Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBotero Fernández, Verónica
dc.contributor.advisorDuque Cardona, Juan Carlos
dc.contributor.authorOspina Zapata, Juan Pablo
dc.descriptionDissertation for the degree of Doctor of Civil Engineering
dc.description.abstractThis research seeks to understand how the accessibility measure can be explained by the sociodemographic characteristics of cyclists, the built environment at the origin and destination, and the built and natural environment along the route. We first conducted a bicycle route survey to collect information about the characteristics of cyclists and the routes they take in Medellin city. Second, we developed an econometric model, which aimed at understanding how the natural and environmental factors of origin, destination, and along the route, affect cyclists’ travel distance. Such an understanding is essential to know about cyclists' preferences, which may affect their potential space of interaction in the city. Third, we solved an optimization problem which involved making investment decisions to build a cycling network that was aimed at maximizing the coverage of cyclists, while maintaining a minimum total network cost at its minimum. Fourth, we analyze the accessibility for cyclists, which takes into account the results derived from the econometric model and the optimization model. Our results reveal the importance of built and natural characteristics along the road in explaining cycling travel distances while controlling for socioeconomic and built environment measures at origins and destinations. All these results suggest that cyclists’ behaviors are diverse and therefore, including cyclists’ preferences will allow a more sensitive assessment of individual variations in accessibility measures.
dc.description.abstractEsta investigaci´on busc´o comprender la manera en la cual la medida de accesibilidad puede ser explicada por las caracter´ısticas sociodemogr´aficas de los ciclistas, el entorno construido en el origen y destino, y el entorno construido y natural a lo largo de la ruta. Primero realizamos una encuesta para recoger informaci´on sobre las caracter´ısticas de los ciclistas y las rutas que toman en la ciudad de Medell´ın. En segundo lugar, desarrollamos un modelo econom´etrico, cuyo objetivo era comprender c´omo los factores naturales y ambientales de origen, destino y a lo largo de la ruta afectan la distancia de viaje de los ciclistas. Esta comprensi´on es fundamental para conocer las preferencias de los ciclistas, las cu´ales pueden afectar su espacio de interacci´on en la ciudad. En tercer lugar, resolvimos un problema de optimizaci´on que implicaba tomar decisiones de inversi´on para construir una red ciclista que ten´ıa como objetivo maximizar la cobertura de los ciclistas, manteniendo al mismo tiempo un costo total m´ınimo de la red. En cuarto lugar, analizamos la accesibilidad para ciclistas, la cual tiene en cuenta los resultados derivados del modelo econom´etrico y el modelo de optimizaci´on. Nuestros resultados revelan la importancia de las caracter´ısticas socioecon´omicas, las caracter´ısticas del entorno construido en los or´ıgenes y destinos, as´ı como el entorno construido y natural a lo largo de la ruta para explicar las distancias de viaje en bicicleta. Nuestros resultados sugieren que los comportamientos de los ciclistas son diversos y, por lo tanto, la inclusi´on de las preferencias de los ciclistas permitir´a una evaluaci´on m´as sensible de las variaciones individuales en las medidas de accesibilidad.
dc.description.sponsorshipPEAK Urban Programme, supported by UKIR’s Global Challenge Re- search Fund, Grant Ref.: ES/P011055/1.
dc.description.sponsorshipUniversidad Nacional de Colombia-Medellin (project code QUIPU 202010017827)
dc.format.extent131 páginas
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.titleMeasuring bicycle accessibility with spatial effects evaluation
dc.typeTrabajo de grado - Doctorado
dc.publisher.programDepartamento de Ingeniería Civil
dc.contributor.researcherLópez , Víctor Ignacio
dc.contributor.researcherBrussel, Mark
dc.contributor.researcherGrigolon, Anna
dc.contributor.researcherMontoya, Alejandro
dc.description.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civil
dc.description.researchareaTransportation planning and infrastructure
dc.description.researchareaPlaneación de Transporte e Infraestructura
dc.identifier.instnameUniversidad Nacional - Sede Medellín
dc.identifier.reponameRepositorio Universidad Nacional de Colombia
dc.publisher.facultyFacultad de Minas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAnselin, L. (1988). Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Dordrecht, The Netherlands.
dc.relation.referencesAnselin, L. (1995). Local indicators of spatial analysis–LISA. Geographical Analysis, 27(2):93–115.
dc.relation.referencesAppleyard, B. (2016). New methods to measure the built environment for human-scale travel research: Individual access corridor (IAC) analytics to better understand sustainable active travel choices. Journal of Transport and Land Use, 9(2):121–145.
dc.relation.referencesArbelaez, O. (2015). Modelación de la elección de la bicicleta pública y privada en ciudades. PhD thesis, Universidad Nacional de Colombia, Medellín.
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2012). Encuesta Origen y Destino para el Valle de Aburrá. Technical report, Área Metropolitana del Valle de Aburrá, Medellín.
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2015). Plan Maestro Metropolitano de la Bicicleta del Valle de Aburrá. Technical report, Area Metropolitana del Valle de Aburrá, Medellín.
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2018). Encuesta de Movilidad Origen y Destino 2017. Technical report, Área Metropolitana del Valle de Aburrá, Medellín.
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá (2019). Actualización Inventario de emisiones atmosféricas del Valle de Aburrá - Año 2018. Technical report, Área Metropolitana del Valle de Aburrá, Medellín.
dc.relation.referencesAultman-Hall, L. and Hall, F. (1998). Research Design Insights from a Survey of Urban Bicycle Commuters. Transportation Research Record, 1636(98):21–28.
dc.relation.referencesBelsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnosis. Indentifying influential data and sources of collinearity. John Wiley & Sons, Inc., Hoboken, New Jersey, USA.
dc.relation.referencesBen-Akiva, M. E. and Lerman, S. R. (1985). Discrete Choice Analysis. Theory and application to travel demand. MIT Press.
dc.relation.referencesBenoit, K. (2011). Linear Regression Models with Logarithmic Transformations.
dc.relation.referencesBernal, R. (2009). The Informal Labor Market in Colombia: Identification and Characterization. Desarrollo y Sociedad, pages 145–208.
dc.relation.referencesBoeing, G. (2017). OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems, 65:126–139.
dc.relation.referencesBroach, J., Dill, J., and Gliebe, J. (2012). Where do cyclists ride? A route choice model develo- ped with revealed preference GPS data. Transportation Research Part A: Policy and Practice, 46(10):1730–1740.
dc.relation.referencesBroach, J., Gliebe, J., and Dill, J. (2011). Bicycle route choice model developed using revealed preference GPS data. TRB 2011 Annual Meeting, 5464.
dc.relation.referencesBuehler, R. and Dill, J. (2016). Bikeway Networks: A Review of Effects on Cycling. Transport Reviews, 36(1):9–27.
dc.relation.referencesBuehler, R., Hamre, A., Sonenklar, D., and Goger, P. (2011). Trends and Determinants of Cycling in the Washington, DC Region. Technical report, Report No. VT-2009-05 Mid-Atlantic Universities Transportation Center - MAUTC US DOT Research & Innovative Technology Admin, Washington DC.
dc.relation.referencesCabral, L., Kim, A. M., and Shirgaokar, M. (2019). Low-stress bicycling connectivity: Assessment of the network build-out in Edmonton, Canada. Case Studies on Transport Policy, 7(2):230–238.
dc.relation.referencesCameron, A. C. and Trivedi, P. K. (2005). Microeconometrics. Methods and applications. Cambridge University Press, New York, New York, USA.
dc.relation.referencesCampbell, A. A., Cherry, C. R., Ryerson, M. S., and Yang, X. (2016). Factors influencing the choice of shared bicycles and shared electric bikes in Beijing. Transportation Research Part C: Emerging Technologies, 67:399–414.
dc.relation.referencesCao, X., Handy, S. L., and Mokhtarian, P. L. (2006). The influences of the built environment and residential self-selection on pedestrian behavior: Evidence from Austin, TX. Transportation, 33(1):1–20.
dc.relation.referencesCao, X., Mokhtarian, P. L., and Handy, S. L. (2009). Examining the impacts of residential self- selection on travel behaviour: A focus on empirical findings. Transport Reviews, 29(3):359–395.
dc.relation.referencesCárdenas, M. and Rozo, S. (2009). Firm informality in Colombia: Problems and solutions. Desarrollo y Sociedad, (63):211–243.
dc.relation.referencesCardozo, O. D., García-Palomares, J. C., and Gutiérrez, J. (2012). Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geo- graphy, 34(4):548–558.
dc.relation.referencesCaviedes, A. and Figliozzi, M. (2018). Modeling the impact of traffic conditions and bicycle faci- lities on cyclists’ on-road stress levels. Transportation Research Part F: Traffic Psychology and Behaviour, 58:488–499.
dc.relation.referencesCervero, R., Denman, S., and Jin, Y. (2018). Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns. Transport Policy.
dc.relation.referencesCervero, R. and Duncan, M. (2003). Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area. American Journal of Public Health, 93(9):1478–1483.
dc.relation.referencesCervero, R. and Kockelman, K. (1997). Travel demand and the 3Ds : Density, design and diversity. Transportation Research Part D: Transport and Environment, 2(3):199–219.
dc.relation.referencesCervero, R. and Radisch, C. (1996). Travel choices in pedestrian versus automobile oriented neigh- borhoods. Transport Policy, 3(3):127–141.
dc.relation.referencesCervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., and Neiman, A. (2009). Influences of built environments on walking and cycling: Lessons from Bogot ́a. International Journal of Sustainable Transportation, 3(4):203–226.
dc.relation.referencesChurch, R. L. and Murray, A. T. (2009). Coverage. In Bussiness site selection, location analysis, and GIS, chapter 9, pages 209–233. John Wiley & Sons, Inc.
dc.relation.referencesChurch, R. L. and ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32:101–118.
dc.relation.referencesConrow, L., Murray, A. T., and Fischer, H. A. (2018). An optimization approach for equitable bicycle share station siting. Journal of Transport Geography, 69(May 2017):163–170.
dc.relation.referencesCROW (2011). Manual de Diseño para el Tráfico de Bicicletas. Technical report, CROW, Ede, Netherlands.
dc.relation.referencesCurtis, C. (2008). Planning for sustainable accessibility: The implementation challenge. Transport Policy, 15(2):104–112.
dc.relation.referencesDANE (2018). Pobreza Monetaria y Multidimensional en Colombia. Año 2017. Technical report, Departamento Administrativo Nacional de Estadística, Bogotá.
dc.relation.referencesDuque, J. C., Lozano-Gracia, N., Patino, J. E., Restrepo, P., and Velasquez, W. A. (2019). Spatio- temporal dynamics of urban growth in Latin American cities: An analysis using nighttime light imagery. Landscape and Urban Planning, 191(August):103640.
dc.relation.referencesDuque, J. C., Patino, J. E., Ruiz, L. A., and Pardo-Pascual, J. E. (2015). Measuring intra-urban poverty using land cover and texture metrics derived from remote sensing data. Landscape and Urban Planning, 135:11–21.
dc.relation.referencesDuthie, J. and Unnikrishnan, A. (2014). Optimization framework for bicycle network design. Journal of Transportation Engineering, (May):548–556.
dc.relation.referencesEwing, R. and Cervero, R. (2010). Travel and the Built Environment. Journal of the American Planning Association, 76(3):265–294.
dc.relation.referencesFaghih-Imani, A., Eluru, N., El-geneidy, A. M., Rabbat, M., and Haq, U. (2014). How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. Journal of Transport Geography, 41(August 2012):306–314.
dc.relation.referencesFernández-Heredia, Á., Jara-Díaz, S., and Monzón, A. (2016). Modelling bicycle use intention: the role of perceptions. Transportation, 43(1):1–23.
dc.relation.referencesFitch, D. T., Rhemtulla, M., and Handy, S. (2019). The relation of the road environment and bicycling attitudes to usual travel mode to school in teenagers. Transportation Research Part A: Policy and Practice, 123(June 2018):35–53.
dc.relation.referencesForsyth, A., Agrawal, A., and Krizek, K. (2012). Simple, Inexpensive Approach to Sampling for Pedestrian and Bicycle Surveys. Transportation Research Record: Journal of the Transportation Research Board, 2299(2299):22–30.
dc.relation.referencesForsyth, A. and Krizek, K. (2011). Urban Design: Is there a Distinctive View from the Bicycle? Journal of Urban Design, 16(4):531–549.
dc.relation.referencesGarrard, J., Rose, G., and Lo, S. K. (2008). Promoting transportation cycling for women: the role of bicycle infrastructure. Preventive medicine, 46(1):55–9.
dc.relation.referencesGeurs, K. T. and van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: Review and research directions. Journal of Transport Geography, 12(2):127–140.
dc.relation.referencesGuan, X., Wang, D., and Cao, X. J. (2019). The role of residential self-selection in land use- travel research : a review of recent findings. Transport Reviews, 1647(0):1–21.
dc.relation.referencesHägerstrand, T. (1970). What about people in regional science? Papers of the Regional Science Association, 24:6–21.
dc.relation.referencesHamann-Salcedo, F. A. and Mejía, L. F. (2012). Formalizando la informalidad empresarial en Colombia. El mercado de trabajo en Colombia : hechos, tendencias e instituciones. Capítulo 10. Formalizando la informalidad empresarial en Colombia. Pág.:399-427.
dc.relation.referencesHandy, S. (1993). Regional versus local acessibility: Implications for nonwork travel. Transportation Research Record 1400, (234):58–66.
dc.relation.referencesHandy, S. (1996). Methodologies for exploring the link between urban form and travel behavior. Transportation Research Part D: Transport and Environment, 1(2):151–165.
dc.relation.referencesHandy, S., Boarnet, M. G., Ewing, R., and Killingsworth, R. E. (2002). How the built environment affects physical activity. American Journal of Preventive Medicine, 23(2):64–73.
dc.relation.referencesHandy, S. and Niemeier, D. A. (1997). Measuring accessibility: An exploration of issues and alter- natives. Environment and Planning A, 29(7):1175–1194.
dc.relation.referencesHandy, S., van Wee, B., and Kroesen, M. (2014). Promoting Cycling for Transport: Research Needs and Challenges. Transport Reviews, 34(1):4–24.
dc.relation.referencesHansen, W. G. (1959). How Accessibility Shapes Land Use. Journal of the American Institute of Planners, 25(2):73–76.
dc.relation.referencesHayes, M. and Norman, J. M. (1994). Running Uphill : an Experimental Result and its Applications. The Journal of the Operational Research Society, 45(1):25–29.
dc.relation.referencesHeinen, E. (2011). Bicycle commuting.
dc.relation.referencesHeinen, E., Van Wee, B., and Maat, K. (2010). Commuting by Bicycle: An Overview of the Literature. Transport Reviews, 30(1):59–96.
dc.relation.referencesIacono, M., Krizek, K., and El-Geneidy, A. (2008). Access to Destinations: How Close is Close Enough? Estimating Accurate Distance Decay Functions for Multiple Modes and Different Purposes. Technical report.
dc.relation.referencesIacono, M., Krizek, K. J., and El-Geneidy, A. (2010). Measuring non-motorized accessibility: issues, alternatives, and execution. Journal of Transport Geography, 18(1):133–140.
dc.relation.referencesKeijer, M. J. N. and Rietveld, P. (2000). How do people get to the railway station? The dutch experience. Transportation Planning and Technology, 23(3):215–235.
dc.relation.referencesKockelman, K. (1997). Travel Behavior as Function of Accessibility, Land Use Mixing, and Land Use Balance: Evidence from San Francisco Bay Area. Transportation Research Record: Journal of the Transportation Research Board, 1607(January 1997):116–125.
dc.relation.referencesKorner-Nievergelt, F., Roth, T., von Felten, S., Gu ́elat, J., Almasi, B., and Korner-Nievergelt, P. (2015). Model Selection and Multimodel Inference. In Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan, chapter 11.
dc.relation.referencesKrizek, K. J. and Johnson, P. J. (2006). Proximity to Trails and Retail: Effects on Urban Cycling and Walking. Journal of the American Planning Association, 72(1):33–42.
dc.relation.referencesKwan, M.-p. (1998). Space-Time and Integral measures of individual accessibility : A Comparative Analysis Using a Point-based Framework. Geographical Analysis, 30(9512451).
dc.relation.referencesLa Paix Puello, L. and Geurs, K. (2015). Modelling observed and unobserved factors in cycling to railway stations: application to transit-oriented-developments in the Netherlands. European Journal of Transport and Infrastructure Research, 15(15):27–50.
dc.relation.referencesLarrañaga, A. M., Rizzi, L. I., Arellana, J., Strambi, O., and Cybis, H. B. B. (2016). The influence of built environment and travel attitudes on walking: A case study of Porto Alegre, Brazil. International Journal of Sustainable Transportation, 10(4):332–342.
dc.relation.referencesLarsen, J., El-Geneidy, A., and Yasmin, F. (2010). Beyond the Quarter Mile : Examining Travel Distances by Walking and Cycling, Montr ́eal, Canada. Canadian Journal of Urban Research: Canadian Planning and Policy (supplement), 19(1):70–88.
dc.relation.referencesLevine, J., Grengs, J., and Merlin, L. A. (2019). From mobility to accessibility: Transforming urban transportation and land-use planning. Cornell University Press, Ithaca, New York, first edition.
dc.relation.referencesLevinson, D. M., Marshall, W., and Axhausen, K. (2017). Elements of Access. Network Design Lab.
dc.relation.referencesLewis, M. (2007). Stepwise versus Hierarchical Regression: Pros and Cons. Southwest Educational Research Association.
dc.relation.referencesLin, J. J. and Yu, C. J. (2013). A bikeway network design model for urban areas. Transportation, 40(1):45–68.
dc.relation.referencesLitman, T. (2018). Land Use Impacts on Transport.
dc.relation.referencesLiu, H., Szeto, W. Y., and Long, J. (2019). Bike network design problem with a path-size logit- based equilibrium constraint: Formulation, global optimization, and matheuristic. Transportation Research Part E: Logistics and Transportation Review, 127(June):284–307.
dc.relation.referencesLowry, M., Callister, D., Gresham, M., and Moore, B. (2012). Assessment of communitywide bikeability with bicycle level of service. Transportation Research Record, (2314):41–48.
dc.relation.referencesMagnanti, T. L. and Wong, R. T. (1984). Network Design and Transportation Planning: Models and Algorithms. Transportation Science, 18(1):1–55.
dc.relation.referencesMauttone, A., Mercadante, G., Rabaza, M., and Toledo, F. (2017). Bicycle network design: Model and solution algorithm. Transportation Research Procedia, 27:969–976.
dc.relation.referencesMenghini, G., Carrasco, N., Schu ̈ssler, N., and Axhausen, K. W. (2010). Route choice of cyclists in Zurich. Transportation Research Part A: Policy and Practice, 44(9):754–765.
dc.relation.referencesMesbah, M., Thompson, R., and Moridpour, S. (2012). Bilevel optimization approach to design of network of bike lanes. Transportation Research Record, (2284):21–28.
dc.relation.referencesMoreno, R. and Vayá, E. (2000). Técnicas econométricas para el tratamiento de datos espaciales: La econometría espacial. Universitat de Barcelona, Barcelona.
dc.relation.referencesMoritz, W. E. (1998). Adult Bicyclists in the United States: Characteristics and Riding Experience in 1996. Transportation Research Record, 1636(98):1–7.
dc.relation.referencesMotoaki, Y. and Daziano, R. A. (2015). A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand. Transportation Research Part A: Policy and Practice, 75(2015):217–230.
dc.relation.referencesMurawski, L. and Church, R. L. (2009). Improving accessibility to rural health services: The maximal covering network improvement problem. Socio-Economic Planning Sciences, 43(2):102– 110.
dc.relation.referencesOliva, I., Galilea, P., and Hurtubia, R. (2018). Identifying cycling-inducing neighborhoods: A latent class approach. International Journal of Sustainable Transportation, 12(10):701–713.
dc.relation.referencesOrtúzar, J. D. D. and Willumsen, L. G. (2011). Modelling Transport. John Wiley & Sons, London, fourth edition.
dc.relation.referencesOspina, J. P., Botero-Fernández, V., Duque, J. C., Brussel, M., and Grigolon, A. (2020a). Unders- tanding cycling travel distance: The case of Medellin city (Colombia). Transportation Research Part D: Transport and Environment, 86(102423):1–15.
dc.relation.referencesOspina, J. P., Duque, J. C., Botero-Fernández, V., and Montoya, A. (2020b). The Maximal Covering Bicycle Network Design Problem. Manuscript Draft.
dc.relation.referencesOspina, J. P., López-Ríos, V. I., Botero-Fernández, V., and Duque, J. C. (2020c). A database to analyze cycling routes in Medellin, Colombia. Data in Brief, 32:106162.
dc.relation.referencesPáez, A. (2006). Exploring contextual variations in land use and transport analysis using a probit model with geographical weights. Journal of Transport Geography, 14(3):167–176.
dc.relation.referencesPáez, A. (2009). Spatial analysis of economic systems and land use change. Papers in Regional Science, 88(2):251–258.
dc.relation.referencesPáez, A., Scott, D., and Morency, C. (2012). Measuring Accessibility: Positive and Normative Implementation of Various Accessibility Indicators. Journal of Transport Geography, 25:141– 153.
dc.relation.referencesPucher, J. and Buehler, R. (2006). Why Canadians cycle more than Americans: A comparative analysis of bicycling trends and policies. Transport Policy, 13(3):265–279.
dc.relation.referencesPucher, J. and Buehler, R. (2008). Making Cycling Irresistible: Lessons from The Netherlands, Denmark and Germany. Transport Reviews, 28(4):495–528.
dc.relation.referencesPucher, J. and Buehler, R. (2012). City Cycling. MIT Press, Cambridge, Massachusetts, 1 edition.
dc.relation.referencesPucher, J., Dill, J., and Handy, S. (2010). Infrastructure, programs, and policies to increase bicy- cling: an international review. Preventive medicine, 50 Suppl 1:S106–25.
dc.relation.referencesReggiani, A., Bucci, P., and Russo, G. (2011). Accessibility and Network Structures in the German Commuting. Networks and Spatial Economics, 11(4):621–641.
dc.relation.referencesRibeiro, A. and Antunes, A. P. (2002). A GIS-based decision-support tool for public facility planning. Environment and Planning B: Planning and Design, 29(4):553–569.
dc.relation.referencesRietveld, P. and Daniel, V. (2004). Determinants of bicycle use: do municipal policies matter? Transportation Research Part A: Policy and Practice, 38(7):531–550.
dc.relation.referencesRodríguez, D. a. and Joo, J. (2004). The relationship between non-motorized mode choice and the local physical environment. Transportation Research Part D: Transport and Environment, 9(2):151–173.
dc.relation.referencesRosas-Satizábal, D. and Rodriguez-Valencia, A. (2019). Factors and policies explaining the emergence of the bicycle commuter in Bogot ́a. Case Studies on Transport Policy, 7(1):138–149.
dc.relation.referencesRossi, F., van Beek, P., and Walsh, T. (2006). Handbook of Constraint Programming (Foundations of Artificial Intelligence). pages 281–322.
dc.relation.referencesSaelens, B. E., Sallis, J. F., and Frank, L. D. (2003). Environmental Correlates of Walking and Cycling : Findings From the Transportation , Urban Design , and Planning Literatures. Behavioral medicine, 25(2):80–91.
dc.relation.referencesSaghapour, T., Moridpour, S., and Thompson, R. G. (2017). Measuring cycling accessibility in metropolitan areas. International Journal of Sustainable Transportation, 11(5):381–394.
dc.relation.referencesSamper E., J. J. (2010). The politics of peace process in cities in conflict: the Medellin case as a best practice. Department of Urban Studies and Planning.
dc.relation.referencesScarf, P. (2007). Route choice in mountain navigation , Naismith ’ s rule , and the equivalence of distance and climb. 0414.
dc.relation.referencesSchoner, J. E. and Levinson, D. M. (2014). The missing link: bicycle infrastructure networks and ridership in 74 US cities. Transportation, 41(6):1187–1204.
dc.relation.referencesSmith, H. (2011). A mathematical optimization model for a bicycle network design considering bicyle level of service. PhD thesis, University of Maryland.
dc.relation.referencesSzimba, E. and Rothengatter, W. (2012). Spending scarce funds more efficiently-including the pattern of interdependence in cost-benefit analysis. Journal of Infrastructure Systems, 18(4):242– 251.
dc.relation.referencesTaylor, D. and Davis, W. (1999). Review of Basic Research in Bicycle Traffic Science, Traffic Operations, and Facility Design. Transportation Research Record, 1674(1):102–110.
dc.relation.referencesToregas, C. and ReVelle, C. (1972). Optimal location under time or distance constraints. Papers of the Regional Science Association, 28(1):131–143.
dc.relation.referencesTransport for London (2014). London Cycling Design Standards - Tools and techniques. Technical Report June, Transport for London, London.
dc.relation.referencesUN-Habitat (2013). Planning and design for sustainable urban mobility. Technical report, United Nations Organization, New York.
dc.relation.referencesUnited Nations (2019). World Urbanization Prospects. The 2018 Revision. Technical report, United Nations, New York.
dc.relation.referencesVale, D. S., Saraiva, M., and Pereira, M. (2016). Active accessibility: A review of operational measures of walking and cycling accessibility. Journal of Transport and Land Use, 9(1):209–235.
dc.relation.referencesVélez-Gallego, M. C., Teran-Somohano, A., and Smith, A. E. (2020). Journal Pre-proof. European Journal of Operational Research.
dc.relation.referencesWalker, J. L. (2001). Extended discrete choice models: Integrated framework, flexible error structu- res, and latent variables. PhD thesis, Massachusetts Institute of Technology.
dc.relation.referencesWhite, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica, 48(4):817–838.
dc.relation.referencesWooldridge, J. (2011). Econometric analysis of cross section and panel data. Number November. The MIT Press, London.
dc.relation.referencesWooldridge, J. (2013). Introductory Econometrics. A modern approach. Cengage Learning, Mason, OH, USA, fifth edition.
dc.subject.proposalTravel behavior
dc.subject.proposalInteraction effects
dc.subject.proposalCiclismo urbano
dc.subject.proposalEfectos interactivos
dc.title.translatedMedición de la accesibilidad para ciclistas incluyendo la evaluación de efectos espaciales
oaire.awardtitleQUIPU 202010017827
oaire.fundernamePEAK Urban Programme
oaire.fundernameUniversidad Nacional de Colombia

Files in this item


This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit