Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMoreno Mantilla, Carlos Eduardo
dc.contributor.authorBalcázar Camacho, Delio Alexander
dc.date.accessioned2021-01-29T16:04:03Z
dc.date.available2021-01-29T16:04:03Z
dc.date.issued2020-12-09
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78994
dc.description.abstractTwo main approaches to analyze the strategies through which organizations establish their competitive position have been addressed in the literature: the approach based on external forces and the approach based on the theory of resources and organizational capabilities. Within organizational capabilities, logistics capabilities were identified in the 1990s as sources of competitive advantages and superior performance of organizations. Several authors began to classify these capabilities according to customer (demand), operational efficiency (sourcing), information management and other categories. Logistics capabilities have been previously studied in the literature to verify their relationship with operational performance, and the development of capabilities at the supply chain level, such as integrated logistics capabilities. However, the studies have not been conducted in the context of agricultural product supply chains. As a result, this research aims to address integrated logistics capabilities in the context of collaborative structures of agricultural producers, to verify how integrated logistics capabilities are related to the operational performance of agricultural producers. To achieve this goal, a mixed research design of exploratory sequential type, is addressed in the instrument development variant. The selected research design starts from a qualitative phase in which interviews and a literature review are carried out to build and adapt an instrument that was applied in a subsequent quantitative phase. The data were analyzed using a PLS-SEM. As a result of the conducted analysis, it was verified that supply-oriented and information management-oriented logistics capabilities are positively related to integrated logistics capabilities. Also, customer-oriented logistics capabilities and integrated logistics capabilities are positively related to the operational performance of agriculture producers and explain 40% of its operational performance variance.
dc.description.abstractEn la literatura se han abordado dos enfoques principales para analizar las estrategias a través de las cuales las organizaciones fijan su posición competitiva: El enfoque basado en las fuerzas externas y el enfoque basado en la teoría de recursos y capacidades organizacionales. Dentro de las capacidades organizacionales, en los años 90s se identificaron las capacidades logísticas como fuentes de ventajas competitivas y desempeño superior de las organizaciones. Varios autores comenzaron a clasificar estas capacidades en función del cliente (la demanda), la eficiencia operativa (abastecimiento), manejo de información y otras categorías de capacidades. Las capacidades logísticas han sido estudiadas previamente en la literatura para verificar su relación con el desempeño operacional, y el desarrollo de capacidades a nivel de cadena de suministro, como las capacidades logísticas integradas. Sin embargo, los estudios en este último campo no han contemplado el contexto de cadenas de suministro de productos agrícolas. En consecuencia, esta investigación se desarrolla desde el contexto de estructuras de colaboración de productores agrícolas, para verificar la manera como se configuran capacidades logísticas integradas y como se relacionan con el desempeño operacional de los productores. Para lograr este objetivo, se aborda un diseño de investigación mixto, de tipo secuencial exploratorio, en la variante de desarrollo de instrumento. En el diseño seleccionado se parte de una fase cualitativa en la que se realizan entrevistas y una revisión de la literatura para construir y adecuar un instrumento que se aplicó en una fase cuantitativa posterior. Los datos fueron analizados utilizando un modelo de ecuaciones estructurales PLS-SEM. Como resultado del análisis se verificó que las capacidades logísticas orientadas al abastecimiento y al manejo de información contribuyen al desarrollo de las capacidades logísticas integradas, y que estas, a su vez, junto con las capacidades logísticas orientadas al cliente, contribuyen a explicar cerca del 40% de la varianza del desempeño operativo de los productores agrícolas.
dc.format.extent181
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleConfiguración y desarrollo de capacidades logísticas integradas en estructuras colaborativas de productores agrícolas
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Métodos y modelos de optimización y estadística en ingeniería industrial y administrativa
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Industria y Organizaciones
dc.description.degreelevelDoctorado
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAlfonso-Lizarazo, E. H., Montoya-Torres, J. R., & Gutierrez-Franco, E. (2013). Modeling reverse logistics process in the agro-industrial sector: The case of the palm oil supply chain. APPLIED MATHEMATICAL MODELLING, 37(23), 9652–9664. https://doi.org/10.1016/j.apm.2013.05.015
dc.relation.referencesAmit, R., & Schoemaker, P. J. H. (1993). Strategic assets and organizational rent. Strategic Management Journal, 14(1), 33–46. https://doi.org/10.2307/2486548
dc.relation.referencesArango Serna, M. D., Adarme Jaime, W., & Contreras Portilla, P. (2011). Vendor Managed Inventory (VMI) in micro, small and medium enterprises (MSMEs) - Plantain agricultural-chain. REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, (59), 181–192.
dc.relation.referencesBahadori, R. (2018). Development of a framework for configuring fractal supply networks and logistics capabilities. Sheffield Hallam University. https://doi.org/10.7190/shu-thesis-00116
dc.relation.referencesBarney, J. (1991). Firm Resources and Sustained Competitive Advantage. Journal of Management, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
dc.relation.referencesBattaglia, M. P. (2008). Nonprobability sampling. In Encyclopedia of survey research methods (pp. 523–526). Sage.
dc.relation.referencesBerti, G., & Mulligan, C. (2016). Competitiveness of small farms and innovative food supply chains: The role of food hubs in creating sustainable regional and local food systems. Sustainability (Switzerland), 8(7). https://doi.org/10.3390/su8070616
dc.relation.referencesBollen, K. A. (1989). Structural Equations with Latent Variables. John Wiley & Sons, Inc.
dc.relation.referencesBosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. FOOD CONTROL, 33(1), 32–48. https://doi.org/10.1016/j.foodcont.2013.02.004
dc.relation.referencesBrodsky, A. E., Buckingham, S. L., Scheibler, J. E., & Mannarini, T. (2015). Introduction to Qualitative Approaches. In Handbook of Methodological Approaches to Community-Based Research (pp. 13–22). Oxford University Press.
dc.relation.referencesBrown, T. A. (2006). Confirmatory factor analysis for applied research.
dc.relation.referencesCanavari, M., Centonze, R., Hingley, M., & Spadoni, R. (2010). Traceability as part of competitive strategy in the fruit supply chain. BRITISH FOOD JOURNAL, 112(2–3), 171–186. https://doi.org/10.1108/00070701011018851
dc.relation.referencesChen, I. J., & Paulraj, A. (2004). Towards a theory of supply chain management: The constructs and measurements. Journal of Operations Management, 22, 119–150. https://doi.org/10.1016/j.jom.2003.12.007
dc.relation.referencesChiadamrong, N., & Sophonsaritsook, P. (2015). Relationships between supply chain capabilities, competitive advantage and business performance: an exploratory study of the food industry in Thailand. International Journal of Logistics Systems and Management, 20(4), 447. https://doi.org/10.1504/IJLSM.2015.068489
dc.relation.referencesChopra, S., & Meindl, P. (2007). Supply Chain Management: Strategy, Planning, and Operation. Pearson Prentice Hall.
dc.relation.referencesCohen, J. (1988). Statistical power analysis for the behavioral sciences. L. Erlbaum Associates.
dc.relation.referencesCooper, D., & Greenaway, M. (2015). Non-probability Survey Sampling in Official Statistics (ONS Methodology Working Paper Series No 4).
dc.relation.referencesCooper, M., Lambert, D., & Pagh, J. (1997). Supply chain management: more than a new name for logistics. The International Journal of Logistics Management.
dc.relation.referencesCreswell, J. W. (2013). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). London: SAGE Publications Inc.
dc.relation.referencesCreswell, J. W., & Plano Clark, V. L. (2017). Designing and conducting mixed methods research (3rd ed.). SAGE Publications.
dc.relation.referencesCruijssen, F., Dullaert, W., & Fleuren, H. (2007). Horizontal Cooperation in Transport and Logistics: A Literature Review. Transportation Journal, 46(3), 22–39. https://doi.org/10.2307/20713677
dc.relation.referencesDay, G. S. (1994). The Capabilities of Market-Driven Organizations. Journal of Marketing, 58(4), 37. https://doi.org/10.2307/1251915
dc.relation.referencesDeVellis, R. F. (2003). Scale development : theory and applications. Sage Publications.
dc.relation.referencesDyer, J. H. ., & Singh, H. (1998). The Relational View : Cooperative Strategy and Sources of Interorganizational Competitive Advantage. Academy of Management Review, 23(4), 660–679.
dc.relation.referencesEdmonds, W. A., & Kennedy, T. D. (2017). An Applied Guide to Research Designs: Quantitative, Qualitative, and Mixed Methods. Sage Publications.
dc.relation.referencesEisenhardt, K. M., & Schoonhoven, C. B. (1996). Resource-based View of Strategic Alliance Formation: Strategic and Social Effects in Entrepreneurial Firms. Organization Science, 7(2), 136–150.
dc.relation.referencesFawcett, S. E., Osterhaus, P., Magnan, G. M., Brau, J. C., & McCarter, M. W. (2007). Information sharing and supply chain performance: The role of connectivity and willingness. Supply Chain Management, 12(5), 358–368. https://doi.org/10.1108/13598540710776935
dc.relation.referencesGligor, D. M., & Holcomb, M. (2014a). The road to supply chain agility: An RBV perspective on the role of logistics capabilities. International Journal of Logistics Management, 25(1), 160–179. https://doi.org/10.1108/IJLM-07-2012-0062
dc.relation.referencesGligor, D. M., & Holcomb, M. C. (2012a). Antecedents and consequences of supply chain agility: Establishing the link to firm performance. Journal of Business Logistics, 33(4), 295–308. https://doi.org/10.1111/jbl.12003
dc.relation.referencesGligor, D. M., & Holcomb, M. C. (2012b). Understanding the role of logistics capabilities in achieving supply chain agility: A systematic literature review. Supply Chain Management, 17(4), 438–453. https://doi.org/10.1108/13598541211246594
dc.relation.referencesGrant, R. M. (1996). Prospering in Dynamically-competitive Environments: Organizational Capability as Knowledge Integration. Organization Science, 7(4), 13. https://doi.org/10.1287/orsc.7.4.375
dc.relation.referencesHair, J. (2014). A primer on partial least squares structural equations modeling (PLS-SEM). SAGE.
dc.relation.referencesHair, J. F. J., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis.
dc.relation.referencesHernández, R., Fernández, C., & Baptista, P. (2010). Metodología de la investigación (Quinta Edi). McGRAW-Hill Interamericana.
dc.relation.referencesHesse, M., & Rodrigue, J. P. (2004). The transport geography of logistics and freight distribution. Journal of Transport Geography, 12(3), 171–184. https://doi.org/10.1016/j.jtrangeo.2003.12.004
dc.relation.referencesKline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). The Guilford Press.
dc.relation.referencesLai, K.-H. (2004). Service capability and performance of logistics service providers. Transportation Research Part E: Logistics and Transportation Review, 40(5), 385–399. https://doi.org/10.1016/j.tre.2004.01.002
dc.relation.referencesKovács, G., & Spens, K. M. (2005). Abductive reasoning in logistics research. International Journal of Physical Distribution & Logistics Management, 35(2), 132–144. https://doi.org/10.1108/09600030510590318
dc.relation.referencesLai, K.-H. (2004). Service capability and performance of logistics service providers. Transportation Research Part E: Logistics and Transportation Review, 40(5), 385–399. https://doi.org/10.1016/j.tre.2004.01.002
dc.relation.referencesLiu, M., & Fu, S. (2015). Comprehensive Evaluation and Research of the Rural Logistics Capability in Hebei Province, 1–5.
dc.relation.referencesMandal, S., Bhattacharya, S., Korasiga, V. R., & Sarathy, R. (2017). The dominant influence of logistics capabilities on integration. International Journal of Disaster Resilience in the Built Environment, 8(4), 357–374. https://doi.org/10.1108/ijdrbe-05-2016-0019
dc.relation.referencesMentzer, J., Min, S., & Bobbitt, L. M. (2004). Toward a unified theory of logistics. International Journal of Physical Distribution & Logistics Management, 34(8), 606–627. https://doi.org/10.1108/09600030410557758
dc.relation.referencesMentzer, J., Min, S., & Zacharia, Z. G. (2000). The nature of interfirm partnering in supply chain management. Journal of Retailing, 76(4), 549–568. https://doi.org/10.1016/S0022-4359(00)00040-3
dc.relation.referencesMentzer, J.T., & Kahn, K. B. (1995). A framework of logistics research. Journal of Business Logistics, 16(1), 231–250.
dc.relation.referencesStank, T. P., & Lackey, C. W. (1997). Enhancing performance through logistical capabilities in Mexican maquiladora firms. Journal of Business Logistics, 18(1), 91–123.
dc.relation.referencesWu, F., Yeniyurt, S., Kim, D., & Cavusgil, S. T. (2006). The impact of information technology on supply chain capabilities and firm performance: A resource-based view. Industrial Marketing Management, 35, 493–504. https://doi.org/10.1016/j.indmarman.2005.05.003
dc.relation.referencesZacharia, Z. G., Nix, N. W., & Lusch, R. F. (2011). Capabilities that enhance outcomes of an episodic supply chain collaboration. Journal of Operations Management, 29(6), 591–603. https://doi.org/10.1016/j.jom.2011.02.001
dc.relation.referencesZhao, M., Dröge, C., & Stank, T. P. (2001). The effects of logistics capabilities on firm performance: customer-focused versus information-focused capabilities. Journal of Business Logistics, 22(2), 91–107. https://doi.org/10.1002/j.2158-1592.2001.tb00005.x
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalCadena de suministro
dc.subject.proposalLogistics capabilities
dc.subject.proposalEcuaciones estructurales
dc.subject.proposalSupply chain management
dc.subject.proposalCapacidades logísticas
dc.subject.proposalStructural equation modeling
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit