dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Ramos Navarrete, Edgar Arturo |
dc.contributor.author | Zapata Nieto, Jeferson León |
dc.date.accessioned | 2021-03-02T16:08:24Z |
dc.date.available | 2021-03-02T16:08:24Z |
dc.date.issued | 2020-04-30 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79337 |
dc.description.abstract | The main objective of this thesis is to analyze a generalization of Morse's theory in the case of stratified spaces. The content is divided into three main parts. In the first part we present the background of the classical Morse theory, the discrete Morse theory of Forman and the stratification of a certain type of topological spaces. In the second part we describe the basic concepts in classical complexity and parameterized complexity. In the last part we analyze two main topics: Lewiner's algorithm for 2-simplicial complexes and the analysis of the complexity of the problem of finding Morse functions in the case of parameterized complexity. |
dc.description.abstract | El objetivo principal de esta tesis es analizar una generalización de la teoría de Morse en el caso de espacios estratificados. El contenido se divide en tres partes principales. En la primera parte presentamos los antecedentes de la teoría de Morse clásica, la teoría de Morse discreta de Forman y la estratificación de un cierto tipo de espacios topológicos. En la segunda parte describimos los conceptos básicos en complejidad clásica y complejidad parametrizada. En la última parte analizamos dos temas principales: el algoritmo de Lewiner para complejos 2-simpliciales y el análisis de la complejidad del problema de encontrar funciones de Morse en el caso de la complejidad parametrizada. |
dc.format.extent | 84 |
dc.format.mimetype | application/pdf |
dc.language.iso | eng |
dc.rights | Derechos reservados - Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 510 - Matemáticas::514 - Topología |
dc.title | Discrete stratified Morse theory for 2-dimensional simplicial complexes |
dc.title.alternative | Teoría de Morse discreta para complejos simpliciales 2-dimensionales |
dc.type | Trabajo de grado - Maestría |
dc.rights.spa | Acceso abierto |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Matemáticas |
dc.description.degreelevel | Maestría |
dc.publisher.department | Escuela de matemáticas |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.references | Benjamin A. Burton, Thomas Lewiner, João Paixão, and Jonathan Spreer. Parameterizedcomplexity of discrete morse theory.ACM Trans. Math. Softw., 42(1), March 2016. |
dc.relation.references | Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of smalltreewidth. InProceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Com-puting, STOC ’93, page 226–234, New York, NY, USA, 1993. Association for ComputingMachinery. |
dc.relation.references | Arthur B. Brown. Relations between the critical points of a real analytic functions of nindependent variables.American Journal of Mathematics, 52(2):251–270, 1930. |
dc.relation.references | Manoj Chari. On discrete morse functions and combinatorial decompositions.DiscreteMathematics, 217:101–113, 04 2000. |
dc.relation.references | Rodney G Downey and Michael Ralph Fellows.Parameterized complexity. Springer Science& Business Media, 2012. |
dc.relation.references | Herbert Edelsbrunner and John Harer.Computational Topology: An Introduction. 01 2010. |
dc.relation.references | Jörg Flum and Martin Grohe. Parameterized complexity theory. 2006.Texts Theoret. Comput.Sci. EATCS Ser, 2006. |
dc.relation.references | Robin Forman. Morse theory for cell complexes.Advances in Mathematics, 134(1):90 – 145,1998. |
dc.relation.references | Michael Joswig and Marc E Pfetsch. Computing optimal morse matchings.SIAM Journalon Discrete Mathematics, 20(1):11–25, 2006. |
dc.relation.references | Richard M Karp. Reducibility among combinatorial problems. InComplexity of computercomputations, pages 85–103. Springer, 1972. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | Complejo simplicial |
dc.subject.proposal | Simplicial complex |
dc.subject.proposal | Morse function |
dc.subject.proposal | Función de Morse |
dc.subject.proposal | Complejidad parametrizada |
dc.subject.proposal | Parameterized Complexity |
dc.subject.proposal | Acyclic matching. |
dc.subject.proposal | Apareamiento acíclico |
dc.subject.proposal | Morse theory |
dc.subject.proposal | Teoría de Morse |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |