Don’t Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLoS Pathogens, 13(1), 1–22. https://doi.org/10.1371/journal.ppat.1006073 |
dc.relation.references | Guzmán, C., Calderón, A., González, M., & Mattar, S. (2017). Infecciones por hantavirus. Revista MVZ Córdoba, 22, 6101–6117. https://doi.org/10.21897/rmvz.1079 |
dc.relation.references | Guzmán, C., Mattar, S., Levis, S., Pini, N., Figueiredo, T., Mills, J., & Salazar-Bravo, J. (2013). Prevalence of antibody to hantaviruses in humans and rodents in the Caribbean region of Colombia determined using Araraquara and Maciel virus antigens. Memorias Do Instituto Oswaldo Cruz, 108(2), 167–171. https://doi.org/10.1590/0074-0276108022013007 |
dc.relation.references | Hanadhita, D., Rahma, A., Prawira, A. Y., Mayasari, N. L. P. I., Satyaningtijas, A. S., Hondo, E., & Agungpriyono, S. (2019). The spleen morphophysiology of fruit bats. Journal of Veterinary Medicine Series C: Anatomia Histologia Embryologia, 48(4), 315–324. https://doi.org/10.1111/ahe.12442 |
dc.relation.references | Hancke, D., & Suárez, O. V. (2018). Structure of parasite communities in urban environments: The case of helminths in synanthropic rodents. Folia Parasitologica, 65. https://doi.org/10.14411/fp.2018.009 |
dc.relation.references | Hepojoki, J., Salmenperä, P., Sironen, T., Hetzel, U., Korzyukov, Y., Kipar, A., & Vapalahti, O. (2015). Arenavirus Coinfections Are Common in Snakes with Boid Inclusion Body Disease. Journal of Virology, 89(16), 8657–8660. https://doi.org/10.1128/jvi.01112-15 |
dc.relation.references | Hetzel, U., Sironen, T., Laurinmaki, P., Liljeroos, L., Patjas, A., Henttonen, H., … Hepojoki, J. (2013). Isolation, Identification, and Characterization of Novel Arenaviruses, the Etiological Agents of Boid Inclusion Body Disease. Journal of Virology, 87(20), 10918–10935. https://doi.org/10.1128/jvi.01123-13 |
dc.relation.references | Higgins, R. (2004). Emerging or re-emerging bacterial zoonotic diseases: bartonellosis, leptospirosis, Lyme borreliosis, plague. In Rev. sci. tech. Off. int. Epiz (Vol. 23). |
dc.relation.references | Hinson, E. R., Shone, S. M., Zink, M. C., Glass, G. E., & Klien, S. L. (2004). Wounding: The primary mode of Seoul virus transmission among male Norway rats. American Journal of Tropical Medicine and Hygiene, 70(3), 310–317. https://doi.org/10.4269/ajtmh.2004.70.310 |
dc.relation.references | Holmes, E. C. (2007). Viral evolution in the genomic age. PLoS Biology, 5(10), 2104–2105. https://doi.org/10.1371/journal.pbio.0050278 |
dc.relation.references | Hughes, H. R., Adkins, S., Alkhovskiy, S., Beer, M., Blair, C., Calisher, C. H., … Ictv Report Consortium. (2020). ICTV Virus Taxonomy Profile: Peribunyaviridae. The Journal of General Virology, 101(1), 1–2. https://doi.org/10.1099/jgv.0.001365 |
dc.relation.references | Hughes, H. R., Lanciotti, R. S., Blair, C. D., & Lambert, A. J. (2017). Full genomic characterization of California serogroup viruses, genus Orthobunyavirus, family Peribunyaviridae including phylogenetic relationships. Virology, 512(October), 201–210. https://doi.org/10.1016/j.virol.2017.09.022 |
dc.relation.references | Huiskonen, J. T., Hepojoki, J., Laurinmaki, P., Vaheri, A., Lankinen, H., Butcher, S. J., & Grunewald, K. (2010). Electron Cryotomography of Tula Hantavirus Suggests a Unique Assembly Paradigm for Enveloped Viruses. Journal of Virology, 84(10), 4889–4897. https://doi.org/10.1128/jvi.00057-10 |
dc.relation.references | Illumina. (2011). Sequencing Library qPCR Quantification Guide. Illumina Technical Manuals, (February), 1–27. |
dc.relation.references | Illumina. (2015). TruSeq RNA Sample Preparation v2 Guide. Illumina, 3(2), 141–148. https://doi.org/10.1016/j.canlet.2015.06.003 |
dc.relation.references | İnci, A., Doğanay, M., Özdarendeli, A., Düzlü, Ö., & Yıldırım, A. (2018). Overview of Zoonotic Diseases in Turkey: The One Health Concept and Future Threats. Turkiye Parazitolojii Dergisi, 42(1), 39–80. https://doi.org/10.5152/tpd.2018.5701 |
dc.relation.references | Ippolito, G., Feldmann, H., Lanini, S., Vairo, F., Di Caro, A., Capobianchi, M. R., & Nicastri, E. (2012). Viral hemorrhagic fevers: Advancing the level of treatment. BMC Medicine, 10. https://doi.org/10.1186/1741-7015-10-31 |
dc.relation.references | Jesús Ballesteros, C., & Racero-Casarrubia, J. (2012). Murciélagos del área urbana en la ciudad de Montería, Córdoba - Colombia. Revista MVZ Cordoba, 17(3), 3193–3199. |
dc.relation.references | Johnston, S. C., Zhang, H., Messina, L. M., Lawton, M. T., & Dean, D. (2005). Chlamydia pneumoniae burden in carotid arteries is associated with upregulation of plaque interleukin-6 and elevated C-reactive protein in serum. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(12), 2648–2653. https://doi.org/10.1161/01.ATV.0000189157.88630.d1 |
dc.relation.references | Jones, G., Jacobs, D. S., Kunz, T. H., Wilig, M. R., & Racey, P. A. (2009). Carpe noctem: The importance of bats as bioindicators. Endangered Species Research, 8(1–2), 93–115. https://doi.org/10.3354/esr00182 |
dc.relation.references | Jonsson, C. B., Figueiredo, L. T. M., & Vapalahti, O. (2010). A global perspective on hantavirus ecology, epidemiology, and disease. Clinical Microbiology Reviews, 23(2), 412–441. https://doi.org/10.1128/CMR.00062-09 |
dc.relation.references | Karesh, W. B., Dobson, A., Lloyd-Smith, J. O., Lubroth, J., Dixon, M. A., Bennett, M., … Heymann, D. L. (2012). Ecology of zoonoses: Natural and unnatural histories. The Lancet, 380(9857), 1936–1945. https://doi.org/10.1016/S0140-6736(12)61678-X |
dc.relation.references | Kim, D., Langmead, B., & Salzberg1, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements Daehwan HHS Public Access. Nature Methods, 12(4), 357–360. https://doi.org/110.1016/j.bbi.2017.04.008 |
dc.relation.references | Kosoy, M., Khlyap, L., Cosson, J. F., & Morand, S. (2015). Aboriginal and invasive rats of genus rattus as hosts of infectious agents. Vector-Borne and Zoonotic Diseases, 15(1), 3–12. https://doi.org/10.1089/vbz.2014.1629 |
dc.relation.references | Kruger, D. H., Figueiredo, L. T. M., Song, J. W., & Klempa, B. (2015). Hantaviruses-Globally emerging pathogens. Journal of Clinical Virology, 64, 128–136. https://doi.org/10.1016/j.jcv.2014.08.033 |
dc.relation.references | Kukkonen, S. K. J., Vaheri, A., & Plyusnin, A. (2005). L protein, the RNA-dependent RNA polymerase of hantaviruses. Archives of Virology, 150(3), 533–556. https://doi.org/10.1007/s00705-004-0414-8 |
dc.relation.references | Kuno, G., Mitchell, C. J., Chang, G. J., & Smith, G. C. (1996). Detecting bunyaviruses of the Bunyamwera and California serogroups by a PCR technique . Updated information and services can be found at : These include : Detecting Bunyaviruses of the Bunyamwera and California Serogroups by a PCR Technique. Journal of Clinical Microbiology, 34(5), 1184–1188. https://doi.org/10.1145/800027.808431 |
dc.relation.references | Laenen, L., Vergote, V., Calisher, C. H., Klempa, B., Klingström, J., Kuhn, J. H., & Maes, P. (n.d.). Hantaviridae : Current Classification and Future Perspectives. 1–17. |
dc.relation.references | Lambert, A. J., & Lanciotti, R. S. (2009). Consensus amplification and novel multiplex sequencing method for S segment species identification of 47 viruses of the Orthobunyavirus, Phlebovirus, and Nairovirus genera of the family Bunyaviridae. Journal of Clinical Microbiology, 47(8), 2398–2404. https://doi.org/10.1128/JCM.00182-09 |
dc.relation.references | Lanciotti, R. S., Kosoy, O. I., Bosco-Lauth, A. M., Pohl, J., Stuchlik, O., Reed, M., & Lambert, A. J. (2013). Isolation of a novel orthobunyavirus (Brazoran virus) with a 1.7kb S segment that encodes a unique nucleocapsid protein possessing two putative functional domains. Virology, 444(1–2), 55–63. https://doi.org/10.1016/j.virol.2013.05.031 |
dc.relation.references | Lee, Baek, L. J., & Johnson, K. M. (1982). Isolation of Hantaan Virus, the Etiologic Agent of Korean Hemorrhagic Fever, from Wild Urban Rats. Journal of Infectious Diseases, 146(5), 638–644. https://doi.org/10.1093/infdis/146.5.638 |
dc.relation.references | Lee, Lee, P. W., & Johnson, K. M. (2004). Isolation of the etiologic agent of Korean hemorrhagic fever. 1978. The Journal of Infectious Diseases, 190(9), 1711–1721. https://doi.org/10.1093/infdis/190.9.1711 |
dc.relation.references | Lee, S. H., Kim, W. K., Park, K., No, J. S., Lee, G. Y., Kim, H. C., … Song, J. W. (2020). Genetic diversity and phylogeography of Jeju Orthohantavirus (Hantaviridae) in the Republic of Korea. Virology, 543(September 2019), 13–19. https://doi.org/10.1016/j.virol.2020.01.012 |
dc.relation.references | Linares, J. 1998. Roedores, Sociedad Conservacionista Audubon de Venezuela. Mamiferos de Venuezula, Caracas, 205-348. |
dc.relation.references | Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., … Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 |
dc.relation.references | Liphardt, S. W., Kang, H. J., Dizney, L. J., Ruedas, L. A., Cook, J. A., & Yanagihara, R. (2019). Complex history of codiversification and host switching of a newfound soricid-borne orthohantavirus in north america. Viruses, 11(7). https://doi.org/10.3390/v11070637 |
dc.relation.references | Liu, M. M., Li, L. L., Wang, X. F., & Duan, Z. J. (2017). Complete genome sequence of a novel variant of Wenzhou mammarenavirus. Genome Announcements, 5(47), 5–6. https://doi.org/10.1128/genomeA.01303-17 |
dc.relation.references | Londoño, A. F., Levis, S., & Rodas, J. D. (2011). Hantavirus como agentes emergentes de importancia en Suramérica. Biomedica, 31(3), 451–464. https://doi.org/10.7705/biomedica.v31i3.370 |
dc.relation.references | López, N., Jácamo, R., & Franze, M. T. (2001). Transcription and RNA Replication of Tacaribe Virus Genome and Antigenome Analogs Require N and L Proteins: Z Protein Is an Inhibitor of These Processes. Journal of Virology, 75(24), 12241–12251. https://doi.org/10.1128/jvi.75.24.12241-12251.2001 |
dc.relation.references | Lozach, P. Y., Kühbacher, A., Meier, R., Mancini, R., Bitto, D., Bouloy, M., & Helenius, A. (2011). DC-SIGN as a receptor for phleboviruses. Cell Host and Microbe, 10(1), 75–88. https://doi.org/10.1016/j.chom.2011.06.007 |
dc.relation.references | Lozano, J. C., Mattar, S., Guzmán, C., & Calderón, A. (2017). Infecciones por arenavirus. Revista MVZ Córdoba, 22(supl), 6089. https://doi.org/10.21897/rmvz.1078 |
dc.relation.references | Luis, A. D., Hayman, D. T. S., O’Shea, T. J., Cryan, P. M., Gilbert, A. T., Pulliam, J. R. C., … Webb, C. T. (2013). A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proceedings of the Royal Society B: Biological Sciences, 280(1756). https://doi.org/10.1098/rspb.2012.2753 |
dc.relation.references | Maes, P., Alkhovsky, S. V., Bào, Y., Beer, M., Birkhead, M., Briese, T., … Kuhn, J. H. (2018). Taxonomy of the family Arenaviridae and the order Bunyavirales: update 2018. Archives of Virology, 163(8), 2295–2310. https://doi.org/10.1007/s00705-018-3843-5 |
dc.relation.references | Mahmutovic, S., Clark, L., Levis, S. C., Briggiler, A. M., Enria, D. A., Harrison, S. C., & Abraham, J. (2015). Molecular Basis for Antibody-Mediated Neutralization of New World Hemorrhagic Fever Mammarenaviruses. Cell Host and Microbe, 18(6), 705–713. https://doi.org/10.1016/j.chom.2015.11.005 |
dc.relation.references | Marklewitz, M., Dutari, L. C., Paraskevopoulou, S., Page, R. A., Loaiza, J. R., & Junglen, S. (2019a). Diverse novel phleboviruses in sandflies from the Panama Canal area, Central Panama. Journal of General Virology, 100(6), 938–949. https://doi.org/10.1099/jgv.0.001260 |
dc.relation.references | Marklewitz, M., Dutari, L. C., Paraskevopoulou, S., Page, R. A., Loaiza, J. R., & Junglen, S. (2019b). Diverse novel phleboviruses in sandflies from the Panama Canal area, Central Panama. Journal of General Virology, 100(6), 938–949. https://doi.org/10.1099/jgv.0.001260 |
dc.relation.references | Marklewitz, M., Zirkel, F., Rwego, I. B., Heidemann, H., Trippner, P., Kurth, A., … Junglen, S. (2013). Discovery of a Unique Novel Clade of Mosquito-Associated Bunyaviruses. Journal of Virology, 87(23), 12850–12865. https://doi.org/10.1128/jvi.01862-13 |
dc.relation.references | Martinez-Sobrido, L., Emonet, S., Giannakas, P., Cubitt, B., Garcia-Sastre, A., & de la Torre, J. C. (2009). Identification of Amino Acid Residues Critical for the Anti-Interferon Activity of the Nucleoprotein of the Prototypic Arenavirus Lymphocytic Choriomeningitis Virus. Journal of Virology, 83(21), 11330–11340. https://doi.org/10.1128/jvi.00763-09 |
dc.relation.references | Matsuno, K., Kajihara, M., Nakao, R., Nao, N., Mori-Kajihara, A., Muramatsu, M., … Ebihara, H. (2018). The Unique Phylogenetic Position of a Novel Tick-Borne Phlebovirus Ensures an Ixodid Origin of the Genus Phlebovirus . MSphere, 3(3). https://doi.org/10.1128/msphere.00239-18 |
dc.relation.references | Mattar, S., Garzon, D., Tadeu, L., Faccini-Martínez, A. A., & Mills, J. N. (2014). Serological diagnosis of hantavirus pulmonary syndrome in a febrile patient in Colombia. International Journal of Infectious Diseases, 25, 201–203. https://doi.org/10.1016/j.ijid.2014.03.1396 |
dc.relation.references | Mattar, S., & González, M. (2017). Los sorprendentes murciélagos: ¿Amigos, enemigos o aliados? Revista MVZ Córdoba, 22(3), 6177. https://doi.org/10.21897/rmvz.1125 |
dc.relation.references | Mattar, S., Guzmán, C., Arrazola, J., Soto, E., Barrios, J., Pini, N., … Mills, J. N. (2011, July). Antibody to arenaviruses in rodents, Caribbean Colombia. Emerging Infectious Diseases, Vol. 17, pp. 1315–1317. https://doi.org/10.3201/eid1707.101961 |
dc.relation.references | Mattar, S., Guzmán, C., Calderón, A., & González, M. (2017). Infecciones por arenavirus. Revista MVZ Córdoba, 22, 6089–6100. https://doi.org/10.21897/rmvz.1078 |
dc.relation.references | Mattar, S., Tique, V., Miranda, J., Montes, E., & Garzon, D. (2017). Undifferentiated tropical febrile illness in Cordoba, Colombia: Not everything is dengue. Journal of Infection and Public Health, 10(5), 507–512. https://doi.org/10.1016/j.jiph.2016.09.014 |
dc.relation.references | Matthys, V. S., Gorbunova, E. E., Gavrilovskaya, I. N., & Mackow, E. R. (2010). Andes Virus Recognition of Human and Syrian Hamster 3 Integrins Is Determined by an L33P Substitution in the PSI Domain. Journal of Virology, 84(1), 352–360. https://doi.org/10.1128/jvi.01013-09 |
dc.relation.references | McArthur, D. B. (2019). Emerging Infectious Diseases. Nursing Clinics of North America, 54(2), 297–311. https://doi.org/10.1016/j.cnur.2019.02.006 |
dc.relation.references | McLay, L., Liang, Y., & Ly, H. (2014). Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. Journal of General Virology, 95(PART 1), 1–15. https://doi.org/10.1099/vir.0.057000-0 |
dc.relation.references | Mills, J., Childs, J., Ksiazek, T., & Peters, C. J. (1998). Métodos para trampeo y muestreo de pequeños mamíferos para estudios virológicos. Centros Para El Control y Prevención de Enfermedades de Los EStados Unidos de América, 64. |
dc.relation.references | Monroy, M. C., De La Ossa, A., & De La Ossa, J. (2015). Tasa De Atropellamiento De Fauna Silvestre En La Vía San Onofre – María La Baja , Caribe Colombiano Runover Rate. Asociación Colombiana de Ciencias Biológicas, 1(27), 88–95. Retrieved from http://www.ojs.asociacioncolombianadecienciasbiologicas.org/index.php/accb/article/view/106 |
dc.relation.references | Monsalve, Mattar, & González. (2009). Zoonosis transmitidas por animales silvestres y su impacto en las enfermedades emergentes y reemergentes. Revista MVZ Cordoba, 14(2), 1762–1773. |
dc.relation.references | Moreli, M. L., Moro De Sousa, R. L., & Figueiredo, L. T. M. (2004). Detection of Brazilian hantavirus by reverse transcription polymerase chain reaction amplification of N gene in patients with hantavirus cardiopulmonary syndrome. Memorias Do Instituto Oswaldo Cruz, 99(6), 633–638. https://doi.org/10.1590/S0074-02762004000600018 |
dc.relation.references | Moriconi, M., Rugna, G., Calzolari, M., Bellini, R., Albieri, A., Angelini, P., … Varani, S. (2017). Phlebotomine sand fly–borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections. PLoS Neglected Tropical Diseases, 11(8), 1–19. https://doi.org/10.1371/journal.pntd.0005660 |
dc.relation.references | Mourya, D. T., Yadav, P. D., Basu, A., Shete, A., Patil, D. Y., Zawar, D., … Jadhav, S. M. (2014). Malsoor Virus, a Novel Bat Phlebovirus, Is Closely Related to Severe Fever with Thrombocytopenia Syndrome Virus and Heartland Virus. Journal of Virology, 88(6), 3605–3609. https://doi.org/10.1128/jvi.02617-13 |
dc.relation.references | Naveca, F. G., do Nascimento, V. A., de Souza, V. C., Nunes, B. T. D., Rodrigues, D. S. G., & da Costa Vasconcelos, P. F. (2017). Multiplexed reverse transcription real-time polymerase chain reaction for simultaneous detection of Mayaro, Oropouche, and oropouche-like viruses. Memorias Do Instituto Oswaldo Cruz, 112(7), 510–513. https://doi.org/10.1590/0074-02760160062 |
dc.relation.references | No, J. S., Kim, W. K., Cho, S., Lee, S. H., Kim, J. A., Lee, D., … Song, J. W. (2019). Comparison of targeted next-generation sequencing for whole-genome sequencing of Hantaan orthohantavirus in Apodemus agrarius lung tissues. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-53043-2 |
dc.relation.references | Nunes-Neto, J. P., De Souza, W. M., Acrani, G. O., Romeiro, M. F., Fumagalli, M., Vieira, L. C., … Da Costa Vasconcelos, P. F. (2017). Characterization of the bujaru, frijoles and tapara antigenic complexes into the sandfly fever group and two unclassified phleboviruses from Brazil. Journal of General Virology, 98(4), 585–594. https://doi.org/10.1099/jgv.0.000724 |
dc.relation.references | Nunes, M. R. T., Weaver, S. C., Tesh, R. B., & Vasconcelos, P. F. C. (2005). Molecular Epidemiology of Group C Viruses (Bunyaviridae,. Society, 79(16), 10561–10570. https://doi.org/10.1128/JVI.79.16.10561 |
dc.relation.references | Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., … Stevens, R. (2014). The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 42(D1), 206–214. https://doi.org/10.1093/nar/gkt1226 |
dc.relation.references | Paessler, S., & Walker, D. H. (2013). Pathogenesis of the Viral Hemorrhagic Fevers. Annual Review of Pathology: Mechanisms of Disease, 8(1), 411–440. https://doi.org/10.1146/annurev-pathol-020712-164041 |
dc.relation.references | Parvate, A., Williams, E. P., Taylor, M. K., Chu, Y. K., Lanman, J., Saphire, E. O., & Jonsson, C. B. (2019). Diverse morphology and structural features of old and New World hantaviruses. Viruses, 11(9). https://doi.org/10.3390/v11090862 |
dc.relation.references | Piacenza, M. F., Calderón, G. E., Enría, D., Provensal, M. C., & Polop, J. J. (2018). Diferencia espacial de la incidencia de fiebre hemorrágica argentina y la composición y abundancia de roedores en el ensamble. Revista Chilena de Infectología, 35(4), 386–394. https://doi.org/10.4067/s0716-10182018000400386 |
dc.relation.references | Radford, A. D., Chapman, D., Dixon, L., Chantrey, J., Darby, A. C., & Hall, N. (2012). Application of next-generation sequencing technologies in virology. Journal of General Virology, 93(PART 9), 1853–1868. https://doi.org/10.1099/vir.0.043182-0 |
dc.relation.references | Reguera, J., Gerlach, P., Rosenthal, M., Gaudon, S., Coscia, F., Günther, S., & Cusack, S. (2016). Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathogens, 12(6), 1–24. https://doi.org/10.1371/journal.ppat.1005636 |
dc.relation.references | Rengifo, E. M., Calderón, W., & Aquino, R. (2013). Características de refugios de algunas especies de murciélagos en la cuenca alta del río Itaya, Loreto, Perú. UNED Research Journal, 5(1), 143–150. https://doi.org/10.22458/urj.v5i1.20 |
dc.relation.references | Restrepo, B., Rodas, J. D., Montoya-Ruiz, C., Zuluaga, A. M., Parra-Henao, G., & Agudelo-Flórez, P. (2016). Evidencia serológica retrospectiva de infecciones por Leptospira spp., dengue, hantavirus y arenavirus en indígenas Emberá-Katío, Colombia. Revista Chilena de Infectologia, 33(4), 472–473. https://doi.org/10.4067/S0716-10182016000400015 |
dc.relation.references | Rojek, J. M., & Kunz, S. (2008). Cell entry by human pathogenic arenaviruses. Cellular Microbiology, 10(4), 828–835. https://doi.org/10.1111/j.1462-5822.2007.01113.x |
dc.relation.references | Romero-Alvarez, D., & Escobar, L. E. (2018). Oropouche fever, an emergent disease from the Americas. Microbes and Infection, 20(3), 135–146. https://doi.org/10.1016/j.micinf.2017.11.013 |
dc.relation.references | Sabino-Santos, G., Maia, F. G. M., Martins, R. B., Gagliardi, T. B., De Souza, W. M., Muylaert, R. L., … Figueiredo, L. T. M. (2018). Natural infection of Neotropical bats with hantavirus in Brazil. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-27442-w |
dc.relation.references | Sahley, C. T., Cervantes, K., Pacheco, V., Salas, E., Paredes, D., & Alonso, A. (2015). Diet of a Sigmodontine Rodent Assemblage in a Peruvian Montane Forest. Journal of Mammalogy, 96(5), 1071–1080. https://doi.org/10.1093/jmammal/gyv112 |
dc.relation.references | Sakkas, H., Bozidis, P., Franks, A., & Papadopoulou, C. (2018). Oropouche fever: A review. Viruses, 10(4), 1–16. https://doi.org/10.3390/v10040175 |
dc.relation.references | Salim Mattar, V., & Marco González, T. (2015). Oropuche virus: A virus present but ignored. Revista MVZ Cordoba, 20(3), 4675–4676. https://doi.org/10.4269/ajtmh.14-0702.2. |
dc.relation.references | Sánchez-Seco, M. P., Echevarría, J. M., Hernández, L., Estévez, D., Navarro-Marí, J. M., & Tenorio, A. (2003). Detection and identification of Toscana and other phleboviruses by RT-nested-PCR assays with degenerated primers. Journal of Medical Virology, 71(1), 140–149. https://doi.org/10.1002/jmv.10465 |
dc.relation.references | Santos, R. I. M., Rodrigues, A. H., Silva, M. L., Mortara, R. A., Rossi, M. A., Jamur, M. C., … Arruda, E. (2008). Oropouche virus entry into HeLa cells involves clathrin and requires endosomal acidification. Virus Research, 138(1–2), 139–143. https://doi.org/10.1016/j.virusres.2008.08.016 |
dc.relation.references | Schlie, K., Strecker, T., & Garten, W. (2010). Maturation cleavage within the ectodomain of Lassa virus glycoprotein relies on stabilization by the cytoplasmic tail. FEBS Letters, 584(21), 4379–4382. https://doi.org/10.1016/j.febslet.2010.09.032 |
dc.relation.references | Shi, J., Hu, Z., Deng, F., & Shen, S. (2018). Tick-Borne Viruses. Virologica Sinica, 33(1), 21–43. https://doi.org/10.1007/s12250-018-0019-0 |
dc.relation.references | Soto, E., & Mattar, S. (2010). Fiebres hemorrágicas por Arenavirus en Latinoamérica. Salud Uninorte, 26(2), 298–310. |
dc.relation.references | Spiegel, M., Plegge, T., & Pöhlmann, S. (2016). The role of phlebovirus glycoproteins in viral entry, assembly and release. Viruses, 8(7). https://doi.org/10.3390/v8070202 |
dc.relation.references | Stefan, C. P., Chase, K., Coyne, S., Kulesh, D. A., Minogue, T. D., & Koehler, J. W. (2016). Development of real-time reverse transcriptase qPCR assays for the detection of Punta Toro virus and Pichinde virus. Virology Journal, 13(1), 1–6. https://doi.org/10.1186/s12985-016-0509-3 |
dc.relation.references | Strandin, T., Smura, T., Ahola, P., Aaltonen, K., Sironen, T., Hepojoki, J., … Forbes, K. M. (2020). Orthohantavirus isolated in reservoir host cells displays minimal genetic changes and retains wild-type infection properties. Viruses, 12(4), 1–14. https://doi.org/10.3390/v12040457 |
dc.relation.references | Suárez Larreinaga, C. L., & Berdasquera Corcho, D. (2000). Enfermedades emergentes y reemergentes: Factores causales y vigilancia. Revista Cubana de Medicina General Integral, 16(6), 593–597. |
dc.relation.references | Subudhi, S., Rapin, N., & Misra, V. (2019). Immune system modulation and viral persistence in bats: Understanding viral spillover. Viruses, 11(2). https://doi.org/10.3390/v11020192 |
dc.relation.references | Tauro, L. B., de Souza, W. M., Rivarola, M. E., de Oliveira, R., Konigheim, B., Silva, S. P., … Contigiani, M. S. (2019). Genomic characterization of orthobunyavirus of veterinary importance in America. Infection, Genetics and Evolution, 73(February), 205–209. https://doi.org/10.1016/j.meegid.2019.04.030 |
dc.relation.references | Torii, S., Matsuno, K., Qiu, Y., Mori-Kajihara, A., Kajihara, M., Nakao, R., … Sawa, H. (2019). Infection of newly identified phleboviruses in ticks and wild animals in Hokkaido, Japan indicating tick-borne life cycles. Ticks and Tick-Borne Diseases, 10(2), 328–335. https://doi.org/10.1016/j.ttbdis.2018.11.012 |
dc.relation.references | Weaver, S. C., Salas, R. A., De Manzione, N., Fulhorst, C. F., Duno, G., Utrera, A., … Tesh, R. B. (2000). Guanarito virus (Arenaviridae) isolates from endemic and outlying localities in Venezuela: Sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virology, 266(1), 189–195. https://doi.org/10.1006/viro.1999.0067 |
dc.relation.references | Yadav, P. D., Nyayanit, D. A., Shete, A. M., Jain, S., Majumdar, T. P., Chaubal, G. Y., … Mourya, D. T. (2019). Complete genome sequencing of Kaisodi virus isolated from ticks in India belonging to Phlebovirus genus, family Phenuiviridae. Ticks and Tick-Borne Diseases, 10(1), 23–33. https://doi.org/10.1016/j.ttbdis.2018.08.012 |
dc.relation.references | Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., … Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | Vigilancia epidemiológica |
dc.subject.proposal | Zoonoses |
dc.subject.proposal | Reservoirs |
dc.subject.proposal | Agentes infecciosos |
dc.subject.proposal | Reservorios |
dc.subject.proposal | Infectious agents |
dc.subject.proposal | Epidemiological surveillance |
dc.subject.proposal | Zoonosis |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |