dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Moreno Mantilla, Carlos Eduardo |
dc.contributor.advisor | Cortés Aldana, Félix Antonio |
dc.contributor.author | Cangrejo Castro, Nathalia |
dc.date.accessioned | 2021-03-11T23:25:10Z |
dc.date.available | 2021-03-11T23:25:10Z |
dc.date.issued | 2020 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79350 |
dc.description.abstract | La Economía Circular (EC) se concibe como un sistema económico basado en modelos de negocio orientados a alcanzar una economía de ciclo cerrado a través de la adopción de los denominados principios de EC o 9R, desacoplando gradualmente el crecimiento del consumo de recursos finitos. Este concepto ha cobrado gran trascendencia al percibirse como una forma de aproximarse a un desarrollo sostenible. A pesar del notable interés que despierta y de ser objeto de múltiples estudios, la implementación de la EC aún no es clara, especialmente a nivel de empresas, ya que las soluciones planteadas se centran por lo general en un solo principio, carecen de claridad en su alcance y validación desde su diseño, ocasionando que los tomadores de decisiones no cuenten con herramientas e información suficiente para establecer objetivos de EC adecuados.
Estas barreras, que han sido bien definidas en la literatura, también se advierten en la industria química colombiana, donde a pesar de existir el interés por la adopción del modelo, aún no se cuenta con un sistema de medición que favorezca su implementación. Por este motivo, este estudio propone un sistema de indicadores ambientales para medir desempeño de circularidad en empresas de la industria química colombiana. Los principios e indicadores que lo conforman fueron determinados a través de un análisis sistemático de la literatura y un proceso de validación con expertos. Adicionalmente, con el método analítico jerárquico (AHP) fueron asignados los niveles de importancia de todos los elementos del sistema de indicadores. Finalmente, su utilidad fue validada a través de un grupo focal con representantes de la industria. Con los resultados se obtuvo un sistema de medición compuesto por 4 principios (reducir, reutilizar, reciclar y recuperar) y 21 indicadores asociados, que puede ser versátil y ajustarse a 11 indicadores midiendo el 80% del desempeño. Adicionalmente, el estudio ofrece un aporte al conocimiento en términos de una metodología replicable para ser adoptada en el diseño de sistemas de medición de la circularidad para otras industrias. |
dc.description.abstract | The Circular Economy (CE) is a new economic system based on business models aimed at achieving closed loop economy through the adoption of the so-called 9R or CE principles, gradually decoupling growth from consumption of finite resources. This concept has become very important as it is perceived as a means of achieving sustainable development. While CE has gained strong interest and has been the subject of multiple studies, its implementation is not clear yet, particularly at the company level, as the solutions proposed generally focus on a single principle of circularity and lack clarity of scope and design validation, hence leaving decision makers without sufficient tools and information to establish adequate CE objectives.
These barriers have been well defined in the literature and can be also seen in the Colombian chemical industry, where despite strong interest in the adoption of this model, there is still no measurement system to support its implementation. For this reason, this study proposes an environmental indicator system to measure circularity performance in companies in the Colombian chemical industry. The principles and indicators that comprise it were determined through a systematic analysis of the literature and a validation process with experts. In addition, the importance levels of all the elements of the system were assigned using the Analytic Hierarchy Process (AHP). Finally, its usefulness was validated through a Focus Group with industry representatives. With the results, a measurement system comprised of 4 principles (reduce, reuse, recycle and recover) and 21 associated indicators was obtained, which can be versatile and can be adjusted to just 11 indicators that measure 80% of the performance. In addition, the study offers a contribution to the knowledge with a replicable methodology to be adopted in the design of circularity’s measurement systems for other industries. |
dc.format.extent | 1 recurso en línea (206 páginas) |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights | Derechos reservados - Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 620 - Ingeniería y operaciones afines |
dc.title | Integración de economía circular en la industria química colombiana: Propuesta de un sistema de indicadores de desempeño ambiental para medir la circularidad en empresas del sector |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial |
dc.description.degreelevel | Maestría |
dc.description.researcharea | Gestión de operaciones |
dc.publisher.department | Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty | Facultad de Ingeniería |
dc.publisher.place | Bogotá |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Accenture. (n.d.). Circular Economy in the European Chemical Industry. Retrieved April 3, 2020, from https://www.accenture.com/us-en/insight-circular-economy-european-chemical-industry |
dc.relation.references | Åkerman, E. (2016). Development of Circular Economy Core Indicators for Natural Resources - Analysis of existing sustainability indicators as a baseline for developing circular economy indicators. www.ima.kth.se |
dc.relation.references | American Chemistry Council. (2019). GUIDE TO THE BUSINESS OF CHEMISTRY 2019. |
dc.relation.references | Aristizábal, M. C. (2018). Estudios sobre la Bioeconomía como fuente de nuevas industrias basadas en el capital natural de Colombia. https://www.dnp.gov.co/Crecimiento-Verde/Documents/ejes-tematicos/Bioeconomia/Informe 2/ANEXO 3_Análisis sector químico.pdf |
dc.relation.references | Ayres, R. U. (1989). Industrial metabolism: Theory and policy. IN INDUSTRIAL. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.404.8894 |
dc.relation.references | Azevedo, S. G., Godina, R., & Matias, J. C. de O. (2017). Proposal of a sustainable circular index for manufacturing companies. Resources, 6(4). https://doi.org/10.3390/resources6040063 |
dc.relation.references | Bakshi, B. R. (2019). Sustainable Engineering: Principles and Practice. Cambridge University Press. https://doi.org/10.1017/9781108333726 |
dc.relation.references | Bautista, S. (2015). Sustainability assessment of biodiesel production in Colombia [Universidad Nacional de Colombia]. https://www.researchgate.net/publication/324436915_Sustainability_assessment_of_biodiesel_production_in_Colombia |
dc.relation.references | Bell, S., & Morse, S. (n.d.). The role of Sustainability Indicators within evidence-based policy for sustainable development in the European Union. Retrieved April 17, 2019, from https://pdfs.semanticscholar.org/f7f9/ff0ca5f12818660dface289f33b2f11886b3.pdf |
dc.relation.references | Belton, V., & Stewart, T. J. (2002). Multiple Criteria Decision Analysis. Springer US. https://doi.org/10.1007/978-1-4615-1495-4 |
dc.relation.references | Bhandari, D., Singh, R. K., & Garg, S. K. (2019). Prioritisation and evaluation of barriers intensity for implementation of cleaner technologies: Framework for sustainable production. Resources, Conservation and Recycling, 146, 156–167. https://doi.org/10.1016/j.resconrec.2019.02.038 |
dc.relation.references | Bockstaller, C., & Girardin, P. (2003). How to validate environmental indicators. Agricultural Systems, 76(2), 639–653. https://doi.org/10.1016/S0308-521X(02)00053-7 |
dc.relation.references | Boulding, K. (1966). The Economics of the Coming Spaceship Earth. http://www.pym.org/eco-justice-collaborative/wp-content/uploads/sites/58/2016/05/Boulding.pdf |
dc.relation.references | Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299–312. https://doi.org/10.1016/j.ejor.2013.09.032 |
dc.relation.references | Chacón Vargas, J. R., Moreno Mantilla, C. E., & de Sousa Jabbour, A. B. L. (2018). Enablers of sustainable supply chain management and its effect on competitive advantage in the Colombian context. Resources, Conservation and Recycling, 139, 237–250. https://doi.org/10.1016/j.resconrec.2018.08.018 |
dc.relation.references | Colombia Productiva. (2019). SECTOR QUÍMICOS - VISIÓN A 2032. https://www.colombiaproductiva.com/ptp-capacita/publicaciones/sectoriales/publicaciones-quimica-basica/plan-de-negocio-industria-quimica-basica-2019-2032/resumen-plan-de-negocios-del-sector-quimicos |
dc.relation.references | Cong, L., Zhao, F., & Sutherland, J. W. (2019). A Design Method to Improve End-of-Use Product Value Recovery for Circular Economy. Journal of Mechanical Design, Transactions of the ASME, 141(4). https://doi.org/10.1115/1.4041574 |
dc.relation.references | Cortés-Aldana, F. A., García-Melón, M., Fernández-de-Lucio, I., Aragonés-Beltrán, P., & Poveda-Bautista, R. (2009). University objectives and socioeconomic results: A multicriteria measuring of alignment. European Journal of Operational Research, 199(3), 811–822. https://doi.org/10.1016/j.ejor.2009.01.065 |
dc.relation.references | Cortes Aldana, F.-A., García Melon, M., & Aragones Beltran, P. (2007). Selección de una tecnología de banda ancha para la Universidad Nacional de Colombia - Sede Bogotá, usando una técnica de decisión multicriterio. Ingeniería e Investigación. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-56092007000100017&lng=e&nrm=iso&tlng=e |
dc.relation.references | Daintith, J. (2008). A Dictionary of Chemistry (6 ed) - Squalene. Oxford University Press. https://www.oxfordreference.com/view/10.1093/acref/9780199204632.001.0001/acref-9780199204632 |
dc.relation.references | DANE. (2012). CLASIFICACIÓN INDUSTRIAL INTERNACIONAL UNIFORME DE TODAS LAS ACTIVIDADES ECONÓMICAS Revisión 4 adaptada para Colombia CIIU Rev. 4 A.C. https://www.dane.gov.co/files/nomenclaturas/CIIU_Rev4ac.pdf |
dc.relation.references | DECRETO 1713 DE 2002. (2002). http://corponarino.gov.co/expedientes/juridica/2002decreto1713.pdf |
dc.relation.references | Di Maio, F., & Rem, P. ; (2015). A Robust Indicator for Promoting Circular Economy through Recy-cling. Journal of Environmental Protection Citation, 6(6), 1095–1104. https://doi.org/10.4236/jep.2015.610096 |
dc.relation.references | DNP. (2018). Estrategia Nacional de Economía Circular Nuevos modelos de negocio, transformación productiva y cierre de ciclos de materiales. https://cempre.org.co/cempre/wp-content/uploads/2018/11/ECONOMÍA-CIRCULAR-1.pdf |
dc.relation.references | EEA. (2016). Circular economy in Europe — Developing the knowledge base. https://www.eea.europa.eu/publications/circular-economy-in-europe |
dc.relation.references | Elia, V., Gnoni, M. G., & Tornese, F. (2017). Measuring circular economy strategies through index methods: A critical analysis. Journal of Cleaner Production, 142, 2741–2751. https://doi.org/10.1016/j.jclepro.2016.10.196 |
dc.relation.references | Ellen MacArthur Foundation. (2015). CIRCULARITY INDICATORS An Approach to Measuring Circularity. https://www.ellenmacarthurfoundation.org/assets/downloads/insight/Circularity-Indicators_Project-Overview_May2015.pdf |
dc.relation.references | EMF. (2015a). GROWTH WITHIN: A CIRCULAR ECONOMY VISION FOR A COMPETITIVE EUROPE. https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf |
dc.relation.references | EMF. (2015b). TOWARDS A CIRCULAR ECONOMY: BUSINESS RATIONALE FOR AN ACCELERATED TRANSITION. |
dc.relation.references | Ericsson, K. A., & Lehmann, A. C. (1996). Expert and Exceptional Performance: Evidence of Maximal Adaptation to Task Constraints. Annual Review of Psychology, 47, 273–305. https://doi.org/10.1146/annurev.psych.47.1.273 |
dc.relation.references | Erkman, S. (1997). Industrial ecology: An historical view. Journal of Cleaner Production, 5(1–2), 1–10. https://doi.org/10.1016/S0959-6526(97)00003-6 |
dc.relation.references | Fatimah, Y. A., & Biswas, W. (2017). Remanufacturing as pathway for achieving circular economy for Indonesian SMEs. In Smart Innovation, Systems and Technologies (Vol. 68). https://doi.org/10.1007/978-3-319-57078-5_39 |
dc.relation.references | García-Bustamante, C. A., Aguilar-Rivera, N., Zepeda-Pirrón, M., & Armendáriz-Arnez, C. (2018). Development of indicators for the sustainability of the sugar industry. Environmental and Socio-Economic Studies, 6(4), 22–38. https://doi.org/10.2478/environ-2018-0025 |
dc.relation.references | Geisendorf, S., & Pietrulla, F. (2018). The circular economy and circular economic concepts—a literature analysis and redefinition. Thunderbird International Business Review, 60(5), 771–782. https://doi.org/10.1002/tie.21924 |
dc.relation.references | Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/j.jclepro.2016.12.048 |
dc.relation.references | Geng, Y., Sarkis, J., Ulgiati, S., & Zhang, P. (2013). Measuring China’s Circular Economy. Science, 339(6127), 1526–1527. https://doi.org/10.1126/science.1227059 |
dc.relation.references | Geng, Yong, Fu, J., Sarkis, J., & Xue, B. (2012). Towards a national circular economy indicator system in China: an evaluation and critical analysis. Journal of Cleaner Production, 23(1), 216–224. https://doi.org/10.1016/j.jclepro.2011.07.005 |
dc.relation.references | Geng, Yong, Zhang, P., Côté, R. P., & Fujita, T. (2009). Assessment of the National Eco-Industrial Park Standard for Promoting Industrial Symbiosis in China. Journal of Industrial Ecology, 13(1), 15–26. https://doi.org/10.1111/j.1530-9290.2008.00071.x |
dc.relation.references | Geng, Yong, Zhu, Q., Doberstein, B., & Fujita, T. (2009). Implementing China’s circular economy concept at the regional level: A review of progress in Dalian, China. Waste Management, 29(2), 996–1002. https://doi.org/10.1016/j.wasman.2008.06.036 |
dc.relation.references | Genovese, A., Acquaye, A. A., Figueroa, A., & Koh, S. C. L. (2017). Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications. Omega, 66, 344–357. https://doi.org/10.1016/j.omega.2015.05.015 |
dc.relation.references | Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114, 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007 |
dc.relation.references | Gibbs, G. R. (2013). Using software in qualitative analysis. In Sage. |
dc.relation.references | GQSP Colombia. (2019). CONVOCATORIA NACIONAL - PROGRAMA DE APOYO TÉCNICO PARA IMPLEMENTAR BUENAS PRÁCTICAS DE LABORATORIO DE LA ORGANIZACIÓN PARA LA COOPERACIÓN Y DESARROLLO ECONÓMICO (BPL OCDE) EN LABORATORIOS DE ENSAYO (p. 9). https://www.unido.org/sites/default/files/files/2018-04/Buenas-Prácticas-de- |
dc.relation.references | GQSP Colombia. (2020). Higiene y Desinfección: Medidas preventivas para la productividad en tiempos de COVID 19. (p. 19). https://www.colombiaproductiva.com/getattachment/b7e82dd7-5634-44a2-83dc-3170df10cc05/Higiene-y-Desinfeccion-Medidas-preventivas-para-la.aspx |
dc.relation.references | GRI. (2016). Estandares Ambientales. https://www.globalreporting.org/standards/gri-standards-translations/gri-standards-spanish-translations-download-center/ |
dc.relation.references | Griffiths, P., & Cayzer, S. (2016). Design of Indicators for Measuring Product Performance in the Circular Economy (pp. 307–321). https://doi.org/10.1007/978-3-319-32098-4_27 |
dc.relation.references | Guo-gang, J. (2011). Empirical Analysis of Regional Circular Economy Development--Study Based on Jiangsu, Heilongjiang, Qinghai Province. Energy Procedia, 5, 125–129. https://doi.org/10.1016/J.EGYPRO.2011.03.023 |
dc.relation.references | Haas, W., Krausmann, F., Wiedenhofer, D., & Heinz, M. (2015). How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005. Journal of Industrial Ecology, 19(5), 765–777. https://doi.org/10.1111/jiec.12244 |
dc.relation.references | Hák, T., Janoušková, S., & Moldan, B. (2016). Sustainable Development Goals: A need for relevant indicators. Ecological Indicators, 60, 565–573. https://doi.org/10.1016/j.ecolind.2015.08.003 |
dc.relation.references | Hoffman, R. R., Shadbolt, N. R., Burton, A. M., & Klein, G. (1995). Eliciting knowledge from experts: A methodological analysis. Organizational Behavior and Human Decision Processes, 62(2), 129–158. https://doi.org/10.1006/obhd.1995.1039 |
dc.relation.references | ICCA. (2019). The Global Chemical Industry: Catalyzing Growth and Addressing Our World’s Sustainability Challenges. Oxford Economics. https://www.oxfordeconomics.com/recent-releases/the-global-chemical-industry-catalyzing-growth-and-addressing-our-world-sustainability-challenges |
dc.relation.references | Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. In Expert Systems with Applications (Vol. 38, Issue 11, pp. 14336–14345). https://doi.org/10.1016/j.eswa.2011.04.143 |
dc.relation.references | Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221–232. https://doi.org/10.1016/j.resconrec.2017.09.005 |
dc.relation.references | Kitzinger, J. (1994). The methodology of Focus Groups: the importance of interaction between research participants. Sociology of Health and Illness, 16(1), 103–121. https://doi.org/10.1111/1467-9566.ep11347023 |
dc.relation.references | Kravchenko, M., Pigosso, D. C., & McAloone, T. C. (2019). Towards the ex-ante sustainability screening of circular economy initiatives in manufacturing companies: Consolidation of leading sustainability-related performance indicators. In Journal of Cleaner Production (Vol. 241, p. 118318). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.118318 |
dc.relation.references | Kristensen, H. S., & Mosgaard, M. A. (2020). A review of micro level indicators for a circular economy – moving away from the three dimensions of sustainability? In Journal of Cleaner Production (Vol. 243, p. 118531). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.118531 |
dc.relation.references | Li, N., & Zhao, H. (2016). Performance evaluation of eco-industrial thermal power plants by using fuzzy GRA-VIKOR and combination weighting techniques. Journal of Cleaner Production, 135, 169–183. https://doi.org/10.1016/j.jclepro.2016.06.113 |
dc.relation.references | Li, R., & Su, C. (2012). Evaluation of the circular economy development level of Chinese chemical enterprises. Procedia Environmental Sciences, 13, 1595–1601. https://doi.org/10.1016/j.proenv.2012.01.151 |
dc.relation.references | Liang, W., Zhao, G., & Hong, C. (2018). Performance assessment of circular economy for phosphorus chemical firms based on VIKOR-QUALIFLEX method. Journal of Cleaner Production, 196, 1365–1378. https://doi.org/10.1016/j.jclepro.2018.06.147 |
dc.relation.references | Linder, M., Sarasini, S., & van Loon, P. (2017). A Metric for Quantifying Product-Level Circularity. Journal of Industrial Ecology, 21(3), 545–558. https://doi.org/10.1111/jiec.12552 |
dc.relation.references | Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015). Fuzzy multiple criteria decision-making techniques and applications – Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003 |
dc.relation.references | Marecos Do Monte, M. H. (2007). Water reuse in Europe. http://www.ewa-online.eu/tl_files/_media/content/documents_pdf/Publications/E-WAter/documents/21_2007_07.pdf |
dc.relation.references | Meul, M., Nevens, F., & Reheul, D. (2009). Validating sustainability indicators: Focus on ecological aspects of Flemish dairy farms. Ecological Indicators, 9(2), 284–295. https://www.academia.edu/24367060/Validating_sustainability_indicators_Focus_on_ecological_aspects_of_Flemish_dairy_farms |
dc.relation.references | Mieg, H. A. (2009). Two factors of expertise? Excellence and professionalism of environmental experts. High Ability Studies, 20(1), 91–115. https://doi.org/10.1080/13598130902860432 |
dc.relation.references | Ministerio de ambiente. (2005). DECRETO 4741 DE 2005. http://www.corpocaldas.gov.co/publicaciones/1524/02-28/Decreto4741de2005.pdf |
dc.relation.references | Ministerio de ambiente y desarrollo sostenible. (2018). Resolución No 1407. http://www.andi.com.co/Uploads/RES 1407 DE 2018.pdf |
dc.relation.references | Ministerio de ambiente y desarrollo sostenible, & Ministerio de Comercio Industria y Turimos. (2019). Estrategia Nacional de Economía Circular: Cierre de ciclos de materiales, innovación tecnológica, colaboración y nuevos modelos de negocio. |
dc.relation.references | Moraga, G., Huysveld, S., Mathieux, F., Blengini, G. A., Alaerts, L., Van Acker, K., de Meester, S., & Dewulf, J. (2019). Circular economy indicators: What do they measure? Resources, Conservation and Recycling, 146, 452–461. https://doi.org/10.1016/j.resconrec.2019.03.045 |
dc.relation.references | Moreno Mantilla, C. E. (2007). Adopción de tecnologías más limpias en firmas industriales: un estudio multimétodo sobre el efecto de la aplicación de límites en vertimiento y tasas retributivas en Santander, Colombia. Cuadernos de Administración, 30. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0120-35922007000100003&lng=es&nrm=iso&tlng=es |
dc.relation.references | Moriguchi, Y. (2007). Material flow indicators to measure progress toward a sound material-cycle society. Journal of Material Cycles and Waste Management, 9(2), 112–120. https://doi.org/10.1007/s10163-007-0182-0 |
dc.relation.references | Niero, M., & Kalbar, P. P. (2019). Coupling material circularity indicators and life cycle based indicators: A proposal to advance the assessment of circular economy strategies at the product level. Resources, Conservation and Recycling, 140, 305–312. https://doi.org/10.1016/j.resconrec.2018.10.002 |
dc.relation.references | Nilsson, L., Persson, P. O., Rydén, L., Darozhka, S., & Zaliauskiene, A. (2007). Cleaner Production Assessment. In Cleaner Production: Technologies and Tools for Resource Efficient Production (pp. 71–86). https://books.google.com/books?id=7uXVE3ilk_kC&pgis=1 |
dc.relation.references | OECD, G. of S. T. (n.d.). OECD Glossary of Statistical Terms - Renewable natural resources Definition. Retrieved July 10, 2020, from https://stats.oecd.org/glossary/detail.asp?ID=2290 |
dc.relation.references | Özcan, T., Elebi, N., & Esnaf, A. (2011). Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Systems with Applications, 38(8), 9773–9779. https://doi.org/10.1016/j.eswa.2011.02.022 |
dc.relation.references | Ozdemir, M. S. (2005). Validity and inconsistency in the analytic hierarchy process. Applied Mathematics and Computation, 161(3), 707–720. https://doi.org/10.1016/j.amc.2003.12.099 |
dc.relation.references | Park, J. Y., & Chertow, M. R. (2014). Establishing and testing the “reuse potential” indicator for managing wastes as resources. Journal of Environmental Management, 137, 45–53. https://doi.org/10.1016/j.jenvman.2013.11.053 |
dc.relation.references | Park, K., & Kremer, G. E. O. (2017). Text mining-based categorization and user perspective analysis of environmental sustainability indicators for manufacturing and service systems. Ecological Indicators, 72, 803–820. https://doi.org/10.1016/j.ecolind.2016.08.027 |
dc.relation.references | Potting, J., Hekkert, M., Worrell, E., & Hanemaaijer, A. (2017). CIRCULAR ECONOMY: MEASURING INNOVATION IN THE PRODUCT CHAIN Policy Report. |
dc.relation.references | Proops, J. L. R. (1991). Economics of natural resources and the environment. Ecological Economics, 3(3), 263–265. https://doi.org/10.1016/0921-8009(91)90039-H |
dc.relation.references | PubChem. (n.d.). Retrieved June 12, 2020, from https://pubchem.ncbi.nlm.nih.gov/ |
dc.relation.references | Qing, Y., Qiongqiong, G., & Mingyue, C. (2011). Study and Integrative Evaluation on the development of Circular Economy of Shaanxi Province. Energy Procedia, 5, 1568–1578. https://doi.org/10.1016/j.egypro.2011.03.268 |
dc.relation.references | Reike, D., Vermeulen, W. J. V., & Witjes, S. (2018). The circular economy: New or Refurbished as CE 3.0? — Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resources, Conservation and Recycling, 135, 246–264. https://doi.org/10.1016/j.resconrec.2017.08.027 |
dc.relation.references | Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W. R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S. A., Roy, J., Fennell, P., Cremmins, B., Koch Blank, T., Hone, D., Williams, E. D., de la Rue du Can, S., … Helseth, J. (2020). Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. In Applied Energy (Vol. 266). Elsevier Ltd. https://doi.org/10.1016/j.apenergy.2020.114848 |
dc.relation.references | Rossi, E., Bertassini, A. C., Ferreira, C. dos S., Neves do Amaral, W. A., & Ometto, A. R. (2020). Circular economy indicators for organizations considering sustainability and business models: Plastic, textile and electro-electronic cases. Journal of Cleaner Production, 247, 119137. https://doi.org/10.1016/j.jclepro.2019.119137 |
dc.relation.references | Ruiz-Mercado, G. J., Smith, R. L., & Gonzalez, M. A. (2012). Sustainability indicators for chemical processes: I. Taxonomy. Industrial and Engineering Chemistry Research, 51(5), 2309–2328. https://doi.org/10.1021/ie102116e |
dc.relation.references | Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8 |
dc.relation.references | Saaty, T. L. (2002). Decision making with the Analytic Hierarchy Process. Scientia Iranica, 9(3), 215–229. https://doi.org/10.1504/ijssci.2008.017590 |
dc.relation.references | Saaty, Thomas L. (1988). What is the Analytic Hierarchy Process? In Mathematical Models for Decision Support (pp. 109–121). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-83555-1_5 |
dc.relation.references | Sabaghi, M., Mascle, C., & Baptiste, P. (2016). Evaluation of products at design phase for an efficient disassembly at end-of-life. Journal of Cleaner Production, 116, 177–186. https://doi.org/10.1016/j.jclepro.2016.01.007 |
dc.relation.references | Saidani, M., Yannou, B., Leroy, Y., Cluzel, F., & Kendall, A. (2019). A taxonomy of circular economy indicators. Journal of Cleaner Production, 207, 542–559. https://doi.org/10.1016/j.jclepro.2018.10.014 |
dc.relation.references | San Martín Cantero, D. (2014). Teoría fundamentada y Atlas.ti: recursos metodológicos para la investigación educativa. Revista Electrónica de Investigación Educativa. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1607-40412014000100008 |
dc.relation.references | Sassanelli, C., Rosa, P., Rocca, R., & Terzi, S. (2019). Circular economy performance assessment methods: A systematic literature review. Journal of Cleaner Production, 229, 440–453. https://doi.org/10.1016/J.JCLEPRO.2019.05.019 |
dc.relation.references | Scheepens, A. E., Vogtländer, J. G., & Brezet, J. C. (2016). Two life cycle assessment (LCA) based methods to analyse and design complex (regional) circular economy systems. Case: Making water tourism more sustainable. Journal of Cleaner Production, 114, 257–268. https://doi.org/10.1016/j.jclepro.2015.05.075 |
dc.relation.references | Serna, J., Díaz Martinez, E. N., Narváez Rincón, P. C., Camargo, M., Gálvez, D., & Orjuela, Á. (2016). Multi-criteria decision analysis for the selection of sustainable chemical process routes during early design stages. Chemical Engineering Research and Design, 113, 28–49. https://doi.org/10.1016/j.cherd.2016.07.001 |
dc.relation.references | Sheldon, R. A. (2017). The E factor 25 years on: the rise of green chemistry and sustainability. Green Chemistry, 19(1), 18–43. https://doi.org/10.1039/C6GC02157C |
dc.relation.references | Shiau, T. A., & Liu, J. S. (2013). Developing an indicator system for local governments to evaluate transport sustainability strategies. Ecological Indicators, 34, 361–371. https://doi.org/10.1016/j.ecolind.2013.06.001 |
dc.relation.references | Simons, M. (2017). Comparing industrial cluster cases to define upgrade business models for a circular economy. In Dynamics of Long-Life Assets: From Technology Adaptation to Upgrading the Business Model. https://doi.org/10.1007/978-3-319-45438-2_17 |
dc.relation.references | Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2007). Development of composite sustainability performance index for steel industry. Ecological Indicators, 7(3), 565–588. https://doi.org/10.1016/j.ecolind.2006.06.004 |
dc.relation.references | Stasser, G., Stewart, D. D., & Wittenbaum, G. M. (1995). Expert roles and information exchange during discussion: The importance of knowing who knows what. Journal of Experimental Social Psychology, 31(3), 244–265. https://doi.org/10.1006/jesp.1995.1012 |
dc.relation.references | Su, B., Heshmati, A., Geng, Y., & Yu, X. (2013). A review of the circular economy in China: moving from rhetoric to implementation. Journal of Cleaner Production, 42, 215–227. https://doi.org/10.1016/j.jclepro.2012.11.020 |
dc.relation.references | Tong, O., Shao, S., Zhang, Y., Chen, Y., Liu, S. L., & Zhang, S. S. (2012). An AHP-Based water-Conservation and waste-Reduction indicator system for cleaner production of textile-Printing industry in China and technique integration. Clean Technologies and Environmental Policy, 14(5), 857–868. https://doi.org/10.1007/s10098-012-0453-x |
dc.relation.references | Veleva, V., Bodkin, G., & Todorova, S. (2017). The need for better measurement and employee engagement to advance a circular economy: Lessons from Biogen’s “zero waste” journey. Journal of Cleaner Production, 154, 517–529. https://doi.org/10.1016/j.jclepro.2017.03.177 |
dc.relation.references | Waas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., & Verbruggen, A. (2014). Sustainability Assessment and Indicators: Tools in a Decision-Making Strategy for Sustainable Development. Sustainability, 6(9), 5512–5534. https://doi.org/10.3390/su6095512 |
dc.relation.references | Wang, R., Chen, Y., & Xu, Z. (2015). Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments. Environmental Science and Technology, 49(10), 5999–6008. https://doi.org/10.1021/acs.est.5b00104 |
dc.relation.references | Wedley, W. C. (1993). Consistency prediction for incomplete AHP matrices. Mathematical and Computer Modelling, 17(4–5), 151–161. https://doi.org/10.1016/0895-7177(93)90183-Y |
dc.relation.references | Wen, Z., & Meng, X. (2015). Quantitative assessment of industrial symbiosis for the promotion of circular economy: a case study of the printed circuit boards industry in China’s Suzhou New District. Journal of Cleaner Production, 90, 211–219. https://doi.org/10.1016/J.JCLEPRO.2014.03.041 |
dc.relation.references | Yang, B., & Wyman, C. E. (2008). Pretreatment: The key to unlocking low-cost cellulosic ethanol. In Biofuels, Bioproducts and Biorefining (Vol. 2, Issue 1, pp. 26–40). https://doi.org/10.1002/bbb.49 |
dc.relation.references | Yang, Z., Chu, T., Han, L., Liu, X., Xiao, W., & Huang, G. (2013). Application of GC-TOPSIS on optimizing choice of utilization programs of crop straw. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 29(20), 179–191. https://doi.org/10.3969/j.issn.1002-6819.2013.20.024 |
dc.relation.references | Yuan, Z., Bi, J., & Moriguichi, Y. (2008). The Circular Economy: A New Development Strategy in China. Journal of Industrial Ecology, 10(1–2), 4–8. https://doi.org/10.1162/108819806775545321 |
dc.relation.references | Zaman, A. U., & Lehmann, S. (2013). The zero waste index: a performance measurement tool for waste management systems in a ‘zero waste city.’ Journal of Cleaner Production, 50, 123–132. https://doi.org/10.1016/j.jclepro.2012.11.041 |
dc.relation.references | Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., & Nikanfar, A.-R. (2015). Design and Implementation Content Validity Study: Development of an instrument for measuring Patient-Centered Communication. Journal of Caring Sciences, 4(2), 165–178. https://doi.org/10.15171/jcs.2015.017 |
dc.relation.references | Zheng, J., Huang, Y., & Wang, Z. (2012). Study on establishment and application of circular economy evaluation index system for the chemical industry. In Advanced Materials Research (Vols. 524–527, pp. 3455–3458). https://doi.org/10.4028/www.scientific.net/AMR.524-527.3455 |
dc.relation.references | Zhijun, F., & Nailing, Y. (2007). Putting a circular economy into practice in China. Sustainability Science, 2(1), 95–101. https://doi.org/10.1007/s11625-006-0018-1 |
dc.relation.references | Zhu, Q., & Sarkis, J. (2007). The moderating effects of institutional pressures on emergent green supply chain practices and performance. International Journal of Production Research, 45(18–19), 4333–4355. https://doi.org/10.1080/00207540701440345 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | Economía Circular |
dc.subject.proposal | AHP |
dc.subject.proposal | Indicadores de sostenibilidad |
dc.subject.proposal | Industria química |
dc.subject.proposal | Desempeño ambiental |
dc.subject.proposal | Desarrollo sostenible |
dc.subject.proposal | Circular Economy |
dc.subject.proposal | Sustainability Indicators |
dc.subject.proposal | Chemical Industry |
dc.subject.proposal | Environmental Performance |
dc.subject.proposal | Sustainable Development |
dc.subject.unesco | Sistema económico |
dc.subject.unesco | Industria química |
dc.subject.unesco | Desarrollo sostenible |
dc.subject.unesco | Sustainable Development |
dc.subject.unesco | Chemical Industry |
dc.subject.unesco | Economic system |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |