Show simple item record

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorEspinosa Oviedo, Jairo José
dc.contributor.advisorEspinosa Oviedo, Jorge Ernesto
dc.contributor.authorArroyo Jiménez, José Nicolás
dc.date.accessioned2021-02-26T14:06:17Z
dc.date.available2021-02-26T14:06:17Z
dc.date.issued2020-09-25
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79313
dc.description.abstractLa situación de movilidad actual en las ciudades conlleva problemas como alta congestión vehicular, contaminación ambiental y requerimientos de infraestructura. El uso de sistemas inteligentes de transporte basados en video puede mitigar estos efectos a un relativo bajo costo. Para logralo el tráfico urbano debe ser discriminado a partir de tomas de video. La discriminación de tráfico urbano se divide en 3 tareas: detección, clasificación y seguimiento. Primero, se muestra un conjunto de datos que contiene anotaciones de distintos tipos de tráfico en tres escenarios. A continuación, se revisan técnicas de detección basadas en características de movimiento y apariencia, y se muestra los resultados de un experimento de detección de tráfico con estas. Luego, se revisan métodos de clasificación con algoritmos para la extracción de características y se muestra los resultados de un experimento con histogramas de gradientes orientados y máquinas de vectores de soporte. Después, se trata el tema de aprendizaje profundo para las tareas de detección y clasificación y se usan dos algoritmos en experimentos para detectar y clasificar distintos tipos de tráfico en diferentes escenarios urbanos. Finalmente, se revisan técnicas de seguimiento multiobjetivo y se experimenta con los resultados de detección obtenidos con los algoritmos de aprendizaje profundo.
dc.description.abstractCurrent transportation situation in cities carry issues such as traffic jams, environmental pollution and infrastructure requirements. The use of intelligent transport systems based on video could mitigate negative impacts at a relatively low cost. To accomplish this, urban traffic must be discriminated from video captures. Urban traffic discrimination is divided into three tasks: detection, classification and tracking. First, a dataset with annotations of different types of vehicles on three different scenarios is detailed. Next, detection techniques based on motion features and on appearance features are reviewed, and the results of an experiment using detection techniques based on motion features are shown. Then, classification methods that use feature extraction algorithms and classifiers are reviewed. The results of an experiment that used histograms of oriented gradients and support vector machines for classification are shown. Afterwards, deep learning techniques for detection and classification are examined and evaluated with experiments using two algorithms on different urban scenarios. Finally, multi-objective tracking techniques are reviewed and tested on the results obtained with deep learning and the results are shown.
dc.format.extent139
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDiscriminación automática de tráfico urbano con técnicas de visión por computador
dc.title.alternativeAutomatic urban traffic discrimination using computer vision techniques
dc.typeOtro
dc.rights.spaAcceso abierto
dc.description.additionalLínea de Investigación: Inteligencia artificial, Visión por computador
dc.type.driverinfo:eu-repo/semantics/other
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Automatización Industrial
dc.contributor.researchgroupGrupo de Automática de la Universidad Nacional GAUNAL
dc.description.degreelevelMaestría
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Automática
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesK. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,”Proceedings of theIEEE International Conference on Computer Vision, vol. 2017-Octob, pp. 2980–2988,2017.
dc.relation.referencesT. Kadir and M. B. Scale, “Saliency and Image Description,”International Journal ofComputer Vision, vol. 45, no. 2, pp. 83–105, 2001.
dc.relation.referencesJ. W. Woo, W. Lee, and M. Lee, “A traffic surveillance system using dynamic saliencymap and SVM boosting,”International Journal of Control, Automation and Systems,vol. 8, no. 5, pp. 948–956, 2010.
dc.relation.referencesG. Lee and R. Mallipeddi, “A Genetic Algorithm-Based Moving Object Detection for Real-time Traffic Surveillance,” Signal Processing Letters, . . . , vol. 22, no. 10, pp. 1619–1622, 2015. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs{ }all. jsp?arnumber=7072530
dc.relation.referencesL.-w. Tsai, J.-w. Hsieh, and K.-c. Fan, “Vehicle Detection Using Normalized Color and Edge Map,” vol. 16, no. 3, pp. 850–864, 2007.
dc.relation.referencesC. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995.
dc.relation.referencesK. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980.
dc.relation.referencesV. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,” pp. 1–31, 2016. [Online]. Available: http://arxiv.org/abs/1603.07285
dc.relation.referencesN. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.
dc.relation.referencesY. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to Document Recognition,” proc. OF THE IEEE, 1998. [Online]. Available: http://ieeexplore.ieee.org/document/726791/{#}full-text-section
dc.relation.referencesK. Chellapilla, S. Puri, P. Simard, K. Chellapilla, S. Puri, P. Simard, H. Performance, C. Neural, and P. Simard, “High Performance Convolutional Neural Networks for Document Processing To cite this version : High Performance Convolutional Neural Networks for Document Processing,” 2006.
dc.relation.referencesA. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” Advances In Neural Information Processing Systems, pp. 1–9, 2012.
dc.relation.referencesM. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8689 LNCS, no. PART 1, pp. 818–833, 2014.
dc.relation.referencesK. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 770–778, 2016.
dc.relation.referencesR. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 580–587, 2014.
dc.relation.referencesR. Girshick, “Fast R-CNN,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 Inter, pp. 1440–1448, 2015.
dc.relation.referencesW. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “SSD: Single shot multibox detector,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9905 LNCS, pp. 21–37, 2016.
dc.relation.referencesJ. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-Decem, pp. 779–788, 2016.
dc.relation.referencesS. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards realtime object detection with region proposal networks,” in Advances in Neural Information Processing Systems, vol. 2015-Janua, 2015, pp. 91–99. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960980241{&} partnerID=40{&}md5=18aaa500235b11fb99e953f8b227f46d
dc.relation.referencesR. Rad and M. Jamzad, “Real time classification and tracking of multiple vehicles in highways,” Pattern Recognition Letters, vol. 26, no. 10, pp. 1597–1607, 2005.
dc.relation.referencesK. Zhang, L. Zhang, Q. Liu, D. Zhang, and M. H. Yang, “Fast visual tracking via dense spatio-temporal context learning,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8693 LNCS, no. PART 5, pp. 127–141, 2014.
dc.relation.referencesL. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr, “Fullyconvolutional siamese networks for object tracking,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9914 LNCS, pp. 850–865, 2016.
dc.relation.referencesY. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M. H. Yang, “Hedged Deep Tracking,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 4303–4311, 2016.
dc.relation.referencesS. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi, “Action-decision networks for visual tracking with deep reinforcement learning,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 1349– 1358, 2017.
dc.relation.referencesJ. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H. Torr, “End-to-end representation learning for Correlation Filter based tracking,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017- January, pp. 5000–5008, 2017.
dc.relation.referencesN. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association metric,” Proceedings - International Conference on Image Processing, ICIP, vol. 2017-September, pp. 3645–3649, 2018.
dc.relation.referencesB. Tian, B. T. Morris, M. Tang, Y. Liu, Y. Yao, C. Gou, D. Shen, and S. Tang, “Hierarchical and Networked Vehicle Surveillance in ITS: A Survey,” IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 1, pp. 25–48, 2017.
dc.relation.referencesN. Buch, S. A. Velastin, and J. Orwell, “A review of computer vision techniques for the analysis of urban traffic,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 3, pp. 920–939, 2011.
dc.relation.referencesS. Sivaraman and M. M. Trivedi, “A general active-learning framework for on-road vehicle recognition and tracking,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 2, pp. 267–276, 2010.
dc.relation.referencesW. Zhang, Q. M. Wu, X. Yang, and X. Fang, “Multilevel framework to detect and handle vehicle occlusion,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 161–174, 2008.
dc.relation.referencesD. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.
dc.relation.referencesA. Ng and M. I. Jordan, “On generative vs. discriminative classifiers: A comparison of logistic regression and naive bayes,” Proceedings of Advances in Neural Information Processing, vol. 28, no. 3, pp. 841–848, 2001.
dc.relation.referencesY. Freund, “An adaptive version of the boost by majority algorithm,” in Machine Learning, ser. COLT ’99, vol. 43, no. 3. New York, NY, USA: ACM, 2001, pp. 293–318. [Online]. Available: http://doi.acm.org/10.1145/307400.307419
dc.relation.referencesG. Cybenkot, “Mathematics of Control, Signals, and Systems Approximation by Superpositions of a Sigmoidal Function*,” Math. Control Signals Systems, vol. 2, pp. 303–314, 1989.
dc.relation.referencesN. S. Altman, “An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
dc.relation.referencesD. C. Cires, U. Meier, J. Masci, and L. M. Gambardella, “Flexible, High Performance Convolutional Neural Networks for Image Classification,” Proceedings of the TwentySecond International Joint Conference on Artificial Intelligence Flexible, pp. 1237–1242, 2003. [Online]. Available: https://www.ijcai.org/Proceedings/11/Papers/210.pdf
dc.relation.referencesR. E. KALMAN, “A New Approach to Linear Filtering and Prediction Problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.
dc.relation.referencesJ. Lou, H. Yang, W. Hu, and T. Tan, “Visual Vehicle Tracking Using An Improved EKF*,” no. January, pp. 23–25, 2002.
dc.relation.referencesM. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online nonlinear/nongaussian bayesian tracking,” Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking, vol. 18, no. 2, pp. 723–737, 2007.
dc.relation.referencesJ. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” CoRR, vol. abs/1804.02767, 2018. [Online]. Available: http://arxiv.org/abs/1804.02767
dc.relation.referencesN. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, no. 3, 2005, pp. 886–893.
dc.relation.referencesV. Mariano, Junghye Min, Jin-Hyeong Park, R. Kasturi, D. Mihalcik, Huiping Li, D. Doermann, and T. Drayer, “Performance evaluation of object detection algorithms,” no. January, pp. 965–969, 2003.
dc.relation.referencesJ. E. Espinosa, S. A. Velastin, and J. W. Branch, “Motorcycle detection and classification in urban Scenarios using a model based on Faster RCNN,” arXiv:1808.02299 [cs], Aug. 2018, arXiv: 1808.02299. [Online]. Available: http://arxiv.org/abs/1808.02299
dc.relation.referencesM. Piccardi, “Background subtraction techniques: A review,” in Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, vol. 4, 2004, pp. 3099–3104.
dc.relation.referencesD. Koller, J. Weber, T. Huang, J. Malik, G. Ogasawara, B. Rao, S. Russell, and I. I, “Towards Robust Automatic Traffic Scene Analysis in Real-Time,” no. December, pp. 3776–3781, 1994.
dc.relation.referencesC. Stauffer and W. Grimson, “Adaptive background mixture models for real-time tracking,” pp. 246–252, 2003.
dc.relation.referencesN. Friedman and S. Russell, “Image Segmentation in Video Sequences: A Probabilistic Approach,” Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pp. 175–181, 1997. [Online]. Available: http://arxiv.org/abs/1302.1539
dc.relation.referencesDempster, A. P., Laird, N. M., and Rubin, D. B., “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977. [Online]. Available: http://www.jstor.org/stable/2984875
dc.relation.referencesA. Elgammal, D. Harwood, and L. Davis, “Non-parametric Model for Background Subtraction,” 2000, pp. 751–767.
dc.relation.referencesZ. Zivkovic, “Improved adaptive Gaussian mixture model for background subtraction,” Proceedings - International Conference on Pattern Recognition, vol. 2, pp. 28–31, 2004.
dc.relation.referencesB. Han, D. Comaniciu, and L. Davis, “Sequential kernel density approximation through mode propagation: Applications to background modeling,” vol. 32, no. 12, p. 16, 2004.
dc.relation.referencesM. Seki, T. Wada, H. Fujiwara, and K. Sumi, “Background subtraction based on cooccurrence of image variations,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2003.
dc.relation.referencesN. Oliver, B. Rosario, and A. Pentland, “A Bayesian computer vision system for modeling human interactions,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1542, pp. 255–272, 1999.
dc.relation.referencesI. Sobel and G. Feldman, “A 3x3 isotropic gradient operator for image processing.” in Hart, P. E. & Duda R. O. Pattern Classification and Scene Analysis, pp. 271–272, 1973. [Online]. Available: papers2://publication/uuid/ F6C98D8E-0A99-40EF-A91C-0ECA53448D1F
dc.relation.referencesR. Cucchiara, C. Crana, M. Piccardi, A. Prati, and S. Sirotti, “Improving shadow suppression in moving object detection with HSV color information,” pp. 334–339, 2002.
dc.relation.referencesD. Comaniciu and V. Ramesh, “Real-Time Tracking of Non-Rigid Objects using Mean Shift 3 Bhattacharyya Coe cient Based Metric for Target Localization,” Computer Vision and Pattern Recognition, IEEE Conference on. Vol 2, no. 7, pp. 142–149, 2000.
dc.relation.referencesA. Kuehnle, “Symmetry-based recognition of vehicle rears,” Pattern Recognition Letters, vol. 12, no. 4, pp. 249–258, 1991.
dc.relation.referencesW. von Seelen, C. Curio, J. Gayko, U. Handmann, and T. Kalinke, “Scene analysis and organization of behavior in driver assistance systems,” pp. 524–527, 2002.
dc.relation.referencesR. O. Duda and P. E. Hart, Pattern classification and scene analysis, 1973. [Online]. Available: http://www.citeulike.org/group/1938/article/1055187
dc.relation.referencesJohn Canny, “A Computational Approach To Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–714, 1986.
dc.relation.referencesC. Goerick, D. Noll, and M. Werner, “Artificial neural networks in real-time car detection and tracking applications,” Pattern Recognition Letters, vol. 17, no. 4 SPEC. ISS., pp. 335–343, 1996.
dc.relation.referencesHsu-Yung Cheng, Chih-Chia Weng, and Yi-Ying Chen, “Vehicle Detection in Aerial Surveillance Using Dynamic Bayesian Networks,” IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 2152–2159, 2011.
dc.relation.referencesC. Harris and M. Stephens, “A Combined Corner and Edge Detector,” Procedings of the Alvey Vision Conference 1988, pp. 23.1–23.6, 1988. [Online]. Available: http://www.bmva.org/bmvc/1988/avc-88-023.html
dc.relation.referencesN. Dalal and W. Triggs, “Histograms of Oriented Gradients for Human Detection,” 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR05, vol. 1, no. 3, pp. 886–893, 2004. [Online]. Available: http://eprints.pascal-network.org/archive/00000802/
dc.relation.referencesT. Kalinke, C. Tzomakas, and W. Seelen, “A texture-based object detection and an adaptive model-based classification,” IEEE Intelligent Vehicles Symposium, pp. 341–346, 1998. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.33.526
dc.relation.referencesR. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image Classification,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-3, no. 6, pp. 610–621, 1973.
dc.relation.referencesH. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.
dc.relation.referencesT. Moranduzzo and F. Melgani, “Automatic car counting method for unmanned aerial vehicle images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 3, pp. 1635–1647, 2014.
dc.relation.referencesJ. W. Hsieh, L. C. Chen, and D. Y. Chen, “Symmetrical SURF and Its applications to vehicle detection and vehicle make and model recognition,” IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 1, pp. 6–20, 2014.
dc.relation.referencesE. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3951 LNCS, pp. 430–443, 2006.
dc.relation.referencesM. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary robust independent elementary features,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6314 LNCS, no. PART 4, pp. 778–792, 2010.
dc.relation.referencesE. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,” Proceedings of the IEEE International Conference on Computer Vision, pp. 2564–2571, 2011.
dc.relation.referencesJ. L. Buliali, C. Fatichah, D. Herumurti, D. Fenomena, H. Widyastuti, and M. Wallace, “Vehicle detection on images from satellite using oriented fast and rotated brief,” Journal of Engineering and Applied Sciences, vol. 12, no. 17, pp. 4500–4503, 2017.
dc.relation.referencesS. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic monitoring and accident detection at intersections,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, vol. 1, no. 2, pp. 703–708, 1999.
dc.relation.referencesC. C. R. Wang and J. J. J. Lien, “Automatic vehicle detection using local features - A statistical approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 1, pp. 83–96, 2008.
dc.relation.referencesF. Leymarie and M. D. Levine, “Simulating the grassfire transform using an active contour model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 1, pp. 56–75, 1992.
dc.relation.referencesS. Baluja, “Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning,” Ph.D. dissertation, Carnegie Mellon University, 1994.
dc.relation.referencesP. Jaccard, “Etude comparative de la distribution florale dans une portion des Alpes et ´ des Jura,” Bulletin de la Soci´et´e Vaudoise des Sciences Naturelles, vol. 37, pp. 547–579, 1901.
dc.relation.referencesL. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms as gradient descent,” Advances in Neural Information Processing Systems, pp. 512–518, 2000.
dc.relation.referencesQ. Zhu, S. Avidan, M. C. Yeh, and K. T. Cheng, “Fast human detection using a cascade of histograms of oriented gradients,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, no. May 2014, pp. 1491–1498, 2006.
dc.relation.referencesM. Pedersoli, J. Gonz`alez, and J. J. Villanueva, “High-speed human detection using a multiresolution cascade of histograms of oriented gradients,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5524 LNCS, pp. 48–55, 2009.
dc.relation.referencesB. Zhang, “Reliable classification of vehicle types based on cascade classifier ensembles,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 1, pp. 322–332, 2013.
dc.relation.referencesN. Buch, J. Orwell, and S. A. Velastin, “3D extended histogram of oriented gradients (3DHOG) for classification of road users in urban scenes,” British Machine Vision Conference, BMVC 2009 - Proceedings, 2009.
dc.relation.referencesT. Ojala, M. Pietik¨ainen, and D. Harwood, “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,” Proceedings - International Conference on Pattern Recognition, vol. 3, pp. 582–585, 1994.
dc.relation.referencesY. Tang, C. Zhang, R. Gu, P. Li, and B. Yang, “Vehicle detection and recognition for intelligent traffic surveillance system,” Multimedia Tools and Applications, vol. 76, no. 4, pp. 5817–5832, 2017.
dc.relation.referencesO. Barkan, J. Weill, L. Wolf, and H. Aronowitz, “Fast high dimensional vector multiplication face recognition,” Proceedings of the IEEE International Conference on Computer Vision, pp. 1960–1967, 2013.
dc.relation.referencesJ. Trefn´y and J. Matas, “Extended set of local binary patterns for rapid object detection,” Computer Vision Winter Workshop, pp. 1–7, 2010. [Online]. Available: http://cmp.felk.cvut.cz/{∼}matas/papers/trefny-lbp-cvww10.pdf
dc.relation.referencesX. Tan and B. Triggs, “Enhanced local texture feature sets for face recognition under difficult lighting conditions,” IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1635–1650, 2010.
dc.relation.referencesT. Bouwmans, C. Silva, C. Marghes, M. S. Zitouni, H. Bhaskar, and C. Frelicot, “On the role and the importance of features for background modeling and foreground detection,” Computer Science Review, vol. 28, pp. 26–91, 2018.
dc.relation.referencesP. Doll´ar, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,” British Machine Vision Conference, BMVC 2009 - Proceedings, pp. 1–11, 2009.
dc.relation.referencesA. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters, vol. 31, no. 8, pp. 651–666, 2010.
dc.relation.referencesJ. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117, 2015.
dc.relation.referencesW. S. Mcculloch and W. Pitts, “A logical calculus nervous activity,” Bulletin of Mathematical Biology, vol. 52, no. l, pp. 99–115, 1990.
dc.relation.referencesM. L. Minsky and S. Papert, Perceptrons: An Introduction to Computational Geometry. Mit Press, 1972. [Online]. Available: https://books.google.com.co/books? id=Ow1OAQAAIAAJ
dc.relation.referencesP. J. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Harvard University, 1975. [Online]. Available: https://books.google.com.co/books?id=z81XmgEACAAJ
dc.relation.referencesF. Rosenblatt, “The Perceptron - A Perceiving and Recognizing Automaton,” pp. 460– 1, 1957.
dc.relation.referencesL. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri, “Are Loss Functions All the Same?” Neural Computation, vol. 16, no. 5, pp. 1063–1076, 2004.
dc.relation.referencesJ. Espinosa, S. Velastin, and J. Branch, “Motorcycle Classification in Urban Scenarios using Convolutional Neural Networks for Feature Extraction,” in 8th International Conference of Pattern Recognition Systems (ICPRS 2017). Institution of Engineering and Technology, 2017, pp. 26 (6 .)–26 (6 .). [Online]. Available: https://digital-library.theiet.org/content/conferences/10.1049/cp.2017.0155
dc.relation.referencesS. Stehman, “Selecting and interpreting measures of thematic classification accuracy.” Remote Sensing of Environment, vol. 62, p. 77, 1997.
dc.relation.referencesC. Bishop, “Pattern Recognition and Machine Learning,” Journal of Electronic Imaging, vol. 16, no. 4, p. 049901, jan 2007. [Online]. Available: http: //electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.1117/1.2819119
dc.relation.referencesY. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.
dc.relation.referencesY. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to digit recognition,” pp. 541–551, 1989.
dc.relation.referencesD. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error Propagation. Morgan Kaufmann Publishers, Inc., 1988. [Online]. Available: http://dx.doi.org/10.1016/B978-1-4832-1446-7.50035-2
dc.relation.referencesK. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.
dc.relation.referencesX. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” Journal of Machine Learning Research, vol. 15, pp. 315–323, 2011.
dc.relation.referencesI. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http: //www.deeplearningbook.org.
dc.relation.referencesV. Nair and G. E. Hinton, “Rectified linear units improve Restricted Boltzmann machines,” ICML 2010 - Proceedings, 27th International Conference on Machine Learning, pp. 807–814, 2010.
dc.relation.referencesC. Lemar´echal, “Cauchy and the Gradient Method,” Documenta Mathematica, vol. ISMP, pp. 251–254, 2012. [Online]. Available: https://www.math.uni-bielefeld.de/ documenta/vol-ismp/40{ }lemarechal-claude.pdf
dc.relation.referencesO. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.
dc.relation.referencesY. LeCun, L. Bottou, G. B. Orr, and K. R. M¨uller, “Efficient BackProp,” pp. 9–50, 1998.
dc.relation.referencesY. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization,” Advances in Neural Information Processing Systems, vol. 4, no. January, pp. 2933–2941, 2014.
dc.relation.referencesJ. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning and stochastic optimization,” COLT 2010 - The 23rd Conference on Learning Theory, pp. 257–269, 2010.
dc.relation.referencesD. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–15, 2015.
dc.relation.referencesS. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” 32nd International Conference on Machine Learning, ICML 2015, vol. 1, pp. 448–456, 2015.
dc.relation.referencesC. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, 2019. [Online]. Available: https://doi.org/10.1186/s40537-019-0197-0
dc.relation.referencesJ. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks?” Advances in Neural Information Processing Systems, vol. 4, no. January, pp. 3320–3328, 2014.
dc.relation.referencesD. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” Journal of Physiology, vol. 148, pp. 574–591, 1959.
dc.relation.referencesC. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 07- 12-June-2015, pp. 1–9, 2015.
dc.relation.referencesK. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1–14, 2015.
dc.relation.referencesP. Soviany and R. T. Ionescu, “Optimizing the trade-off between single-stage and twostage deep object detectors using image difficulty prediction,” Proceedings - 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2018, pp. 209–214, 2018.
dc.relation.referencesJ. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, “Selective search for object recognition,” International Journal of Computer Vision, vol. 104, no. 2, pp. 154–171, 2013.
dc.relation.referencesM. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results,” http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html.
dc.relation.referencesP. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object detection with discriminatively trained part-based models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 9, pp. 1627–1645, 2010.
dc.relation.referencesK. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” CoRR, vol. abs/1406.4729, 2014. [Online]. Available: http://arxiv.org/abs/1406.4729
dc.relation.referencesB. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in convolutional network,” CoRR, vol. abs/1505.00853, 2015. [Online]. Available: http://arxiv.org/abs/1505.00853
dc.relation.referencesJ. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January, pp. 6517–6525, 2017.
dc.relation.referencesM. Zhu, “Recall, precision and average precision,” Department of Statistics and Actuarial Science, . . . , pp. 1–11, 2004. [Online]. Available: http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Recall+ ,+Precision+and+Average+Precision{#}0
dc.relation.referencesM. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (VOC) challenge,” International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, 2010.
dc.relation.referencesT. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Doll´ar, and C. L. Zitnick, “Microsoft COCO: common objects in context,” CoRR, vol. abs/1405.0312, 2014. [Online]. Available: http://arxiv.org/abs/1405.0312
dc.relation.referencesA. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Computing Surveys, vol. 38, no. 4, 2006.
dc.relation.referencesD. H. D. H. Ballard and . Brown, Christopher M., Computer vision. Englewood Cliffs, N.J. : Prentice-Hall, 1982, includes bibliographies and indexes.
dc.relation.referencesJohn Canny, “A Computational Approach To Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–714, 1986.
dc.relation.referencesS. Gupte, O. Masoud, R. F. K. Martin, and N. P. Papanikolopoulos, “Detection and Classification of Vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 3, no. 1, pp. 37–47, 2002.
dc.relation.referencesK. Nummiaro, E. Koller-Meier, and L. Van Gool, “An adaptive color-based particle filter,” Image and Vision Computing, vol. 21, no. 1, pp. 99–110, 2003.
dc.relation.referencesK. Mu, F. Hui, and X. Zhao, “Multiple vehicle detection and tracking in highway traffic surveillance video based on sift feature matching,” Journal of Information Processing Systems, vol. 12, pp. 183–195, 01 2016.
dc.relation.referencesB. T. Morris and M. M. Trivedi, “Learning, modeling, and classification of vehicle track patterns from live video,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 3, pp. 425–437, 2008.
dc.relation.referencesA. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” Proceedings - International Conference on Image Processing, ICIP, vol. 2016- Augus, pp. 3464–3468, 2016.
dc.relation.referencesH. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
dc.relation.referencesS. Messelodi, C. M. Modena, and M. Zanin, “A computer vision system for the detection and classification of vehicles at urban road intersections,” Pattern Analysis and Applications, vol. 8, no. 1-2, pp. 17–31, 2005.
dc.relation.referencesC. Montella, “The Kalman Filter and Related Algorithms A Literature Review,” Research Gate, no. May, pp. 1–17, 2014.
dc.relation.referencesN. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/nongaussian Bayesian state estimation,” IEE Proceedings, Part F: Radar and Signal Processing, vol. 140, no. 2, pp. 107–113, 1993.
dc.relation.referencesF. Bardet and T. Chateau, “MCMC particle filter for real-time visual tracking of vehicles,” IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 539–544, 2008.
dc.relation.referencesT. Mauthner, M. Donoser, and H. Bischof, “Robust tracking of spatial related components,” Proceedings - International Conference on Pattern Recognition, no. January, 2008.
dc.relation.referencesE. Maggio and A. Cavallaro, “Hybrid particle filter and mean shift tracker,” Proc. Int. Conf. Acoustics, Speech, and Signal Processing, no. 3, pp. 221–224, 2005. [Online]. Available: http://www.eecs.qmul.ac.uk/{∼}andrea/papers/icassp05{ } maggio{ }cavallaro.pdf{%}0Ahttp://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.111.7909{&}rep=rep1{&}type=pdf
dc.relation.referencesK. Fukunaga and L. D. Hostetler, “The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition,” IEEE Transactions on Information Theory, vol. 21, no. 1, pp. 32–40, 1975.
dc.relation.referencesA. Bhattacharyya, “On A Measure of Divergence Between Two Statistical Populations Defined by their Probability Distributions,” Bulletin of the Calcutta Methematical Society, vol. 35, no. 1, pp. 99–109, 1943.
dc.relation.referencesD. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using adaptive correlation filters,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550, 2010.
dc.relation.referencesJ. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the circulant structure of tracking-by-detection with kernels,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 7575 LNCS, no. PART 4, pp. 702–715, 2012.
dc.relation.referencesJo˜ao F. Henriques, Caseiro Rui, Martins Pedro, and Batista Horge, “High-Speed Tracking with Kernelized Correlation Filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, pp. 583–596, 2015.
dc.relation.referencesJ. BROMLEY, J. W. BENTZ, L. BOTTOU, I. GUYON, Y. LECUN, C. MOORE, E. SACKINGER, and R. SHAH, “Signature Verification Using a “Siamese” Time ¨ Delay Neural Network,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 07, no. 04, pp. 669–688, 1993.
dc.relation.referencesK. Chaudhuri, Y. Freund, and D. Hsu, “A parameter-free hedging algorithm,” Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference, pp. 297–305, 2009.
dc.relation.referencesL. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, and Q. Tian, “Mars: A video benchmark for large-scale person re-identification,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9910 LNCS, pp. 868–884, 2016.
dc.relation.referencesK. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking performance: The CLEAR MOT metrics,” Eurasip Journal on Image and Video Processing, vol. 2008, 2008.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalTraffic discrimination
dc.subject.proposalDiscriminación de tráfico
dc.subject.proposalDetección de vehículos
dc.subject.proposalVehicle detection
dc.subject.proposalVehicle recognition
dc.subject.proposalClasificación de vehículos
dc.subject.proposalSeguimiento de vehículos
dc.subject.proposalVehicle tracking
dc.subject.proposalAprendizaje profundo
dc.subject.proposalMultiple Object Tracking
dc.subject.proposalRedes neuronales convolucionales
dc.subject.proposalDeep Learning
dc.subject.proposalSistemas inteligentes de transporte
dc.subject.proposalConvolutional neural network
dc.subject.proposalIntelligent transport systems
dc.type.coarhttp://purl.org/coar/resource_type/c_1843
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit