Show simple item record

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorReyes Montaño, Edgar Antonio
dc.contributor.advisorSoto Del Cerro, David
dc.contributor.authorVargas Alejo, Nury Esperanza
dc.date.accessioned2021-04-07T17:11:13Z
dc.date.available2021-04-07T17:11:13Z
dc.date.issued2020-09-05
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79382
dc.description.abstractLos receptores activados por el aminoácido glutamato de tipo N-metil-D-aspartato (NMDARs) son canales iónicos a través de los cuales fluyen iones calcio (Ca2+) hacia la neurona postsináptica, además de permear iones sodio (Na+) y potasio (K+) a su través. Los NMDARs juegan un papel importante en la plasticidad sináptica, permitiendo la inducción de la potenciación a largo plazo (LTP) y la depresión a largo plazo (LTD), las cuales suponen la base celular de la memoria y el aprendizaje (1). El NMDAR es un complejo proteico formado por cuatro subunidades que conforman un tetrámero (GluN1, GluN2 y GluN3), las cuales están fuertemente reguladas en la apertura y cierre del canal. Se ha demostrado que las subunidades proteícas que componen al NMDAR presentan diferentes combinaciones otorgándole propiedades estructurales y biofísicas específicas, lo anterior, ha permitido estudiarlo como una familia de receptores tipo N-metil-D-aspartato (NMDARs) (2). En este trabajo se han sintetizado y evaluado el efecto neuroprotector in-vitro de dos péptidos diseñados a partir de la secuencia de la Conantoquina-G (Con-G) denominados EAR-17 y EAR-19. En el diseño metodológico, la primera parte fue la síntesis en fase sólida de los péptidos, luego estos fueron caracterizados, purificados y finalmente, se realizó la determinación de la estructura secundaria. La caracterización electrofisiológica de los péptidos fue realizada en células tsA 201 (HEK293T) transfectadas dónde se determinó IC50 de los compuestos. La modulación de las corrientes excitatorias postsinápticas (EPSCs) producida por los péptidos fue testada en cultivos primarios de neuronas hipocampales de ratón. El efecto de neuroprotección de los péptidos se determinó mediante un modelo de deprivación de óxigeno-glucosa (OGD). El resultado del proceso de síntesis y purificación fue óptimo, obteniendo los péptidos puros. En la evaluación electrofisiológica se confirmó el efecto antagonista de los péptidos EAR-17 y EAR-19 sobre las corrientes mediadas por los NMDARs. En los registros de EPSCs, los péptidos disminuyeron las corrientes postsinápticas en neuronas hipocampales, sin recuperar la magnitud de corriente inicial de los EPSCs aunque su frecuencia no se vió alterada. Se determinó la neuroprotección mediada por los péptidos EAR-17 y EAR-19, en el modelo de OGD en neuronas hipocampales, el cual activa la vía de muerte celular por caspasas como consecuencia de la entrada irregular de calcio mediada por los NMDARs. Se observaron cambios significativos cuando la OGD se realizó en presencia y ausencia de los péptidos. Así pues, en este estudio, hemos identificado dos péptidos (denominados EAR-17 y EAR-19) que actúan como antagonistas específicos de la subunidad GluN2B del NMDAR y, por lo tanto, disminuyendo la permeabilidad al ion calcio e induciendo un efecto de neuroprotección. Sugerimos continuar la evaluación de EAR-17 y EAR-19 con otros enfoques in vitro e in vivo.
dc.description.abstractN-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that upon activation by the neurotransmitter glutamate allow calcium ions (Ca2+) flow into the post-synaptic neuron, in addition to permeate sodium (Na+) and potassium (K+) ions through its pore. NMDARs play an important role in synaptic plasticity, enabling long-term potentiation (LTP) and long-term depression (LTD) induction, which are the cellular basis for learning and memory (1). NMDARs are protein complexes formed by four subunits specifically arrange and that are finely regulated for the opening and closing of the channel. The subunits that conform it have been shown to have structural variations in their conformation, allowing to study it as a family of N-methyl-D-aspartate (NMDARs) (2) type receptors. In this work, we have synthesized and evaluated the in-vitro neuroprotective effect of two peptides designed from the sequence of Conantokin-G (Con-G), namely EAR-17 and EAR-19. In the methodological design we have synthesize the solid phase of the peptides, then we are characterized, purified them and determine their secondary structure. Electrophysiological characterization of peptides was performed on transfected tsA201 cells (HEK293T) where IC50 of the compounds was determined. The modulation of post-synaptic excitatory currents (EPSCs) produced by peptides was tested in primary hippocampal neuronal cultures from mouse. The neuroprotection effect of the blocking peptides was determined by oxigen-glucose deprivation protocol (OGD). The result of the synthesis and purification process was optimal, obtaining peptides with high purity. Electrophysiological evaluation confirmed the antagonic effect of EAR-17 and EAR-19 on currents evoked by NMDARs. In EPSC recordings, the peptides decreased EPSCs in hippocampal neurons, without recovering the initial current amplitude of the currents. EPSCs frequency was not altered by the peptides. Neuroprotection mediated by EAR-17 and EAR-19 was determined in hippocampal neurons with the OGD model, which activates the cell death pathway by caspases as a result of irregular calcium entry mediated by NMDARs. Significant changes were observed when OGD was performed in the presence or absence of peptides. Therefore, in this study, we have identified two peptides (namely EAR-17 and EAR-19) that act as specific antagonists of GluN2B subunit of the NMDARs and thus decreasing calcium ion permeability and inducing a neuroprotective effect. We suggest to continue with the evaluation of EAR-17 and EAR-19 by means of other in vitro and in vivo approaches.
dc.format.extent1 recurso en línea (158 páginas)
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.titleEvaluación in-vitro de péptidos sintéticos diseñados a partir de la Conantoquina G (Con-G) con interacción sobre la subunidad GluN2B del receptor de Glutamato tipo N-metil-D-aspartato (NMDAr) y su posible efecto sobre las vías de señalización involucradas en procesos de excitotoxicidad por calcio
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programDepartamento de Química
dc.contributor.researchgroupGrupo de Investigación en Proteinas - GRIP
dc.description.degreelevelDoctorado
dc.description.programBogotá - Ciencias - Doctorado en Ciencias - Bioquímica
dc.description.researchareaDiseño y Evaluación de Péptidos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional UN
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Traynelis, Stephen F., Wollmuth, Lonnie P., MacBain, Chris J., Menniti, Frank S., Vance, Katie M., Ogden, Kevin K., Hansen, Kasper B., Yuan, Hongjie., Myers, Scott J. and DR. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacol Rev [Internet]. 2010;14(62):405–96. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964903/pdf/zpg405.pdf 2. Van Dongen AM. Biology of the NMDA Receptor. [Internet]. Antonius M Van Dongen, editor. Duke University Medical Center, North Carolina; 2009. Available from: http://www.ncbi.nlm.nih.gov/books/NBK5283/ 3. Pamplona F a., Pandolfo P, Duarte FS, Takahashi RN, Prediger RDS. Altered emotionality leads to increased pain tolerance in amyloid β (Aβ1-40) peptide-treated mice. Vol. 212, Behavioural Brain Research. 2010. 4. Tsai SJ, Liu HC, Liu TY, Cheng CY, Hong CJ. Association analysis for genetic variants of the NMDA receptor 2b subunit (GRIN2B) and Parkinson’s disease. J Neural Transm. 2002;109(4):483–8. 5. Bleakman D, Alt A, Nisenbaum ES. Glutamate receptors and pain. Semin Cell Dev Biol [Internet]. 2006 Oct [cited 2015 Jan 20];17(5):592–604. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-33847793783&partnerID=tZOtx3y1 6. Cunha Xavier Pinto M, Lima IVDA, Pessoa da Costa FL, Rosa DV, Mendes-Goulart VA, Resende RR, et al. Glycine transporters type 1 inhibitor promotes brain preconditioning against NMDA-induced excitotoxicity [Internet]. Vol. 89, Neuropharmacology. 2015. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0028390814003669 7. Choo AM, Geddes-Klein DM, Hockenberry A, Scarsella D, Mesfin MN, Singh P, et al. NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int [Internet]. 2012;60(5):506–16. Available from: http://dx.doi.org/10.1016/j.neuint.2012.02.007 8. LUCAS D, NEWHOUSE J. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957;58(2):193–201. 9. Hardingham GE, Bading H. Europe PMC Funders Group Synaptic versus extrasynaptic NMDA receptor signalling : implications for neurodegenerative disorders. 2011;11(10):682–96. 10. Wolosky OC, Del Mar Sáez De Ocariz M, Ordiales LL. Esteroides tópicos: Revisión actualizada de sus indicaciones y efectos adversos en dermatología. Dermatologia Cosmet Medica y Quir. 2015; 11. Zhao J, Constantine-paton M. NR2A Ϫ / Ϫ Mice Lack Long-Term Potentiation But Retain NMDA Receptor and L-Type Ca 2 ϩ Channel-Dependent Long- Term Depression in the Juvenile Superior Colliculus. 2007;27(50):13649–54. 12. Cassiani Miranda CA, Borrero Varona MT. Isquemia cerebral experimental y sus aplicaciones en la investigación en neurociencias. Salud Uninorte. 2013;29(3):430–40. 13. Organización Mundial de la Salud. Enfermedades cardiovasculares [Internet]. 17de mayo de 2017. 2017. p. https://www.who.int/es/news-room/fact-sheets/detai. Available from: https://www.who.int/es/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) 14. Organización Mundial de la Salud. Las 10 principales causas de defunción [Internet]. 24 de mayo de 2018. 2018. p. https://www.who.int/es/news-room/fact-sheets/detai. Available from: https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death 15. American heart association A stroke association. Resumen de estadísticas de 2017 Enfermedad del corazón y ataque cerebral. Circ Com Estadísticas Ataque Cereb la Am Hear Assoc [Internet]. 2017;1–6. Available from: https://www.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documents/downloadable/ucm_491392.pdf 16. Aristizábal Londoño P, Duque Yepez M, Ortega Gaviria M, Berbesi Fernández D. Caracterización de pacientes con Isquemia Crítica Crónica de miembros inferiores. Rev CES Salud Pública. 2012;3(1):18–27. 17. Silva FA, Zarruk JG, Quintero C, Arenas W, Silva SY. Enfermedad cerebrovascular en Colombia Cerebrovascular disease in Colombia. Rev Colomb Cardiol. 2006;13(2):85–9. 18. Palacios Sánchez E, Darío Triana J, María Gómez A, Ibarra Quiñones M, De Bogotá J. Ataque cerebrovascular isquémico caracterización demográfica y clínica. Repert.med.cir [Internet]. 2014;23(2):127–33. Available from: https://www.fucsalud.edu.co/sites/default/files/2017-01/ATAQUE CEREBROVASCULAR ISQUÉMICO.pdf 19. Ministerio de Salud y Protección Social, Colciencias, IETS, Universidad Nacional de Colombia. Guía de práctica clínica de diagnóstico, tratamiento y rehabilitación del episodio agudo de ataque cerebrovascular isquémico, en población mayor de 18 años. Sistema General de Seguridad Social en Salud - Colombiano [Internet]. 2015. Available from: http://gpc.minsalud.gov.co/gpc_sites/Repositorio/Conv_637/GPC_acv/GPC_ACV_Version_Final_Completa.pdf 20. Mario Muñoz. Enfermedad Cerebrovascular Isquemica. Asoc Colomb Rehabil [Internet]. 2012;12:208–2015. Available from: www.acnweb.org/guia/g1c12i.pdf 21. Zhang J. Evolution of the Human ASPM Gene, a Major Determinant of Brain Size. Genetics. 2003;165(4):2063–70. 22. Kelley AE. Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron. 2004;44(1):161–79. 23. Marck W, Wilfred VDD. The Many Roles of Glutamate in Metabolism. J Ind Microbiol Biotechnol [Internet]. 2016;43(0):419–30. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753154/pdf/nihms-720017.pdf 24. Albarracín SL, Baldeón ME, Sangronis E, Cucufate Petruschina A, Reyes FGR. L-Glutamato: un aminoácido clave para las funciones sensoriales y metabólicas. Arch Latinoam Nutr [Internet]. 2016;66(2):101–12. Available from: http://www.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0004-06222016000200002 25. Simeone T, Sanchez R, Rho J. Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J Child Neurol. 19(5):343-360. 26. Watkins JC, Jane DE. The glutamate story. Br J Pharmacol. 2006;147 Suppl:S100–8. 27. Campos-Sandoval JA, Martín-Rufián M, Cardona C, Lobo C, Peñalver A, Márquez J. Glutaminases in brain: Multiple isoforms for many purposes. Neurochem Int [Internet]. 2015;88:1–5. Available from: http://dx.doi.org/10.1016/j.neuint.2015.03.006 28. Márquez J, Tosina M, de la Rosa V, Segura JA, Alonso FJ, Matés JM, et al. New insights into brain glutaminases: Beyond their role on glutamatergic transmission. Neurochem Int. 2009;55(1–3):64–70. 29. Schousboe A. Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neurosci Lett [Internet]. 2019;689(December 2017):11–3. Available from: https://doi.org/10.1016/j.neulet.2018.01.038 30. Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, Knott GW. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLoS Biol. 2006;4(11):2057–64. 31. Masocha W. Astrocyte activation in the anterior cingulate cortex and altered glutamatergic gene expression during paclitaxel-induced neuropathic pain in mice. PeerJ [Internet]. 2015;3:e1350. Available from: https://peerj.com/articles/1350 32. Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer’s Disease. Trends Mol Med [Internet]. 2019;25(2):77–95. Available from: https://doi.org/10.1016/j.molmed.2018.11.006 33. Garcia-Esparcia P, Diaz-Lucena D, Ainciburu M, Torrejón-Escribano B, Carmona M, Llorens F, et al. Glutamate transporter GLT1 expression in Alzheimer disease and dementia with Lewy bodies. Front Aging Neurosci. 2018;10(APR):1–8. 34. Syková E, Vargová L. Extrasynaptic transmission and the diffusion parameters of the extracellular space. Neurochem Int. 2008;52(1):5–13. 35. Hackett JT, Ueda T. Glutamate Release. Neurochem Res. 2015;40(12):2443–60. 36. Sonnewald U, Schousboe A. The Glutamate/GABA-Glutamine Cycle Chapter 1. In: Advances in Neurobiology. Springer C, editor. The Glutamate/GABA-Glutamine Cycle [Internet]. 13th ed. 2016. p. 1–7. Available from: http://link.springer.com/10.1007/978-3-319-45096-4 37. Mckenna MC, Ferreira GC. The Glutamate/GABA-Glutamine Cycle Chapter 4. In: Springer C, editor. The Glutamate/GABA-Glutamine Cycle [Internet]. 13th ed. 2016. p. 59–98. Available from: http://link.springer.com/10.1007/978-3-319-45096-4 38. Schousboe A, Bak LK, Waagepetersen HS. Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol (Lausanne). 2013;4(AUG):1–11. 39. Pittenger C, Bloch M, Williams K. Glutamate Abnormalities in Obsessive Compulsive Disorder: Neurobiology, Pathophysiology, and treatment. 2012;132(3):314–32. 40. Cao P, Zhang J, Huang Y, Fang Y, Lyu J, Shen Y. The age-related changes and differences in energy metabolism and glutamate-glutamine recycling in the D-gal-induced and naturally occurring senescent astrocytes in vitro. Exp Gerontol [Internet]. 2019;118(December 2018):9–18. Available from: https://doi.org/10.1016/j.exger.2018.12.018 41. Goudet C, Magnaghi V, Landry M, Nagy F, Gereau IV RW, Pin JP. Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev [Internet]. 2009;60(1):43–56. Available from: http://dx.doi.org/10.1016/j.brainresrev.2008.12.007 42. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev [Internet]. 1999;51(1):7–61. Available from: http://pharmrev.aspetjournals.org/content/51/1/7.short%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/10049997 43. Law AJ, Weickert CS, Webster MJ, Herman MM, Kleinman JE, Harrison PJ. Expression of NMDA receptor NR1, NR2A and NR2B subunit mRNAs during development of the human hippocampal formation. Eur J Neurosci. 2003;18(5):1197–205. 44. Chen PE, Wyllie DJ a. Pharmacological insights obtained from structure-function studies of ionotropic glutamate receptors. Br J Pharmacol. 2006;147(8):839–53. 45. Yaka R, Salomon S, Matzner H, Weinstock M. Effect of varied gestational stress on acquisition of spatial memory, hippocampal LTP and synaptic proteins in juvenile male rats. Behav Brain Res. 2007;179(1):126–32. 46. Villegas V, Zarante I, Lareo L. Estudio Preliminar De Los Polimorfismos Del Gen Grin-1 Del Receptor Nmda En Una Población Sana Colombiana. Univ Sci [Internet]. 2006;11:49–60. Available from: http://revistas.javeriana.edu.co/index.php/scientarium/article/view/4994 47. Lipsky, R., Goldman D. Genomics and Variation of Ionotropic Glutamate Receptors. Ann N Y Acad Sci [Internet]. 2003;1003:22–35. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14684433 48. Andersson O, Stenqvist a, Attersand a, von Euler G. Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics. 2001;78(3):178–84. 49. Zhu X, Dong J, Shen K, Bai Y, Zhang Y, Lv X, et al. NMDA receptor NR2B subunits contribute to PTZ-kindling-induced hippocampal astrocytosis and oxidative stress. Brain Res Bull [Internet]. 2015;114:70–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0361923015000635 50. Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol. 2007;7(1):39–47. 51. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: Diversity, development and disease. Curr Opin Neurobiol. 2001;11(3):327–35. 52. Karakas E, Regan MC, Furukawa H. Emerging structural insights into the function of ionotropic glutamate receptors. Trends Biochem Sci [Internet]. 2015;40(6):328–37. Available from: http://linkinghub.elsevier.com/retrieve/pii/S096800041500078X 53. Wyllie DJ a, Livesey MR, Hardingham GE. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology [Internet]. 2013;74:4–17. Available from: http://dx.doi.org/10.1016/j.neuropharm.2013.01.016 54. Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 2014;344(6187):992–7. 55. Flores-Soto ME, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E, González-Castañeda RE, Beas-Zarate C. Structure and function of NMDA-type glutamate receptor subunits. Neurol (English Ed. 2012;27(5):301–10. 56. Stirpe F, Barbieri L. Ribosome-inactivating proteins up to date. FEBS Lett. 1986;195(1–2):1–8. 57. Montalbetti CAGN, Falque V. Amide bond formation and peptide coupling. Vol. 61, Tetrahedron. 2005. p. 10827–52. 58. Brenner S, Jacob F, Meselson M. An Unsatble Intermediate Carrying Information From Genes to Ribosomes for Protein Synthesis. Nat Publ Gr. 1961;190:576–81. 59. Hovgaard L, Frokjaer S, van de Weert M. Pharmaceutical Formulation Development of Peptides and Proteins, Second Edition. Pharmaceutical Formulation Development of Peptides and Proteins, Second Edition. 2012. 60. Khoury GA, Smadbeck J, Kieslich CA, Floudas CA. Protein folding and de novo protein design for biotechnological applications. Trends in Biotechnology. 2014. 61. Keservani RK, Sharma AK, Jarouliya U. Protein and peptide in drug targeting and its therapeutic approach. Ars Pharm. 2015;56(3):165–77. 62. Payne RW, Manning MC. Peptide formulation: Challenges and strategies. Innov Pharm Technol. 2009;(28):64–8. 63. Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, et al. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics [Internet]. 2014 Sep [cited 2015 Nov 18];4:58–69. Available from: http://www.sciencedirect.com/science/article/pii/S2212968514000361 64. Wang X, Gao B, Zhu S. A single-point mutation enhances dual functionality of a scorpion toxin. Comp Biochem Physiol Part C Toxicol Pharmacol [Internet]. 2015; Available from: http://linkinghub.elsevier.com/retrieve/pii/S1532045615001179 65. Rigby AC, Baleja JD, Furie BC, Furie B. Three-Dimensional Structure of a γ-Carboxyglutamic Acid-Containing Conotoxin, Conantokin G, from the Marine Snail Conus geographus: The Metal-Free Conformer †, ‡. 1997; Available from: https://pubs.acs.org/sharingguidelines 66. Khalefa BI, Mousa S a., Shaqura M, Lackó E, Hosztafi S, Riba P, et al. Peripheral antinociceptive efficacy and potency of a novel opioid compound 14-O-MeM6SU in comparison to known peptide and non-peptide opioid agonists in a rat model of inflammatory pain [Internet]. Vol. 713, European Journal of Pharmacology. 2013. Available from: http://linkinghub.elsevier.com/retrieve/pii/S001429991300349X 67. Gowd KH, Han TS, Twede V, Gajewiak J, Smith MD, Watkins M, et al. Conantokins derived from the Asprella clade impart con Rl-B, an N-methyl d-aspartate receptor antagonist with a unique selectivity profile for NR2B subunits. Biochemistry. 2012;51:4685–92. 68. Olivera B, Rivier J, Clark C, Ramilo C, Corpuz G, Abogadie F, et al. Diversity of Conus neuropeptides. Science (80- ). 1990;249(4966):257–63. 69. Olivera BM, Teichert RW. Diversity of the neurotoxic Conus peptides: A model for concerted pharmacological discovery. Mol Interv. 2007;7(5):251–60. 70. Wang C, Chi C. Conus Peptides — A Rich Pharmaceutical Treasure The Biology of Cone Snails Classification and Nomenclature of Conus Peptides. Acta Biochim Biophys Sin (Shanghai). 2004;36(11):713–23. 71. Teichert RW, Jimenez EC, Twede V, Watkins M, Hollmann M, Bulaj G, et al. Novel conantokins from Conus parius venom are specific antagonists of N-methyl-D-aspartate receptors. J Biol Chem. 2007;282(51):36905–13. 72. Skjærbsek N, Nielsen KJ, Lewis RJ, Alewood P, Craik DJ. Determination of the solution structures of conantokin-G and conantokin- T by CD and NMR spectroscopy. J Biol Chem. 1997;272(4):2291–9. 73. Donevan SD, Mccabe RT. Conantokin G is an NR2B-selective competitive antagonist of N-methyl-D-aspartate receptors. Mol Pharmacol. 2000;58(3):614–23. 74. Reyes-Guzmán EA, Reyes-Montaño EA. Diseño y evaluación funcional de péptidos que interactúan con la subunidad GluN2B del receptor NMDA. Universidad Nacional de Colombia.; 2015. 75. Reyes-Guzman EA, Vega-Castro N, Reyes-Montaño EA, Recio-Pinto E. Antagonistic action on NMDA/GluN2B mediated currents of two peptides that were conantokin-G structure-based designed. BMC Neurosci. 2017;18(1):1–13. 76. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, San Diego: Dassault Systèmes 2016. BIOVIA Discovery Studio. San Diego; 2017. 77. ThermoFischer. Peptide Synthesis and Proteotypic Peptide Analyzing Tool [Internet]. 2018. Available from: https://www.thermofisher.com/co/en/home/life-science/protein-biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzing-tool.html 78. Gautam A, Chaudhary K, Kumar R, G.P.S. R. Computer-Aided Virtual Screening and Designing of Cell-Penetrating Peptides. In: Press H, editor. Methods in Molecular Biology. New York, NY; 2015. 79. Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature. 2016;534(7605):63–8. 80. Vargas-Alejo NE, Reyes-Montaño E a., Lareo L. Aproximación in silico a la evolución de la familia de genes que conforman el receptor ionotrópico de glutamato en cuatro especies de primates. Univ Sci. 2010;15(3):194–205. 81. Moreno-Pedraza FJ, Lareo LR, Reyes-Montaño EA. Estudio computacional de las relaciones evolutivas de los receptores ionotrópicos NMDA, AMPA y kainato en cuatro especies de primates. Univ Sci. 2010;15(3):183–93. 82. Henrik N. Predicting Secretory Proteins with SignalP. In: Springer, editor. Methods in Molecular Biology. 2017. p. 59–73. 83. Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol [Internet]. 2018;430(15):2237–43. Available from: https://doi.org/10.1016/j.jmb.2017.12.007 84. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M. Evaluation of comparative protein modeling by MODELLER. Proteins. 1995;23(3):318–26. 85. Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015; 86. Lovell SC, Davis IW, Arendale WB, De Bakker PI, Word JM, G. PM, et al. Structure Validation by C-alpha geometry: phi, psi and C-beta deviation. Proteins Struct Funct Bioinforma. 2003;50:437–50. 87. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. 88. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–91. 89. Dai J, Zhou HX. An NMDA receptor gating mechanism developed from MD simulations reveals molecular details underlying subunit-specific contributions. Biophys J [Internet]. 2013;104(10):2170–81. Available from: http://dx.doi.org/10.1016/j.bpj.2013.04.013 90. Merrifield R. Solid-Phase Peptide Syntheses. Endeavour. 1965;24:3–7. 91. Novabiochem. Fmoc resin cleavage protocols. In: Millipore is a division of Fmoc resin cleavage protocols. 2012. p. 2–5. 92. Kates SA, Albericio F. Solid-phase synthesis : a practical guide. Marcel Dekker, editor. New York; 2000. 826 p. 93. Kyte J, Doolittle RF. A Simple Method for Displaying the Hydrophobic Character of a Protein. J Mol Biol. 1982;157:105–32. 94. Janin J. Surface and inside volumes in globular proteins. Nature. 1979;277:491–492. 95. Chou P, Fasman G. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzym Relat Areas Mol Biol. 1978;47:45–148. 96. Sheng Z, Prorok M, Castellino FJ. Specific determinants of conantokins that dictate their selectivity for the NR2B subunit of N-methyl-d-aspartate receptors. Neuroscience. 2010;170:703–10. 97. Machuca-Roa C, Reyes-Montaño EA. Síntesis de péptidos derivados de conantokina G y evaluación in vitro de su posible efecto neuroprotector en eventos isquémicos. Universidad Nacional de Colombia.; 2016. 98. Reyes-Guzmán E, Reyes-Montaño E. Diseño y evaluación funcional de péptidos que interactúan con la subunidad GluN2B del receptor NMDA. Universidad Nacional de Colombia; 2015. 99. Krieger J, Bahar I, Greger IH. Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains. Biophys J [Internet]. 2015;109(6):1136–48. Available from: http://dx.doi.org/10.1016/j.bpj.2015.06.061 100. Lü W, Du J, Goehring A, Gouaux E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science (80- ). 2017;355(6331):1–9. 101. Xiao C, Huang Y, Dong M, Hu J, Hou S, Castellino FJ, et al. NR2B-selective conantokin peptide inhibitors of the NMDA receptor display enhanced antinociceptive properties compared to non-selective conantokins. Neuropeptides [Internet]. 2008;42(5–6):601–9. Available from: http://dx.doi.org/10.1016/j.npep.2008.09.003 102. Twede VD, Teichert RW, Walker CS, Gruszczyński P, Kaźmierkiewicz R, Bulaj G, et al. Conantokin-Br from Conus brettinghami and selectivity determinants for the NR2D subunit of the NMDA receptor. Biochemistry. 2009;48:4063–73. 103. Klein RC, Prorok M, Galdzicki Z, Castellino FJ. The Amino Acid Residue at Sequence Position 5 in the Conantokin Peptides Partially Governs Subunit-selective Antagonism of Recombinant N-Methyl-D-aspartate Receptors. J Biol Chem. 2001;276(29):26860–7. 104. Blandl T, Warder SE, Prorok M, Castellino FJ. Structure-function relationships of the NMDA receptor antagonist peptide, conantokin-R. FEBS Lett. 2000;470:139–46. 105. Cheriyan J, Balsara RD, Hansen KB, Castellino FJ. Pharmacology of triheteromeric N-Methyl-d-Aspartate Receptors. Neurosci Lett. 2016;617:240–6. 106. Erdelyi M, Gogoll A. Rapid homogeneous-phase Sonogashira coupling reactions using controlled microwave heating. J Org Chem. 2001;66:4165–9. 107. Hall V, Sklepari M, Rodger A. Protein secondary structure prediction from circular dichroism spectra using a self-organizing map with concentration correction. Chirality. 2014;26(9):471–82. 108. Bulheller BM, Rodgerb A, Hirst JD. Circular and linear dichroism of proteins. Phys Chem Chem Phys. 2007;9:2020–35. 109. Hall V, Nash A, Hines E, Rodger A. Elucidating protein secondary structure with circular dichroism and a neural network. J Comput Chem. 2013;34(32):2774–86. 110. Chandler P, Pennington M, Maccecchini ML, Nashed NT, Skolnick P. Polyamine-like actions of peptides derived from conantokin-G, an N- methyl-D-aspartate (NMDA) antagonist. J Biol Chem. 1993;268(23):17173–8. 111. Zhou L-M, Szendrei GI, Fossom LH, Maccecchini M-L, Skolnick P, Otvos L. Synthetic Analogues of Conantokin-G: NMDA Antagonists Acting Through a Novel Polyamine-Coupled Site. J Neurochem. 2002;66(2):620–8. 112. Erkan Karakas and Hiro Furukawa. Crystal structure of a heterotetrameric NMDA receptor ion channel. Changes. 2012;29(6):997–1003. 113. Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, et al. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature. 2016; 114. Papouin T, Oliet S, Collingridge GL, Watkins JC. Synaptic and Extra-Synaptic NMDA Receptors in the CNS. In: The NMDA Receptor. 2012. p. 1–518. 115. Kuner T, Schoepfer R. Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J Neurosci. 1996;16(11):3549–58. 116. Isaev D, Gerber G, Park SK, Chung JM, Randi M. Facilitation of NMDA-induced currents and Ca2+ transients in the rat substantia gelatinosa neurons after ligation of L5-L6 spinal nerves. Neuroreport. 2000;11(18):4055–61. 117. Auerbach A, Zhou Y. Gating reaction mechanisms for NMDA receptor channels. J Neurosci. 2005;25(35):7914–23. 118. Burnell ES, Irvine M, Fang G, Sapkota K, Jane DE, Monaghan DT. Positive and Negative Allosteric Modulators of N-Methyl- d -aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action. J Med Chem. 2019 Oct 1;62(1):3–23. 119. Monaghan DT, Irvine MW, Costa BM, Fang G, Jane DE. Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochem Int. 2012;61(4):581–92. 120. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Vol. 14, Nature Reviews Neuroscience. Nature Publishing Group; 2013. p. 383–400. 121. Lynch DR, Guttmann RP. NMDA receptor pharmacology: perspectives from molecular biology. Curr Drug Targets. 2001;2(3):215–31. 122. Redolat R, Carrasco MDC, Simón VM. Efectos de la administración aguda de mk-801, antagonista no competitivo de los receptores nmda, sobre la evitación activa en ratones. Psicothema. 1998;10(1):135–41. 123. Recio-Pinto E, Castillo C. Peripheral N-methyl-D-aspartate receptors as possible targets for chronic pain treatment. Tech Reg Anesth Pain Manag. 2010;14:48–58. 124. Blandl T, Prorok M, Castellino FJ. NMDA-receptor antagonist requirements in conantokin-G. FEBS Lett. 1998;435:257–62. 125. Siegan JB, Hama AT, Sagen J. Suppression of neuropathic pain by a naturally-derived peptide with NMDA antagonist activity. Brain Res. 1997;755(2):331–4. 126. Balsara RD, Ferreira AN, Donahue DL, Castellino FJ, Sheets PL. Probing NMDA receptor GluN2A and GluN2B subunit expression and distribution in cortical neurons. Neuropharmacology. 2014;79:542–9. 127. Gratacòs-Batlle E, Olivella M, Sánchez-Fernández N, Yefimenko N, Miguez-Cabello F, Fadó R, et al. Mechanisms of CPT1C-Dependent AMPAR Trafficking Enhancement. Front Mol Neurosci [Internet]. 2018;11(August):1–18. Available from: https://www.frontiersin.org/article/10.3389/fnmol.2018.00275/full 128. Soto D, Coombs ID, Kelly L, Farrant M, Cull-Candy SG. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors. Nat Neurosci. 2007;10(10):1260–7. 129. Longart M, Liu Y, Karavanova I, Buonanno A. Neuregulin-2 is developmentally regulated and targeted to dendrites of central neurons. J Comp Neurol. 2004;472(2):156–72. 130. Beaudoin III GMJ, Seung-Hye L DS, Yang Y Y-GN, Reichardt L.F AJ. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc. 2012;7:1741-1754. 131. Soto D, Olivella M, Grau C, Armstrong J, Alcon C, Gasull X, et al. L-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy. Sci Signal. 2019;12(586):1–16. 132. GraphPad. S. GraphPad Prism versión 8.3.0 [Internet]. 2019. p. La Jolla California, EE. UU. Available from: www.graphpad.com 133. Alam S, Lingenfelter KS, Bender AM, Lindsley CW. Classics in Chemical Neuroscience: Memantine. Vol. 8, ACS Chemical Neuroscience. American Chemical Society; 2017. p. 1823–9. 134. Sheng Z, Dai Q, Prorok M, Castellino FJ. Subtype-selective antagonism of N-methyl-d-aspartate receptor ion channels by synthetic conantokin peptides. Neuropharmacology. 2007; 135. Carpenter-Hyland EP, Chandler LJ. Adaptive plasticity of NMDA receptors and dendritic spines: Implications for enhanced vulnerability of the adolescent brain to alcohol addiction. Pharmacol Biochem Behav. 2007;86(2):200–8. 136. Chen Y, Stevens B, Chang J, Milbrandt J, Barres BA, Hell JW. NS21: Re-defined and modified supplement B27 for neuronal cultures. J Neurosci Methods. 2008;171(2):239–47. 137. Barth AL, Malenka RC. NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses. Nat Neurosci. 2001;4(3):235–6. 138. Huang L, Balsara RD, Sheng Z, Castellino FJ. Conantokins inhibit NMDAR-dependent calcium influx in developing rat hippocampal neurons in primary culture with resulting effects on CREB phosphorylation. Mol Cell Neurosci. 2010;45(2):163–72. 139. Benveniste BYM, Clements J, Jrt LV, Mayer ML. A KINETIC ANALYSIS OF THE MODULATION OF N-METHYL-D- ASPARTIC ACID RECEPTORS BY GLYCINE IN MOUSE CULTURED HIPPOCAMPAL NEURONES. J Physiol (1990),. 1990;428:333–57. 140. Chung C, Marson JD, Zhang QG, Kim J, Wu WH, Brann DW, et al. Neuroprotection Mediated through GluN2C-Containing N-methyl-D-aspartate (NMDA) Receptors Following Ischemia. Sci Rep [Internet]. 2016;6(April):1–10. Available from: http://dx.doi.org/10.1038/srep37033 141. Collingridge GL, Watkins JC. The NMDA Receptor Chapter 1. NMDA Recept. 2012;1–518. 142. Flores-Soto ME, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E, González-Castañeda RE, Beas-Zarate C. [Structure and function of NMDA-type glutamate receptor subunits]. Neurologia [Internet]. 2012 Jun [cited 2015 Sep 13];27(5):301–10. Available from: http://www.sciencedirect.com/science/article/pii/S0213485311004452 143. Abushik PA, Sibarov DA, Eaton MJ, Skatchkov SN, Antonov SM. Kainate-induced calcium overload of cortical neurons in vitro: Dependence on expression of AMPAR GluA2-subunit and down-regulation by subnanomolar ouabain. Cell Calcium. 2013;54:95–104. 144. Weilinger NL, Maslieieva V, Bialecki J, Sridharan SS, Tang PL, Thompson RJ. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin [Internet]. 2013;34(1):39–48. Available from: http://dx.doi.org/10.1038/aps.2012.95 145. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci. 2007;27(11):2846–57. 146. Mosmann. Rapid colorimetric assay for cell growth and survival: aplication to proliferation and citotoxicity assays. J iImunological Methods. 1983;65(1–2):55–63. 147. Calvo-Rodríguez M, Villalobos C, Nuñez L. Fluorescence and bioluminescence imaging of subcellular Ca2+ in aged hippocampal neurons. J Vis Exp. 2015;2015(106):1–8. 148. Calvo-Rodríguez M, Núñez L, Caballero E, García-Durillo M, Villalobos C. Neurotoxic Ca2+ Signaling Induced by Amyloid–β Oligomers in Aged Hippocampal Neurons In Vitro. Amyloid Proteins Book. In: Press H, editor. Amyloid Proteins Methodos and Protocols. Third Edit. UK; 2004. p. 341–54. 149. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem [Internet]. 1985 Oct [cited 2014 Oct 29];150(1):76–85. Available from: http://www.sciencedirect.com/science/article/pii/0003269785904427 150. Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227(15):680-685. 151. BIO-RAD SK. General Protocol for Western Blotting. 20:7–8. 152. Ing Bio-Rad L. Sotfware Image Lab TM. 2017. 153. Guo H, Camargo LM, Yeboah F, DIgan ME, Niu H, Pan Y, et al. A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine. Sci Rep [Internet]. 2017;7(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-017-11947-x 154. Feuerbach D, Loetscher E, Neurdin S, Koller M. Comparative pharmacology of the human NMDA-receptor subtypes R1-2A, R1-2B, R1-2C and R1-2D using an inducible expression system. Eur J Pharmacol [Internet]. 2010;637(1–3):46–54. Available from: http://dx.doi.org/10.1016/j.ejphar.2010.04.002 155. Alam MP, Bilousova T, Spilman P, Vadivel K, Bai D, Elias CJ, et al. A Small Molecule Mimetic of the Humanin Peptide as a Candidate for Modulating NMDA-Induced Neurotoxicity. ACS Chem Neurosci. 2018;9(3):462–8. 156. Popescu GK. Ionotropic glutamate receptor technologies. Ionotropic Glutamate Recept Technol. 2015;106:1–299. 157. Giacomello M, Girardi S, Scorzeto M, Peruffo A, Maschietto M, Cozzi B, et al. Stimulation of Ca2+ signals in neurons by electrically coupled electrolyte-oxide-semiconductor capacitors. J Neurosci Methods. 2011;198(1):1–7. 158. Betancourth MIE. Sistema glutamatérgico II: alteraciones en isquemia, alzheimer y esquizofrenia. Rev Colomb Psiquiatr. 2003;32(1):51–76. 159. Zhi J, Duan B, Pei J, Wu S, Wei J. Daphnetin protects hippocampal neurons from oxygen-glucose deprivation–induced injury. J Cell Biochem. 2019;120(3):4132–9. 160. Corrales A, Montoya G. J V., Sutachan JJ, Cornillez-Ty G, Garavito-Aguilar Z, Xu F, et al. Transient increases in extracellular K + produce two pharmacological distinct cytosolic Ca 2+ transients. Brain Res. 2005;1031(2):174–84. 161. Plow EB, Pascual-Leone A, Machado A. Brain stimulation in the treatment of chronic neuropathic and non-cancerous pain. J Pain [Internet]. 2012;13(5):411–24. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3348447&tool=pmcentrez&rendertype=abstract 162. Ghasemi M, Phillips C, Trillo L, De Miguel Z, Das D, Salehi A. The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci Biobehav Rev [Internet]. 2014;47:336–58. Available from: http://dx.doi.org/10.1016/j.neubiorev.2014.08.017 163. Savchenko A, Braun GB, Molokanova E. Nanostructured Antagonist of Extrasynaptic NMDA Receptors. Nano Lett. 2016 Sep 14;16(9):5495–502. 164. Wu P-C, Kao L-S. Calcium regulation in mouse mesencephalic neurons—Differential roles of Na + /Ca 2+ exchanger, mitochondria and endoplasmic reticulum. Cell Calcium. 2016;59:299–311. 165. Brittain MK, Brustovetsky T, Sheets PL, Brittain JM, Khanna R, Cummins TR, et al. Delayed calcium dysregulation in neurons requires both the NMDA receptor and the reverse Na+/Ca2+ exchanger. Neurobiol Dis. 2012;46:109–17. 166. Piccirillo S, Castaldo P, MacRì ML, Amoroso S, Magi S. Glutamate as a potential “survival factor” in an in vitro model of neuronal hypoxia/reoxygenation injury: Leading role of the Na + /Ca 2+ exchanger. Cell Death Dis [Internet]. 2018;9(7). Available from: http://dx.doi.org/10.1038/s41419-018-0784-6 167. Alluri H, Shaji CA, Davis ML, Tharakan B. Oxygen-glucose deprivation and reoxygenation as an in vitro ischemia-reperfusion injury model for studying blood-brain barrier dysfunction. J Vis Exp. 2015;2015(99):1–5. 168. Wu J-B, Song N-N, Wei X-B, Guan H-S, Zhang X-M. Protective effects of paeonol on cultured rat hippocampal neurons against oxygen–glucose deprivation-induced injury. J Neurol Sci. 2008;264:50–5. 169. Zhou M, Baudry M. Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci. 2006;26(11):2956–63. 170. Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S, et al. Cellular calcium signaling in the aging brain. J Chem Neuroanat. 2019;95(November 2017):95–114. 171. Luo Y, Ma H, Zhou JJ, Li L, Chen SR, Zhang J, et al. Focal cerebral ischemia and reperfusion induce brain injury through α2δ-1-bound NMDA receptors. Stroke. 2018;49(10):2464–72. 172. Simões AP, Silva CG, Marques JM, Pochmann D, Porciúncula LO, Ferreira S, et al. Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death Dis. 2018;9(3):1–17. 173. Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, et al. Autophagy, apoptosis, mitoptosis and necrosis: Interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp (Warsz). 2013;61:43–58. 174. Salazar MM. Técnicas para la detección de apoptosis y senescencia celular in vitro y su importancia en biotecnología de la salud Techniques for detecting in vitro apoptosis and cell senescence and their importance in health biotechnology. Rev Colomb Biotecnol Diciembre. 2009;XI(2):152–66. 175. Afrazi S, Esmaeili-Mahani S, Sheibani V, Abbasnejad M. Neurosteroid allopregnanolone attenuates high glucose-induced apoptosis and prevents experimental diabetic neuropathic pain: in vitro and in vivo studies. J Steroid Biochem Mol Biol. 2014;139:98–103. 176. Newbold A, Martin BP, Cullinane C, Bots M. Detection of apoptotic cells using immunohistochemistry. Cold Spring Harb Protoc [Internet]. 2014;2014(11):pdb.prot082537. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25368310 177. National Center for Biotechnology Information N. Ketamine Hydrocloride [Internet]. PubChem Database. 2019. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ketamine-hydrochloride 178. Sałat K, Siwek A, Starowicz G, Librowski T, Nowak G, Drabik U, et al. Antidepressant-like effects of ketamine, norketamine and dehydronorketamine in forced swim test: Role of activity at NMDA receptor. Neuropharmacology [Internet]. 2015;99:301–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0028390815300447 179. Wishart D, Feunang Y, Guo A, Lo E, Marcu A, Grant J, et al. DrugBank. DrugBank Database. 2018. 180. Srebro DP, Vučković SM, Savić Vujović KR, Prostran MŠ. TRPA1, NMDA receptors and nitric oxide mediate mechanical hyperalgesia induced by local injection of magnesium sulfate into the rat hind paw. Physiol Behav [Internet]. 2015 Feb [cited 2015 Mar 11];139:267–73. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84911909630&partnerID=tZOtx3y1 181. National Center for Biotechnology Information N. MK-801 Dizocilpine [Internet]. PubChem Database. 2019. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Dizocilpine (accessed on Nov. 6, 2019) 182. National Center for Biotechnology Information N. 5-Phosphono-D-norvaline. PubChem. 183. National Center for Biotechnology Information N. Dextrorphan tartrate. PubChem Database. 2019. 184. Petrenko AB, Yamakura T, Sakimura K, Baba H. Defining the role of NMDA receptors in anesthesia: Are we there yet? Eur J Pharmacol. 2014;723(1):29–37. 185. Limapichat W, Yu WY, Branigan E, Lester HA, Dougherty DA. Key binding interactions for memantine in the NMDA receptor. ACS Chem Neurosci. 2013 Feb 20;4(2):255–60.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalReceptor NMDA
dc.subject.proposalSubunidad GluN2B
dc.subject.proposalPéptidos
dc.subject.proposalElectrofisiología
dc.subject.proposalAntagonismo
dc.subject.proposalCon-G
dc.subject.proposalNMDA receptor
dc.subject.proposalGluN2B-subunit
dc.subject.proposalPeptides
dc.subject.proposalElectrophysiology
dc.subject.proposalAntagonism
dc.subject.proposalCon-G
dc.subject.unescoProteína
dc.subject.unescoProteins
dc.subject.unescoFisiología humana
dc.subject.unescoHuman physiology
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit