Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorHoyos Ortiz, Carlos David
dc.contributor.advisorHerrera Mejía, Laura
dc.contributor.authorJaramillo Gil, Santiago
dc.identifier.citationJaramillo Gil, S. (2020). Assessment of aerosols concentration variability and dispersion in the Aburrá Valley atmosphere at different spatial and temporal scales. Universidad Nacional de Colombia - Sede Medellín.
dc.description.abstractThe Aburrá Valley is a narrow, 1000mdeep, tropical valley located in the Colombian Andes. This valley is inhabited by more than 4 million people, living in Medellín and 9 surrounding cities. In recent years, PM2.5 (aerosol particles whose diameter is<2.5μm) has been the most critical air pollutant in the region, with frequent peak values in March, reaching historical maximum daily averages over 100μg m−3in 2016. In order to improve the understanding of the variability and dispersion of aerosols in the region and their impact on air quality, analysis on three different spatial scales are performed in this work. Firstly, regional aerosols conditions are analyzed during four high air pollution events in the Aburrá Valley between 2014 and 2019. Using ground-based data (AOD in Medellín, PM2.5 and PM10 in Medellín and Bogotá), satellite measurements (MODIS, CALIPSO), and reanalysis data (CAMS) it is established that mesoscale aerosol transport events occurred in each of the four cases analyzed, and evidence suggests that they may have directly contributed to the particulate matter peak events in the Aburrá Valley. Secondly, lidar vertical profiles for the lowest 3km, retrieved from a ground-based lidar located in the Aburrá Valley, are used to identify internal boundary layer structures associated with the complex dynamics of the valley atmosphere and with possible implications for aerosol dispersion. Different structure patterns are identified. Special emphasis is put on the effects of updrafts associated to local convective storms and on the waves at the top of the nocturnal stable layer. Finally, on a local scale, the formation and dispersion of a dust plume inside the valley triggered by the implosion of a 6-story building are evaluated. In-situ and remote sensors (such as a scanning lidar and a ceilometer) lead us to conclude that atmospheric instability and surface wind direction favored the rise of the plume and its southward advection. PM2.5 values in the implosion zone exceeded 104μg m−3, however, effects on PM2.5 at a few hundred meters away from the implosion zone were low. Furthermore, the depolarization ratio for the particles triggered by the implosion was estimated and then compared to the ratio obtained for industrial chimneys emissions, verifying that the first ones were characterized by a more irregular shape.
dc.description.abstractEl Valle de Aburrá es un valle tropical estrecho, de 1000mde profundidad, localizado en los Andes colombianos. Este valle es habitado por más de 4 millones de personas, en Medellín y otras 9 ciudades. En los últimos años el PM2.5 (aerosoles con diámetro menor a 2.5μm) ha sido el contaminente más crítico en la región, con recurrentes picos durante marzo, llegando a superar promedios diarios de 100μg m−3 en 2016. Para entender mejor la variabilidad y dispersión de los aerosoles en la región y su impacto en la calidad del aire, en este trabajo se desarollan análisis en tres diferentes escalas espaciales. En primer lugar se analizan las condiciones regionales de aerosoles durante cuatro eventos de alta contaminación en el valle entre 2014 y 2019. A partir de mediciones en tierra (AOD en Medellín, PM2.5 y PM10 en Medellín y Bogotá), mediciones satelitales (MODIS, CALIP-SO) y datos de reanálisis (CAMS) se encuentra que durante cada uno de los cuatro casos analizados se presentaron eventos de transporte de aerosoles en mesoescala que, según la evidencia presentada, pudieron contribuir de forma directa en los incrementos de material particulado en el Valle de Aburrá. En segundo lugar, a partir de perfiles verticales de señal de lidar para los primeros 3km de la atmósfera obtenidos a partir de un Lidar ubicado en la base del Valle de Aburrá, se identifican estructuras internas en la capa límite asociadas a la compleja dinámica de la atmósfera de valle y con posibles implicaciones en dispersión de aerosoles. Diferentes patrones de estructuras son identificados con la señal del Lidar. Se hace especial énfasis en eventos de corrientes ascendentes asociados a tormentas convectivas locales, y a ondas observadas en el tope de la capa estable nocturna. Finalmente, a escala local, se evalúa la formación y dispersión de una pluma de polvo al interor del valle generada por la implosión de un edificio de 6 pisos. A partir de sensores in-situ y remotos (como scanning lidar y ceilómetro) se encuentra que la inestabilidad atmosférica y la dirección de los vientos superficiales favorecieron el ascenso de a pluma y su desplazamiento hacia el sur. El PM2.5 cerca a la implosión llegó a superar104μg m−3, sin embargo su efecto a algunos cientos de metros fue bajo. Además, se estimó la tasa de depolarización de las partículas generadas por la implosión y se comparó con la obtenida para emisiones de chimeneas industriales, logrando verificar que las primeras presentan una mayor irregularidad en su forma.
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
dc.titleAssessment of aerosols concentration variability and dispersion in the Aburrá Valley atmosphere at different spatial and temporal scales
dc.title.alternativeEvaluación de la variabilidad de la concentración y la dispersión de aerosoles en la atmósfera del Valle de Aburrá en diferentes escalas espaciales y temporales
dc.rights.spaAcceso abierto
dc.description.additionalLínea de investigación: Ciencias Atmosféricas, Calidad del Aire
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAnsmann, A., Baars, H., Tesche, M., Mu, D., and Althausen, D. (2009). Dust and smoke transport from Africa to South America : Lidar profiling over Cape Verde and the Amazon rainforest. GEOPHYSICAL RESEARCH LETTERS, 36:2–6.
dc.relation.referencesAnsmann, A., Fruntke, J., and Engelmann, R. (2010). Updraft and downdraft characterization with Doppler lidar : Cloud – free versus cumuli – topped mixed – layer. Atmos. Chem. Phys, (July).
dc.relation.referencesAntao, V. C., Pallos, L. L., Graham, S. L., Shim, Y. K., Sapp, J. H., Lewis, B., Bullard, S., Alper, H. E., Cone, J. E., Farfel, M. R., and Brackbill, R. M. (2019). 9/11 residential exposures: The impact of world trade center dust on respiratory outcomes of lower Manhattan residents. International Journal of Environmental Research and Public Health, 16(5).
dc.relation.referencesArmenteras-pascual, D., Retana-alumbreros, J., Molowny-horas, R., Roman-cuesta, R. M., Gonzalez-alonso, F., and Morales-rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3):279–289.
dc.relation.referencesAzarmi, F. and Kumar, P. (2016). Ambient exposure to coarse and fine particle emissions from building demolition. Atmospheric Environment, 137:62–79.
dc.relation.referencesBanta, R., Olivier, L., Holloway, E., Kropfly, R., Bartram, B., Cupp, R., and Post, M. (1992). Smoke-Column Observations from Two Forest Fires Using Doppler Lidar and Doppler Radar. Journal of applied meteorology, pages 1328–1349.
dc.relation.referencesBeck, C. M., Geyh, A., Srinivasan, A., Breysse, P. N., Eggleston, P. A., and Buckley, T. J. (2003). The Impact of a Building Implosion on Airborne Particulate Matter in an Urban Community. Journal of the Air and Waste Management Association, 53(10):1256–1264.
dc.relation.referencesBedoya, A., Nisperuza, D., Alegría, D., Múnera, M., Rascado, J.-L. G., Zapata, C. E., Jiménez, J. F., Landulfo, E., and Bastidas, Á. (2016). Strong saharan dust event detected at lalinet loa-unal station, over medellín, colombia by active and passive. EPJ Web of Conferences, 08006:2014–2017.
dc.relation.referencesBergin, M. S., West, J. J., Keating, T. J., and Russell, A. G. (2005). REGIONAL ATMOSPHERIC POLLUTION AND TRANSBOUNDARY AIR QUALITY MANAGEMENT. Annu. Rev. Environmental Resources, pages 1–37.
dc.relation.referencesChacón Rivera, L. M. and Belalcazar, L. (2015). Efecto de los Incendios forestales sobre la calidad del aire en dos ciudades colombianas. PhD thesis.
dc.relation.referencesCharland, A. M. and Clements, C. B. (2013). Kinematic structure of a wildland fire plume observed by Doppler lidar.
dc.relation.referencesColarco, P. R., Schoeberl, M. R., Doddridge, B. G., Marufu, L. T., Torres, O., and Welton, E. J. (2004). Transport of smoke from Canadian forest fires to the surface nearWashington , D . C .: Injection height , entrainment , and optical properties. Journal of Geophysical Research, 109:1–12.
dc.relation.referencesDupont, E., Pelon, J., and Flamant, C. (1994). STUDY OF THE MOIST CONVECTIVE BOUNDARY- LAYER STRUCTURE BY BACKSCATTERING LIDAR. Boundary- Layer Meteorology, pages 1–25.
dc.relation.referencesEmeis, S., Schäfer, K., and Münkel, C. (2008). Surface-based remote sensing of the mixinglayer height - A review. Meteorologische Zeitschrift, 17(5):621–630.
dc.relation.referencesFeingold, G. (2003). Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements. JOURNAL OF GEOPHYSICAL RESEARCH, 108:1–11.
dc.relation.referencesFochesatto, G. J. and Drobinski, P. (2000). EVIDENCE OF DYNAMICAL COUPLING BETWEEN THE RESIDUAL LAYER AND THE DEVELOPING CONVECTIVE BOUNDARY LAYER. Boundary-Layer Meteorology, pages 451–464.
dc.relation.referencesGibert, F., Arnault, N., Cuesta, J., and Flamant, P. H. (2011). Internal gravity waves convectively forced in the atmospheric residual layer during the morning transition. Royal Meteorological Society, (July):1610–1624.
dc.relation.referencesGibert, F., Cuesta, J., Arnault, N., and Flamant, P. H. (2007). On the correlation between convective plume updrafts and downdrafts , lidar reflectivity and depolarization ratio. Boundary-Layer Meteorology, pages 553–573.
dc.relation.referencesGraf, H.-F. (2004). The complex interaction of aerosols and clouds. Science, 303(5662):1309– 1311.
dc.relation.referencesHealth Effects Institute (2018). State of Global Air 2018. Special Report. Health Effects Institute.
dc.relation.referencesHernandez, A. J., Morales-rincon, L. A., Wu, D., Mallia, D., Lin, J. C., and Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45):1–8.
dc.relation.referencesHerrera, L. and Hoyos, C. D. (2019). Characterization of the Atmospheric Boundary Layer in a Narrow Tropical Valley Using Remote Sensing and Radiosonde Observations, and the WRF Model: The Aburrá Valley Case Study. Quarterly Journal of the Royal Meteorological Society, page qj.3583.
dc.relation.referencesHerrera Mejía, L. and Hoyos, C. D. (2015). Caracterización de la Capa Límite Atmosférica en el valle de Aburrá partir de la información de sensores remotos y radiosondeos. Universidad Nacional de Colombia - Tesis Maestría.
dc.relation.referencesHerrera-Mejía, L. and Hoyos, C. D. (2019). Characterization of the atmospheric boundary layer in a narrow tropical valley using remote-sensing and radiosonde observations and the WRF model : the Aburrá Valley case-study. (November 2018):2641–2665.
dc.relation.referencesHervo, M., Quennehen, B., Kristiansen, N. I., Boulon, J., Stohl, A., Fréville, P., Pichon, J. M., Picard, D., Labazuy, P., Gouhier, M., Roger, J. C., Colomb, A., Schwarzenboeck, A., and Sellegri, K. (2012). Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: Ground-based, Lidar and airborne measurements in France. Atmospheric Chemistry and Physics, 12(4):1721–1736.
dc.relation.referencesHoff, R. M., Christopher, S. A., Hoff, R. M., and Christopher, S. A. (2012). Remote Sensing of Particulate Pollution from Space : Have We Reached the Promised Land ? Journal of the Air & Waste Management Association, 2247.
dc.relation.referencesHoyos, C. D., Herrera-Mejía, L., Roldán-Henao, N., and Isaza, A. (2020). Effects of fireworks on particulate matter concentration in a narrow valley: the case of the medellín metropolitan area. Environmental Monitoring and Assessment, 192(1):6.
dc.relation.referencesInness, A., Ades, M., Agustí-panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-m., Dominguez, J. J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.-h., Razinger, M., Remy, S., Schulz, M., Suttie, M., and Park, S. (2019). The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics, pages 3515–3556.
dc.relation.referencesIsaza-Uribe, A. (2018). Evaluación de la variabilidad temporal de la estructura termodinámica de la atmósfera y su influencia en las concentraciones de material particulado dentro del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellín. Línea de Investigación: Hidroclimatología, Calidad del Aire.
dc.relation.referencesJiménez, J. F. and Palacio, C. A. (2016). Altura de la Capa de Mezcla en un área urbana, montañosa y tropical. Universidad de Antioquia - Tesis de Doctorado.
dc.relation.referencesJones, T. A. and Christopher, S. A. (2010). Satellite and Radar Remote Sensing of Southern Plains Grass Fires : A Case Study. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, (April 2009):2133–2146.
dc.subject.proposalAir Quality
dc.subject.proposalCalidad del Aire
dc.subject.proposalAtmospheric Boundary Layer
dc.subject.proposalCapa Límite Atmosférica
dc.subject.proposalMaterial particulado
dc.subject.proposalparticulate matter
dc.subject.proposalComplex terrain
dc.subject.proposalTerreno complejo

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit