Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRamos Navarrete, Edgar Arturo
dc.contributor.authorZapata Nieto, Jeferson León
dc.date.accessioned2021-03-02T16:08:24Z
dc.date.available2021-03-02T16:08:24Z
dc.date.issued2020-04-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79337
dc.description.abstractThe main objective of this thesis is to analyze a generalization of Morse's theory in the case of stratified spaces. The content is divided into three main parts. In the first part we present the background of the classical Morse theory, the discrete Morse theory of Forman and the stratification of a certain type of topological spaces. In the second part we describe the basic concepts in classical complexity and parameterized complexity. In the last part we analyze two main topics: Lewiner's algorithm for 2-simplicial complexes and the analysis of the complexity of the problem of finding Morse functions in the case of parameterized complexity.
dc.description.abstractEl objetivo principal de esta tesis es analizar una generalización de la teoría de Morse en el caso de espacios estratificados. El contenido se divide en tres partes principales. En la primera parte presentamos los antecedentes de la teoría de Morse clásica, la teoría de Morse discreta de Forman y la estratificación de un cierto tipo de espacios topológicos. En la segunda parte describimos los conceptos básicos en complejidad clásica y complejidad parametrizada. En la última parte analizamos dos temas principales: el algoritmo de Lewiner para complejos 2-simpliciales y el análisis de la complejidad del problema de encontrar funciones de Morse en el caso de la complejidad parametrizada.
dc.format.extent84
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc510 - Matemáticas::514 - Topología
dc.titleDiscrete stratified Morse theory for 2-dimensional simplicial complexes
dc.title.alternativeTeoría de Morse discreta para complejos simpliciales 2-dimensionales
dc.typeTrabajo de grado - Maestría
dc.rights.spaAcceso abierto
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemáticas
dc.description.degreelevelMaestría
dc.publisher.departmentEscuela de matemáticas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesBenjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterizedcomplexity of discrete morse theory.ACM Trans. Math. Softw., 42(1), March 2016.
dc.relation.referencesHans L. Bodlaender. A linear time algorithm for finding tree-decompositions of smalltreewidth. InProceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Com-puting, STOC ’93, page 226–234, New York, NY, USA, 1993. Association for ComputingMachinery.
dc.relation.referencesArthur B. Brown. Relations between the critical points of a real analytic functions of nindependent variables.American Journal of Mathematics, 52(2):251–270, 1930.
dc.relation.referencesManoj Chari. On discrete morse functions and combinatorial decompositions.DiscreteMathematics, 217:101–113, 04 2000.
dc.relation.referencesRodney G Downey and Michael Ralph Fellows.Parameterized complexity. Springer Science& Business Media, 2012.
dc.relation.referencesHerbert Edelsbrunner and John Harer.Computational Topology: An Introduction. 01 2010.
dc.relation.referencesJörg Flum and Martin Grohe. Parameterized complexity theory. 2006.Texts Theoret. Comput.Sci. EATCS Ser, 2006.
dc.relation.referencesRobin Forman. Morse theory for cell complexes.Advances in Mathematics, 134(1):90 – 145,1998.
dc.relation.referencesMichael Joswig and Marc E Pfetsch. Computing optimal morse matchings.SIAM Journalon Discrete Mathematics, 20(1):11–25, 2006.
dc.relation.referencesRichard M Karp. Reducibility among combinatorial problems. InComplexity of computercomputations, pages 85–103. Springer, 1972.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalComplejo simplicial
dc.subject.proposalSimplicial complex
dc.subject.proposalMorse function
dc.subject.proposalFunción de Morse
dc.subject.proposalComplejidad parametrizada
dc.subject.proposalParameterized Complexity
dc.subject.proposalAcyclic matching.
dc.subject.proposalApareamiento acíclico
dc.subject.proposalMorse theory
dc.subject.proposalTeoría de Morse
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit