Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorPérez González, Ernesto
dc.contributor.authorSánchez Muñoz, David Alejandro
dc.date.accessioned2021-01-28T21:12:41Z
dc.date.available2021-01-28T21:12:41Z
dc.date.issued2020-11-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78976
dc.description.abstractBecause of the increase in renewable sources participation in power systems globally, conventional protection schemes may lose reliability, security, and sensitivity to different failure events. Due to protection performance weakening, it is necessary to analyze the impact of Inverter-Based generation proliferation on protection schemes, identifying weak points, and proposing new schemes that meet new power systems’ needs. In this thesis’s particular, the distance protection scheme (21/21N) performance is evaluated, which is popular and effective in transmission networks due to its robustness to the operational scenario changes and the support it provides for adjacent elements failures. However, multiple studies indicate its loss of performance in scenarios with high penetration of renewable generation. Due to the harmful consequences of this protection’s failure on the system’s stability, the search for alternatives that mitigate the impact of new generation sources on this protection scheme has become a topic of great interest in the academic and industrial community. In this thesis, an algorithm is presented to increase the distance protection performance based on the correction of the apparent impedance seen by the protection relay using position and fault resistance estimations. Achieving notable increases in protection scheme safety and sensitivity for failures in adjacent elements failures improving its performance as backup protection. Also, a generic EMT model of a type IV renewable generator is presented as a controlled current source, which evaluates the impact of different inverter control strategies on the protection scheme’s operation.
dc.description.abstractDebido al incremento en la participación de fuentes renovables en los sistemas de potencia a nivel global, los esquemas de protección convencionales pueden perder confiabilidad, seguridad y sensibilidad ante diferentes eventos de falla, es por esto que, es necesario analizar el impacto de la proliferación de generación basada en inversores sobre los esquemas de protección, identificando puntos débiles y proponiendo nuevos esquemas que atiendan a las necesidades de los nuevos sistemas de potencia. En el caso particular de esta tesis, se evalúa el desempeño de la función de protección distancia (ANSI 21/21N) el cual es popular y efectivo en redes de transmisión debido a su robustez ante cambios de escenario operativo y al respaldo que provee para fallas en elementos adyacentes. Sin embargo, en múltiples estudios se señala su pérdida de desempeño en escenarios con alta penetración de generación renovable y debido a las consecuencias nocivas de la maloperación de esta protección sobre la estabilidad del sistema, la búsqueda de alternativas que mitiguen el impacto de las nuevas fuentes de generación sobre esta función de protección se ha convertido en un tema de gran interés en la comunidad académica e industrial. Debido a esto, en esta tesis se presenta un algoritmo para incrementar el rendimiento de la protección distancia basado en la corrección de la impedancia aparente vista por el relé de protección utilizando estimaciones de posición y resistencia de falla, logrando incrementos notables en la seguridad y sensibilidad de la función de protección para fallas en elementos adyacentes, mejorando su desempeño como protección de respaldo. Adicionalmente, se presenta un modelo EMT genérico de generador renovable tipo IV como fuente de corriente controlada, lo cual permite evaluar el impacto de las estrategias de diferentes estrategias de control de inversores sobre el funcionamiento de la función de protección.
dc.format.extent200
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleEstrategia de detección y localización de fallas para el esquema de protección distancia en redes con alta penetración de energía renovable de tipo eólica
dc.title.alternativeShort circuit detection and localization strategy for distance protection with high wind power penetration
dc.typeDocumento de trabajo
dc.rights.spaAcceso abierto
dc.description.projectEnergética 2030
dc.description.commentsLínea de investigación: Electrical power systems protection
dc.type.driverinfo:eu-repo/semantics/workingPaper
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellín
dc.contributor.researchgroupPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automática
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesR. Dubey, S. R. Samantaray, and B. K. Panigrahi, “Adaptive distance protection scheme for shunt-FACTS compensated line connecting wind farm,” IET Generation, Transmission and Distribution, vol. 10, no. 1, pp. 247–256, 2016.
dc.relation.referencesA. Hooshyar, M. A. Azzouz, and E. F. El-Saadany, “Distance Protection of Lines Emanating from Full-Scale Converter-Interfaced Renewable Energy Power Plants-Part II: Solution Description and Evaluation,” IEEE Transactions on Power Delivery, vol. 30, no. 4, pp. 1781–1791, 2015.
dc.relation.referencesA. M. Tsimtsios, G. N. Korres, and V. C. Nikolaidis, “A pilot-based distance protection scheme for meshed distribution systems with distributed generation,” International Journal of Electrical Power and Energy Systems, vol. 105, no. August 2018, pp. 454–469, 2019. [Online]. Available: https://doi.org/10.1016/j.ijepes.2018.08.022
dc.relation.referencesA. M. Tsimtsios, G. N. Korres, and V. C. Nikolaidis, “A pilot-based distance protection scheme for meshed distribution systems with distributed generation,” International s, vol. 105, no. August 2018, pp. 454–469, 2019. [Online]. Available: https://doi.org/10.1016/j.ijepes.2018.08.022
dc.relation.referencesI. E. AGENCY, “World Energy Outlook 2016,” International Energy Agency, Tech.Rep., 2016.
dc.relation.referencesBBC, “Electricity blackouts would cause ’severe economic consequences’,” 2014. [Online]. Available: https://www.bbc.com/news/business-30221520
dc.relation.referencesH. Hui, Y. Shiwen, M. Shuai, W. Chengzhi, G. Hao, and Y. Jufang, “Review on Economic Loss Assessment of Power Outages,” in Procedia Computer Science, vol. 130. Elsevier B.V., 2018, pp. 1158–1163. [Online]. vailable:https://doi.org/10.1016/j.procs.2018.04.151
dc.relation.referencesS. Tamronglak, S. E. Horowitz, and U. Consultant, “Anatomy of Power System Blackouts: Preventive Relaying Strategies,” IEEE Transactions on Power Delivery, vol. 11,no. 2, pp. 708–715, 1996.
dc.relation.referencesY. Fang, K. Jia, Z. Yang, T. Bi, and Y. Li, “Impact of Inverter-Interfaced Renewable Energy Generators on Distance Protection and an Improved Scheme,” IEEE Transactions on Industrial Electronics, vol. 0046, no. c, pp. 1–1, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8506376/
dc.relation.referencesV. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” CSEE Journal of Power and Energy Systems, vol. 3, no. 4, pp. 365–379, 2017. [Online]. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8233582
dc.relation.referencesE. Farantatos, U. Karaagac, H. Saad, and J. Mahseredjian, “Short-circuit current contribution of converter interfaced wind turbines and the impact on system protection,”Proceedings of IREP Symposium: Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid, IREP 2013, 2013
dc.relation.referencesK. Jia, Y. Li, Y. Fang, L. Zheng, T. Bi, and Q. Yang, “Transient current similarity based protection for wind farm transmission lines,” Applied Energy, vol. 225, no. December 2017, pp. 42–51, 2018. [Online]. Available: https://doi.org/10.1016/j.apenergy.2018.05.012
dc.relation.referencesV. Hari, D. S. Kumar, and J. S. Savier, “Phasor Measurement Based Fault Detection And Blocking / De-blocking of Distance Relay Under Power Swing,” in 2018 International CET Conference on Control, Communication, and Computing (IC4). IEEE, 2018, pp. 134–139.
dc.relation.referencesH. Sadeghi, “A novel method for adaptive distance protection of transmission line connected to wind farms,” International Journal of Electrical Power and Energy Systems, vol. 43, pp. 1376 – 1382, 2012.
dc.relation.referencesM. Nagpal and C. Henville, “Impact of Power-Electronic Sources on Transmission Line Ground Fault Protection,” IEEE Transactions on Power Delivery, vol. 33, no. 1, pp. 62–70, 2018.
dc.relation.referencesH. Lin, C. Liu, J. Vasquez, Z.-H. Tan, J. Guerrero, and K. Sun, “Adaptive Protection Combined with Machine Learning for Microgrids,” IET Generation, Transmission & Distribution, no. February, 2019.
dc.relation.referencesU. Karaagac, J. Mahseredjian, R. Gagnon, H. Gras, H. Saad, L. Cai, I. Kocar, A. Haddadi, E. Farantatos, S. Bu, K. W. Chan, and L. Wang, “A Generic EMT-Type Model for Wind Parks With Permanent Magnet Synchronous Generator Full Size Converter Wind Turbines,” IEEE Power and Energy Technology Systems Journal, vol. 6, no. 3, pp. 131–141, 2019.
dc.relation.referencesF. Wang, J. L. Duarte, and M. A. Hendrix, “Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips,” IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1511–1521, 2011.
dc.relation.referencesD. Bowes, T. Hall, and D. Gray, “Comparing the performance of fault prediction models which report multiple performance measures: Recomputing the confusion matrix,” ACM International Conference Proceeding Series, pp. 109–118, 2012.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalInverter Based Generation
dc.subject.proposalGeneración Basada en Inversores
dc.subject.proposalSistema de Protección
dc.subject.proposalProtection System
dc.subject.proposalFault Currents
dc.subject.proposalCorrientes de Falla
dc.subject.proposalProtección Adaptativa
dc.subject.proposalAdaptative Protection
dc.subject.proposalTeleprotección
dc.subject.proposalTeleprootection
dc.subject.proposalWind Farm Type IV
dc.type.coarhttp://purl.org/coar/resource_type/c_8042
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/WP
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit