Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCamacho Tamayo, Jesús Hernán
dc.contributor.advisorRubiano Sanabria, Yolanda
dc.contributor.authorFernández Martínez, Felipe
dc.date.accessioned2021-01-29T22:30:20Z
dc.date.available2021-01-29T22:30:20Z
dc.date.issued2020-11-11
dc.identifier.citationFernández Martínez, F. (2020). Desarrollo de modelo para determinar el stock de carbono orgánico del suelo con base en reflectancia difusa. Caso: Carimagua – Meta [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79000
dc.description.abstractSoil Organic Carbon Stock (SOCS) is a determining factor to evaluate the quality of agroecosystems and at the same time, plays a fundamental role in mitigating climate change. This highlights the importance of monitoring SOCS at different spatial and temporal scales, which represents a high demand of resources. The aim of this research was to develop a model based on Near Infrared (NIR) diffuse reflectance spectroscopy to estimate the SOCS of a Colombian Oxisol. Using a rigid grid system of 70 points in 248 ha, 313 soil samples were collected at five defined depths of 0-10, 10-20, 20-30, 30-40 and 40-50 cm. Soil Organic Carbon (SOC), Bulk Density (BD), textural fractions and porosities were determined for each sample using conventional laboratory methodologies, as well as the SOCS calculation. Likewise, spectral signatures were acquired in the NIR range of each soil sample, and together with laboratory data, were used to build the estimation models applying Partial Least Squares Regression (PLSR). A highly representative model was obtained for the estimation of SOCS (R2 = 0.93, RMSE = 2.12 tC/ha, RPD = 3.69), which was corroborated with the spatial variability evaluated with depth splines and geostatistical interpolation surfaces. NIR diffuse reflectance spectroscopy proved to be a viable alternative for estimating SOCS.
dc.description.abstractEl Stock de Carbono Orgánico del Suelo (SCOS) es un aspecto determinante para evaluar la calidad en los agroecosistemas, y a su vez cumple una función fundamental en la mitigación del cambio climático. Debido a esto, es ideal monitorear el SCOS a diferentes escalas espaciales y temporales, lo cual representa una inversión de recursos difícil de satisfacer. El objetivo de esta investigación fue desarrollar un modelo con base en espectroscopía de reflectancia difusa en Infrarrojo Cercano (NIR, por sus siglas en inglés) para estimar el SCOS en un Oxisol de Colombia. Mediante una red rígida de 70 puntos en 248 ha, fueron recolectadas 313 muestras de suelo en cinco profundidades definidas de 0-10, 10-20, 20-30, 30-40 y 40-50 cm. A cada muestra se le determinó el contenido de Carbono Orgánico del Suelo (COS), Densidad Aparente (DA), fracciones texturales y porosidades por medio de metodologías convencionales de laboratorio, así como también el cálculo del SCOS. Así mismo, fueron adquiridas firmas espectrales en el rango NIR de cada muestra de suelo que, junto con los datos medidos en laboratorio, se usaron para alimentar los modelos de estimación aplicando regresión de mínimos cuadrados parciales (PLSR). Se alcanzó un modelo de alta representatividad para la estimación de SCOS (R2 = 0,93, RMSE = 2,12 tC/ha, RPD = 3,69), lo cual se corroboró con la variabilidad espacial evaluada con splines de profundidad y superficies de interpolación geoestadística. La espectroscopía de reflectancia difusa en NIR mostró ser una alternativa viable para la estimación del SCOS.
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.extent119
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation37685
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.ddc550 - Ciencias de la tierra
dc.subject.ddc543 - Química analítica
dc.subject.ddc540 - Química y ciencias afines
dc.titleDesarrollo de modelo para determinar el stock de carbono orgánico del suelo con base en reflectancia difusa. Caso: Carimagua – Meta
dc.title.alternativeModel development to determine the soil organic carbon stock based on diffuse reflectance. Case: Carimagua – Meta
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.description.projectModelamiento del contenido de carbono de los suelos de la altillanura plana del municipio de Puerto Gaitán (Meta)
dc.description.additionalLínea de investigación: Suelos y Aguas.
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupIngeniería de Biosistemas
dc.description.degreelevelMaestría
dc.publisher.departmentEscuela de posgrados
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAl-Asadi, R. A., & Mouazen, A. M. (2014). Combining frequency domain reflectometry and visible and near infrared spectroscopy for assessment of soil bulk density. Soil and Tillage Research, 135, 60–70. https://doi.org/10.1016/j.still.2013.09.002
dc.relation.referencesAlarcón Jiménez, M. F. (2013). Determinación de zonas de manejo agrícola basadas en el rendimiento de maíz y su relación con atributos edáficos en la altillanura plana [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/20706
dc.relation.referencesAldana-Jague, E., Heckrath, G., Macdonald, A., van Wesemael, B., & Van Oost, K. (2016). UAS-based soil carbon mapping using VIS-NIR (480-1000 nm) multi-spectral imaging: Potential and limitations. Geoderma, 275, 55–66. https://doi.org/10.1016/j.geoderma.2016.04.012
dc.relation.referencesAllo, M., Todoroff, P., Jameux, M., Stern, M., Paulin, L., & Albrecht, A. (2020). Prediction of tropical volcanic soil organic carbon stocks by visible-near- and mid-infrared spectroscopy. Catena, 189, 104452. https://doi.org/10.1016/j.catena.2020.104452
dc.relation.referencesAllory, V., Cambou, A., Moulin, P., Schwartz, C., Cannavo, P., Vidal-Beaudet, L., & Barthès, B. G. (2019). Quantification of soil organic carbon stock in urban soils using visible and near infrared reflectance spectroscopy (VNIRS) in situ or in laboratory conditions. Science of the Total Environment, 686, 764–773. https://doi.org/10.1016/j.scitotenv.2019.05.192
dc.relation.referencesAraújo, S. R., Söderström, M., Eriksson, J., Isendahl, C., Stenborg, P., & Demattê, J. A. M. (2015). Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy. Geoderma, 237, 308–317. https://doi.org/10.1016/j.geoderma.2014.09.014
dc.relation.referencesArzuaga, S. A., Toledo, D. M., Leiva, S. M. C., & Vázquez, S. (2016). Carbon and nitrogen stocks and stratification ratios in oxisols under forest systems. Ciencia Del Suelo, 34(1), 13–20
dc.relation.referencesAtehortúa, M. R. (2016). Stock de carbono del suelo, a escala local, en ocho sistemas de uso agrícola del piedemonte llanero [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56121
dc.relation.referencesBarnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772–777. https://doi.org/10.1366/0003702894202201
dc.relation.referencesBellon-Maurel, V., & McBratney, A. (2011). Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils - Critical review and research perspectives. Soil Biology and Biochemistry, 43(7), 1398–1410. https://doi.org/10.1016/j.soilbio.2011.02.019
dc.relation.referencesBen-Dor, E., Inbar, Y., & Chen, Y. (1997). The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm) during a controlled decomposition process. Remote Sensing of Environment, 61(1), 1–15. https://doi.org/10.1016/S0034-4257(96)00120-4
dc.relation.referencesBen Dor, E., Ong, C., & Lau, I. C. (2015). Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma, 245–246, 112–124. https://doi.org/10.1016/j.geoderma.2015.01.002
dc.relation.referencesBeretta, A. N., Silbermann, A. V., Paladino, L., Torres, D., Bassahun, D., Musselli, R., & García-Lamohte, A. (2014). Análisis de textura del suelo con hidrómetro: Modificaciones al método de Bouyoucus. Ciencia e Investigacion Agraria, 41(2), 263–271. https://doi.org/10.4067/S0718-16202014000200013
dc.relation.referencesBigham, J. M., Golden, D. C., Bowen, L. H., Buol, S. W., & Weed, S. B. (1978). Iron Oxide Mineralogy of Well‐drained Ultisols and Oxisols: I. Characterization of Iron Oxides in Soil Clays by Mössbauer Spectroscopy, X‐ray Diffractometry, and Selected Chemical Techniques. Soil Science Society of America Journal, 42(5), 816–825. https://doi.org/https://doi.org/10.2136/sssaj1978.03615995004200050033x
dc.relation.referencesBiondi, F., Myers, D. E., & Avery, C. C. (1994). Geostatistically modelling stem size and increment in an old-growth forest. Canadian Journal of Forest Research, 24(7), 1354–1368.
dc.relation.referencesBlaschek, M., Roudier, P., Poggio, M., & Hedley, C. B. (2019). Prediction of soil available water-holding capacity from visible near-infrared reflectance spectra. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-019-49226-6
dc.relation.referencesBonett, J. P. (2013). Uso de la espectroscopía de reflectancia difusa (MIR) para la determinación de las propiedades químicas en suelos agrícolas de Colombia [Universidad Nacional de Colombia, sede Bogotá.]. https://repositorio.unal.edu.co/handle/unal/51527
dc.relation.referencesBorja Martínez, K., Mercado Lázaro, J., & Combatt Caballero, E. M. (2015). Dispersantes químicos y cuantificación de fracciones texturales por los métodos Bouyoucos y pipeta. Acta Agronomica, 64(4), 308–314. https://doi.org/10.15446/acag.v64n4.45722
dc.relation.referencesBrodský, L., Vašát, R., Klement, A., Zádorová, T., & Jakšík, O. (2013). Uncertainty propagation in VNIR reflectance spectroscopy soil organic carbon mapping. Geoderma, 199, 54–63. https://doi.org/10.1016/j.geoderma.2012.11.006
dc.relation.referencesCamacho-Tamayo, J. H. (2013). Uso de la reflectancia difusa -NIR en la determinación de características físicas y químicas de un Oxisol. Carimagüa -Meta [Universidad Nacional de Colombia, Sede Bogotá]. https://repositorio.unal.edu.co/handle/unal/20889
dc.relation.referencesCamacho-Tamayo, J. H., Forero-Cabrera, N. M., Ramírez L., L., & Rubiano S., Y. (2017). Evaluación de textura del suelo con espectroscopía de infrarrojo cercano en un oxisol de Colombia. Colombia Forestal, 20(1), 5–18
dc.relation.referencesCamacho-Tamayo, J. H., Rubiano, Y. S., & Hurtado, M. del P. (2014). Near-infrared (NIR) diffuse reflectance spectroscopy for the prediction of carbon and nitrogen in an Oxisol. Agronomía Colombiana, 32(1), 86–94.
dc.relation.referencesCambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Science Society of America Journal, 58(5), 1501–1511. https://doi.org/10.2136/sssaj1994.03615995005800050033x
dc.relation.referencesCambou, A., Cardinael, R., Kouakoua, E., Villeneuve, M., Durand, C., & Barthès, B. G. (2016). Prediction of soil organic carbon stock using visible and near infrared reflectance spectroscopy (VNIRS) in the field. Geoderma, 261, 151–159. https://doi.org/10.1016/j.geoderma.2015.07.007
dc.relation.referencesCampos, B.-H. C. de, Amado, T. J. C., Bayer, C., Nicoloso, R. da S., & Fiorin, J. E. (2011). Carbon stock and its compartments in a subtropical oxisol under long-term tillage and crop rotation systems. Revista Brasileira de Ciência Do Solo, 35(3), 805–817. https://doi.org/10.1590/s0100-06832011000300016
dc.relation.referencesChartin, C., Stevens, A., Goidts, E., Krüger, I., Carnol, M., & Van Wesemael, B. (2016). Mapping Soil Organic Carbon stocks and estimating uncertainties at the regional scale following a legacy sampling strategy (Southern Belgium, Wallonia). Geoderma Regional, 9, 73–86. https://doi.org/10.1016/j.geodrs.2016.12.006
dc.relation.referencesChaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil Bulk Density as related to Soil Texture, Organic Matter Content and available total Nutrients of Coimbatore Soil. International Journal of Scientific and Research Publications, 3(1), 2250–3153. https://doi.org/10.2136/sssaj2015.11.0407
dc.relation.referencesCombatt-Caballero, E. M., Palencia-L, M., & Borja-M, K. (2018). Particle size distribution by Bouyoucos in slightly alkaline soils from department of Cordoba, Colombia. Acta Agronomica, 67(1), 126–132. https://doi.org/10.15446/acag.v67n1.60762
dc.relation.referencesComino, F., Aranda, V., García-Ruiz, R., Ayora-Cañada, M. J., & Domínguez-Vidal, A. (2018). Infrared spectroscopy as a tool for the assessment of soil biological quality in agricultural soils under contrasting management practices. Ecological Indicators, 87, 117–126. https://doi.org/10.1016/j.ecolind.2017.12.046
dc.relation.referencesConforti, M., Buttafuoco, G., Leone, A. P., Aucelli, P. P. C., Robustelli, G., & Scarciglia, F. (2013). Studying the relationship between water-induced soil erosion and soil organic matter using Vis-NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena, 110, 44–58. https://doi.org/10.1016/j.catena.2013.06.013
dc.relation.referencesConforti, M., Castrignanò, A., Robustelli, G., Scarciglia, F., Stelluti, M., & Buttafuoco, G. (2015). Laboratory-based Vis-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content. Catena, 124, 60–67. https://doi.org/10.1016/j.catena.2014.09.004
dc.relation.referencesCortés, A., & Malagón, D. (1984). Los levantamientos agrológicos y sus aplicaciones múltiples. Universidad de Bogotá Jorge Tadeo Lozano.
dc.relation.referencesCurcio, D., Ciraolo, G., Asaro, F. D., & Minacapilli, M. (2013). Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences, 19, 494–503. https://doi.org/10.1016/j.proenv.2013.06.056
dc.relation.referencesDay, P. R. (1965). Particle fractionation and particle size analysis. In C. A. Black (Ed.), Method of soil analysis, Part I (pp. 565–566). Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.1.c43
dc.relation.referencesDemattê, José, Horák-Terra, I., Beirigo, R. M., Terra, F. da S., Marques, K. P. P., Fongaro, C. T., Silva, A. C., & Vidal-Torrado, P. (2017). Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. Journal of Environmental Management, 197, 50–62. https://doi.org/10.1016/j.jenvman.2017.03.014
dc.relation.referencesDemattê, José, Sousa, A. A., Alves, M. C., Nanni, M. R., Fiorio, P. R., & Campos, R. C. (2006). Determining soil water status and other soil characteristics by spectral proximal sensing. Geoderma, 135, 179–195. https://doi.org/10.1016/j.geoderma.2005.12.002
dc.relation.referencesDemattê, Jose, Terra, F. da S., & Quartaroli, C. F. (2012). Spectral behavior of some modal soil profiles from São Paulo State, Brazil. Soil and Plant Nutrition, 71(3), 413–423.
dc.relation.referencesDokuchaev, V. (1883). Russian Chernozem. In Selected works of V.V. Dokuchaev, Vol I. Israel Program for Scientific Translations, Jerusalem (translated in 1967).
dc.relation.referencesDumas, J. B. A. (1831). Procédés de l’analyse organique. Annales de Chimie et de Physique, 247(47), 198–213.
dc.relation.referencesEscribano, P., Schmid, T., Chabrillat, S., Rodríguez C, E., & García, M. (2017). Optical Remote Sensing for Soil Mapping and Monitoring. In Soil Mapping and Process Modeling for Sustainable Land Use Management (p. 39). Elsevier.
dc.relation.referencesESRI. (2018). ArcGIS 10.6 (10.6). Environmental Systems Research Institute.
dc.relation.referencesFAO. (2009). Guía para la descripción de suelos. In Organización de las Naciones Unidas para la Agricultura y la Alimentación. FAO. http://www.fao.org/3/a-a0541s.pdf
dc.relation.referencesFAO. (2011). El estado de los recursos de tierras y aguas del mundo para la alimentación y la agricultura. Roma, 50. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesFAO. (2019). Measuring and modelling soil carbon stocks and stock changes in livestock production systems Guidelines for assessment (Version 1). FAO. http://www.fao.org/3/ca2934en/CA2934EN.pdf
dc.relation.referencesGamez Ávila, C. C. (2019). Uso de modelos espectrales VIS – NIR para la determinación del contenido de carbono del suelo [Universidad Nacional de Colombia, Sede Bogotá]. https://repositorio.unal.edu.co/handle/unal/76626
dc.relation.referencesGras, J. P., Barthès, B. G., Mahaut, B., & Trupin, S. (2014). Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoils. Geoderma, 214–215, 126–134. https://doi.org/10.1016/j.geoderma.2013.09.021
dc.relation.referencesHengl, T. (2009). A Practical guide to Geostatistical Mapping (2nd ed.). Office for Official Publications of the European Communities.
dc.relation.referencesHobley, E., & Prater, I. (2019). Estimating soil texture from vis–NIR spectra. European Journal of Soil Science, 70(1), 83–95. https://doi.org/10.1111/ejss.12733
dc.relation.referencesHuang, J., Hartemink, A. E., & Zhang, Y. (2019). Climate and land-use change effects on soil carbon stocks over 150 years in Wisconsin, USA. Remote Sensing, 11(12), 1504. https://doi.org/10.3390/rs11121504
dc.relation.referencesHuertas, H. D., Rangel, J. A., & Parra, A. S. (2018). Caracterización de la fertilidad química de los suelos en sistemas productivos de la altillanura plana, Meta, Colombia. Revista Luna Azul, 46(46), 54–69. https://doi.org/10.17151/luaz.2018.46.5
dc.relation.referencesIGAC. (2004). Estudio general de suelos y zonificación de tierras: Departamento de Meta. Instituto Geográfico Agustín Codazzi, Subdirección de Agrología.
dc.relation.referencesIPCC. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 4 - Agriculture, forestry and other land use (E. Calvo Buendia, K. Tanabe, A. Kranjc, J. Baasansuren, M. Fukuda, S. Ngarize, A. Osako, Y. Pyrozhenko, P. Shermanau, & S. Federici (eds.)). The Intergovernmental Panel on Climate Change (IPCC).
dc.relation.referencesIUSS Working Group WRB. (2015). Base referencial mundial del recurso suelo 2014, Actualización 2015. In Base referencial mundial del recurso suelo. FAO. http://www.fao.org/3/i3794es/I3794es.pdf
dc.relation.referencesJaconi, A., Don, A., & Freibauer, A. (2017). Prediction of soil organic carbon at the country scale : stratification strategies for near-infrared data. European Journal of Soil Science, 68(6), 1–11. https://doi.org/10.1111/ejss.12485
dc.relation.referencesJaimes, W., Navas, G., Salamanca, C., & Conde, A. (2003). Estudio Detallado de Suelos de la Estación Experimental de CORPOICA “Sabanas” en la Altillanura Colombiana. Corpoica.
dc.relation.referencesJandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter, D. de B., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468–469, 376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026
dc.relation.referencesJenny, H. (1941). Factors of soil formation: a system of quantitative pedology (Vol. 68, Issue 4). Dover Publications. https://doi.org/10.1016/0016-7061(95)90014-4
dc.relation.referencesJia, X., Chen, S., Yang, Y., Zhou, L., Yu, W., & Shi, Z. (2017). Organic carbon prediction in soil cores using VNIR and MIR techniques in an alpine landscape. Scientific Reports, 7(1), 2144. https://doi.org/10.1038/s41598-017-02061-z
dc.relation.referencesJohnson, J. M. F., Franzluebbers, A. J., Weyers, S. L., & Reicosky, D. C. (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150(1), 107–124. https://doi.org/10.1016/j.envpol.2007.06.030
dc.relation.referencesKatuwal, S., Knadel, M., Norgaard, T., Moldrup, P., Greve, M. H., & de Jonge, L. W. (2020). Predicting the dry bulk density of soils across Denmark: Comparison of single-parameter, multi-parameter, and vis–NIR based models. Geoderma, 361(May 2019), 114080. https://doi.org/10.1016/j.geoderma.2019.114080
dc.relation.referencesKennard, R. W., & Stone, L. A. (1969). Computer Aided Design of Experiments. Technometrics, 11(1), 137–148.
dc.relation.referencesKuang, B., & Mouazen, A. M. (2013). Non-biased prediction of soil organic carbon and total nitrogen with vis-NIR spectroscopy, as affected by soil moisture content and texture. Biosystems Engineering, 114(3), 249–258. https://doi.org/10.1016/j.biosystemseng.2013.01.005
dc.relation.referencesLaamrani, A., Berg, A. A., Voroney, P., Feilhauer, H., Blackburn, L., March, M., Dao, P. D., He, Y., & Martin, R. C. (2019). Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario , Canada. Remote Sensing, 11(11), 1–15.
dc.relation.referencesLandcare Research. (2016). Agricultural Greenhouse Gases: Mapping Soil Organic. https://www.nzagrc.org.nz/fact-sheets,listing,232,reducing-new-zealands-agricultural-emissions-mapping-soil-organic-carbon-stocks.html
dc.relation.referencesLee, J., Hopmans, J. W., Rolston, D. E., Baer, S. G., & Six, J. (2009). Determining soil carbon stock changes: Simple bulk density corrections fail. Agriculture, Ecosystems and Environment, 134(3–4), 251–256. https://doi.org/10.1016/j.agee.2009.07.006
dc.relation.referencesLeone, A. P., Leone, G., Leone, N., Galeone, C., Grilli, E., Orefice, N., & Ancona, V. (2019). Capability of Diffuse Reflectance Spectroscopy to Predict Soil Water Retention and Related Soil. Water (Switzerland), 11(1712), 1–16.
dc.relation.referencesLeone, A. P., Viscarra-Rossel, R. A., Amenta, P., & Buondonno, A. (2012). Prediction of Soil Properties with PLSR and vis-NIR Spectroscopy: Application to Mediterranean Soils from Southern Italy. Current Analytical Chemistry, 8(2), 283–299. https://doi.org/10.2174/157341112800392571
dc.relation.referencesLiu, S., Shen, H., Chen, S., Zhao, X., Biswas, A., Jia, X., Shi, Z., & Fang, J. (2019). Estimating forest soil organic carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment. Geoderma, 348, 37–44. https://doi.org/10.1016/j.geoderma.2019.04.003
dc.relation.referencesMalone, B. (2016). ithir: Functions and Algorithms Specific to Pedometrics. R package version 1.0/r126. https://rdrr.io/rforge/ithir/
dc.relation.referencesMalone, B. P., Styc, Q., Minasny, B., & McBratney, A. B. (2017). Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma, 290, 91–99. https://doi.org/10.1016/j.geoderma.2016.12.008
dc.relation.referencesMarques, J. D. de O., Luizão, F. J., Teixeira, W. G., Vitel, C. M., & Marques, E. M. de A. (2016). Soil organic carbon, carbon stock and their relationships to physical attributes under forest soils in central Amazonia. Revista Arvore, 40(2), 197–208. https://doi.org/10.1590/0100-67622016000200002
dc.relation.referencesMartín-López, J. M., & Quintero-Arias, G. (2017). Effect of soil use and coverage on the spectral response of an oxisol in the VIS-NIR-MIR region. Journal of Imaging, 3(1). https://doi.org/10.3390/jimaging3010010
dc.relation.referencesMatheron, G. (1963). Principles of geostatistics. Economic Geology, 58(8), 1246–1266. https://doi.org/10.2113/gsecongeo.58.8.1246
dc.relation.referencesMcBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. In Geoderma (Vol. 117, Issues 1–2). https://doi.org/10.1016/S0016-7061(03)00223-4
dc.relation.referencesMcBratney, A. B., & Viscarra Rossel, R. A. (2008). Diffuse Reflectance Spectroscopy as a Tool for Digital Soil Mapping. In A. E. Hartemink, A. McBratney, & M. L. Mendonça Santos (Eds.), Digital Soil Mapping with Limited Data (1st ed., pp. 165–172). Springer.
dc.relation.referencesMoreira, C. S., Brunet, D., Verneyre, L., Sá, S. M. O., Galdos, M. V., Cerri, C. C., & Bernoux, M. (2009). Near infrared spectroscopy for soil bulk density assesment. European Journal of Soil Science, 60, 785–791. https://doi.org/10.1111/j.1365-2389.2009.01170.x
dc.relation.referencesMurphy, B. W. (2015). Impact of soil organic matter on soil properties - A review with emphasis on Australian soils. Soil Research, 53(6), 605–635. https://doi.org/10.1071/SR14246
dc.relation.referencesNawar, S., & Mouazen, A. M. (2019). On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning. Soil and Tillage Research, 190, 120–127. https://doi.org/10.1016/j.still.2019.03.006
dc.relation.referencesNawar, Said, Buddenbaum, H., Hill, J., Kozak, J., & Mouazen, A. M. (2016). Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 155, 510–522. https://doi.org/10.1016/j.still.2015.07.021
dc.relation.referencesNocita, M., Kooistra, L., Bachmann, M., Müller, A., Powell, M., & Weel, S. (2011). Predictions of soil surface and topsoil organic carbon content through the use of laboratory and field spectroscopy in the Albany Thicket Biome of Eastern Cape Province of South Africa. Geoderma, 167–168, 295–302. https://doi.org/10.1016/j.geoderma.2011.09.018
dc.relation.referencesNocita, M., Stevens, A., Noon, C., & Van Wesemael, B. (2013). Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma, 199, 37–42. https://doi.org/10.1016/j.geoderma.2012.07.020
dc.relation.referencesNocita, M., Stevens, A., Toth, G., Panagos, P., van Wesemael, B., & Montanarella, L. (2014). Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biology and Biochemistry, 68, 337–347. https://doi.org/10.1016/j.soilbio.2013.10.022
dc.relation.referencesNocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Ben Dor, E., Brown, D. J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., … Wetterlind, J. (2015). Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring (pp. 139–159). https://doi.org/10.1016/bs.agron.2015.02.002
dc.relation.referencesOliver, M. A., & Webster, R. (2015). Basics Steps in Geostatistics: The Variogram and Kriging. Springer. https://doi.org/10.1007/978-3-319-15865-5
dc.relation.referencesPinheiro, É. F. M., Ceddia, M. B., Clingensmith, C. M., Grunwald, S., & Vasques, G. M. (2017). Prediction of Soil Physical and Chemical Properties by Visible and Near-Infrared Diffuse Reflectance Spectroscopy in the Central Amazon. Remote Sensing, 9(4), 1–22. https://doi.org/10.3390/rs9040293
dc.relation.referencesPonce‐Hernandez, R., Marriott, F. H. C., & Beckett, P. H. T. (1986). An improved method for reconstructing a soil profile from analyses of a small number of samples. Journal of Soil Science, 37(3), 455–467. https://doi.org/10.1111/j.1365-2389.1986.tb00377.x
dc.relation.referencesPoppiel, R. R., Lacerda P., M., Pereira, M., Almeida Junior, D. O., Demattê, J., Romero, D. J., Sato, M., Almeida J, L. R., & Moreira C, L. F. (2018). Surface Spectroscopy of Oxisols, Entisols and Inceptisol and Relationships with Selected Soil Properties. Revista Brasilera de Ciencia Do Solo, 42, 1–26.
dc.relation.referencesR Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
dc.relation.referencesRamirez-Lopez, L., Reina-Sánchez, A., & Camacho-Tamayo, J. H. (2008). Variabilidad espacial de atributos físicos de un Typic Haplustox de los Llanos Orientales de Colombia. Engenharia Agrícola, 28(1), 55–63. https://doi.org/10.1590/S0100-69162008000100006
dc.relation.referencesRamirez-Lopez, L. (2009). Pedologia quantitativa: espectrometria VIS-NIR-SWIR e mapeamento digital de solos [Universidade de São Paulo]. https://teses.usp.br/teses/disponiveis/11/11140/tde-23062009-140151/publico/Leonardo_Lopez.pdf
dc.relation.referencesRamirez-Lopez, L., Schmidt, K., Behrens, T., van Wesemael, B., Demattê, J. A. M., & Scholten, T. (2014). Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma, 226–227(1), 140–150. https://doi.org/10.1016/j.geoderma.2014.02.002
dc.relation.referencesRatner, B. (2009). The correlation coefficient: Its values range between +1/-1, or do they. Journal of Targeting, Measurement and Analysis for Marketing, 17(2), 139–142. https://doi.org/10.1057/jt.2009.5
dc.relation.referencesRippstein, G., Escobar, E., Toledo, J. M., Fisher, M., & Mesa, E. (2001). Caracterización de comunidades vegetales de la altillanura en el Centro de Investigación Agropecuaria Carimagua, en Meta, Colombia. In Georges Rippstein, G. Escobar, & F. Motta (Eds.), Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales (pp. 22–45). CIAT, Centro Internacional de Agricultura Tropical.
dc.relation.referencesRivera, M., Amezquita, E., Bernal, J. H., & Rao, I. M. (2013). Las Sabanas de los Llanos Orientales de Colombia: Caracterización Biofísica e Importancia para la Producción Agropecuaria. In Sistemas Agropastoriles: un Enfoque Integrado para el Manejo Sostenible de Oxisoles de los Llanos Orientales de Colombia (pp. 3–13). Centro Internacional de Agricultura Tropical (CIAT).
dc.relation.referencesRodríguez-Cabrera., J., Cortiza Mora, A. W., Pereira Marín, C. A., Chacón Iznaga, A., Gattorno Muñoz, S., Rodríguez López, O., Rodríguez Urrutia, A., Jiménez Carrazana, R., & Torres Artiles, P. N. (2015). Determinación VIS/NIR del contenido de materia orgánica en suelos agrícolas Pardos mullidos medianamente lavados. (Spanish). Revista Centro Agrícola, 42(3), 5–12. http://cagricola.uclv.edu.cu/index.php/es/volumen-42-2015/numero-3-2015/47-determinacion-vis-nir-del-contenido-de-materia-organica-en-suelos-agricolas-pardos-mullidos-medianamente-lavados
dc.relation.referencesRoudier, P., Hedley, C. B., Lobsey, C. R., Viscarra Rossel, R. A., & Leroux, C. (2017). Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon. Geoderma, 296, 98–107. https://doi.org/10.1016/j.geoderma.2017.02.014
dc.relation.referencesSá, J. C. de M., & Lal, R. (2009). Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol. Soil and Tillage Research, 103(1), 46–56. https://doi.org/10.1016/j.still.2008.09.003
dc.relation.referencesSavitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), 1627–1639.
dc.relation.referencesSerna-Izasa, R. A., Rippstein, G., Grollier, C., & Mesa, E. (2001). Biodiversidad de la vegetación de la sabana en la altillanura plana y la serranía de los llanos orientales. In Georges Rippstein, G. Escobar, & F. Motta (Eds.), Agroecología y Biodiversidad de las Sabanas en los Llanos Orientales (pp. 46–63). CIAT, Centro Internacional de Agricultura Tropical.
dc.relation.referencesShenk, J. S., & Westerhaus, M. O. (1996). Calibration the ISI way. In A. M. C. Davis & P. Williams (Eds.), Near infrared spectroscopy : the future waves (pp. 198–202). NIR Publications.
dc.relation.referencesSilva-Parra, A. (2018). Modelación de los stocks de carbono del suelo y las emisiones de dióxido de carbono (GEI) en sistemas productivos de la Altillanura Plana. ORINOQUIA, 22(2), 158–171. https://doi.org/10.22579/20112629.525
dc.relation.referencesSoil Survey Staff. (2014). Keys to soil taxonomy. In Soil Conservation Service (Vol. 12). https://doi.org/10.1109/TIP.2005.854494
dc.relation.referencesStenberg, B. (2010). Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma, 158, 15–22. https://doi.org/10.1016/j.geoderma.2010.04.008
dc.relation.referencesStenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Visible and Near Infrared Spectroscopy in Soil Science. In Advances in Agronomy (1st ed., Vol. 107). Elsevier Inc. https://doi.org/10.1016/S0065-2113(10)07005-7
dc.relation.referencesStevens, A., Nocita, M., Tóth, G., Montanarella, L., & van Wesemael, B. (2013). Prediction of Soil Organic Carbon at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy. PloS One, 8(6), e66409. https://doi.org/10.1371/journal.pone.0066409
dc.relation.referencesStevens, A., Ramirez-Lopez, L., & Hans, G. (2020). Prospectr package: Miscellaneous Functions for Processing and Sample Selection of Spectroscopic Data. https://cran.r-project.org/web/packages/prospectr/index.html
dc.relation.referencesStevens, A., van Wesemael, B., Bartholomeus, H., Rosillon, D., Tychon, B., & Ben-Dor, E. (2008). Laboratory, field and airborne spectroscopy for monitoring organic carbon content in agricultural soils. Geoderma, 144, 395–404. https://doi.org/10.1016/j.geoderma.2007.12.009
dc.relation.referencesStockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001
dc.relation.referencesSummers, D., Lewis, M., Ostendorf, B., & Chittleborough, D. (2011). Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators, 11, 123–131. https://doi.org/10.1016/j.ecolind.2009.05.001
dc.relation.referencesTümsavaş, Z., Tekin, Y., Ulusoy, Y., & Mouazen, A. M. (2019). Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy. Biosystems Engineering, 177, 90–100. https://doi.org/10.1016/j.biosystemseng.2018.06.008
dc.relation.referencesViscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006a). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1–2), 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007
dc.relation.referencesViscarra Rossel, R. A., McGlynn, R. N., & McBratney, A. B. (2006b). Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma, 137(1–2), 70–82. https://doi.org/10.1016/j.geoderma.2006.07.004
dc.relation.referencesViscarra Rossel, R. A., & Webster, R. (2012). Predicting soil properties from the Australian soil visible – near infrared spectroscopic database. European Journal of Soil Science, 63, 848–860. https://doi.org/10.1111/j.1365-2389.2012.01495.x
dc.relation.referencesViscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J., Demattê, J. A. M., Shepherd, K. D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aïchi, H., Barthès, B. G., Bartholomeus, H. M., Bayer, A. D., Bernoux, M., Böttcher, K., Brodský, L., Du, C. W., Chappell, A., … Ji, W. (2016). A global spectral library to characterize the world’s soil. Earth-Science Reviews, 155, 198–230. https://doi.org/10.1016/j.earscirev.2016.01.012
dc.relation.referencesWetterlind, J., Stenberg, B., & Söderström, M. (2008). The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precision Agriculture, 9(1–2), 57–69. https://doi.org/10.1007/s11119-007-9051-z
dc.relation.referencesWilding, L. P. (1985). Soil spatial variability: Its documentation, accommodation and implication to soil surveys. In D. R. Nielsen & J. Bouma (Eds.), Soil Spatial Variability (pp. 166–194). Pudoc.
dc.relation.referencesWilliams, P. C. (2003). Near-infrared technology ‒ Getting the best out of light: A short course in the practical implementation of near-infrared spectroscopy for the user. (2 ed). PDK Projects Inc.
dc.relation.referencesWold, S., Ruhe, A., Wold, H., & Dunn III, W. L. (1984). The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing, 5(3), 735–743. https://doi.org/https://doi.org/10.1137/0905052
dc.relation.referencesXie, X. L., & Li, A. B. (2016). Improving spatial estimation of soil organic matter in a subtropical hilly area using covariate derived from vis-NIR spectroscopy. Biosystems Engineering, 152, 126–137. https://doi.org/10.1016/j.biosystemseng.2016.06.007
dc.relation.referencesZimmermann, M., Leifeld, J., & Fuhrer, J. (2007). Quantifying soil organic carbon fractions by infrared-spectroscopy. Soil Biology and Biochemistry, 39(1), 224–231. https://doi.org/10.1016/j.soilbio.2006.07.010
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalSoil organic carbon stock
dc.subject.proposalStock de carbono orgánico de suelo
dc.subject.proposalDensidad aparente
dc.subject.proposalBulk density
dc.subject.proposalSoil spectroscopy
dc.subject.proposalEspectroscopía de suelos
dc.subject.proposalNIR
dc.subject.proposalNIR
dc.subject.proposalSpline
dc.subject.proposalSpline
dc.subject.proposalGeostatistics
dc.subject.proposalGeoestadística
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit