Show simple item record

dc.rights.licenseAtribución-SinDerivadas 4.0 Internacional
dc.contributor.advisorHernández Losada, Diego Fernando
dc.contributor.authorBravo Mendoza, Oscar
dc.date.accessioned2021-05-31T16:08:14Z
dc.date.available2021-05-31T16:08:14Z
dc.date.issued2021-04-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79574
dc.description.abstractThis research builds on the most recent organizational resilience theories to elaborate heuristic tests to prove the antifragility concept, the last defined step for companies to cope with VUCA (Volatile, Uncertain, Complex, and Ambiguous). Given its novelty, the body of knowledge regarding antifragility is weak. There are only a few definitions and attributes to describe antifragility at the organizational level and a total absence of real firm cases, theory, and hypotheses research. The antifragility concept offers new management and risk assessment tools to organizations eager to survive and take advantage of the new opportunities that unfold behind the threat of uncertainty. Antifragility goes beyond business continuity and resilience by focusing on the firms' ability to deliver products and services at acceptable levels after a disruptive event and taking advantage of the upside risk involved in uncertainty to improve performance and foster innovation and growth. This study's main contribution is defining proper metrics to identify and rank the organizational resilience level after an extreme event and define a framework to describe the selected antifragile companies' common attributes and competencies. The results from this study will serve as the basis for organizations that struggle to operate in VUCA and are exposed to surprising, extreme events, also known as Black Swans. Additionally, the proposed antifragility framework and measurement system will also strengthen the risk assessment and management disciplines.
dc.description.abstractEsta investigación se basa en la literatura más reciente en materia de resiliencia organizacional, para probar de manera heurística el concepto de antifragilidad, el último paso definido para que las empresas puedan desempeñarse en ambientes VICA (Volatilidad, Incertidumbres, Complejidad y Ambigüedad). La antifragilidad es un concepto nuevo, para el cual el estado del arte es deficiente. Existen solamente algunas definiciones y atributos en la literatura que permiten describirla a nivel organizacional, y una total ausencia de casos de estudio de empresas, que permitan la generación de hipótesis y teorías de investigación. El concepto de antifragilidad ofrece nuevas herramientas para las organizaciones que requieren sobrevivir y poder aprovechar las oportunidades que subyacen los temores por la incertidumbre. La antifragilidad va más allá de la continuidad del negocio y la resiliencia al enfocarse en la capacidad de las empresas para entregar productos y servicios con niveles aceptables de calidad luego de un evento disruptivo, aprovechando las posibilidades que brinda la incertidumbre para mejorar el desempeño e incrementar la innovación y el crecimiento. Las principales contribuciones de este trabajo son la definición de indicadores que permiten identificar y clasificar las empresas de acuerdo a su capacidad de resiliencia luego de un evento extremo, así como la definición de un marco de referencia que incorpora los principales atributos que caracterizan a las empresas antifrágiles. Los hallazgos de este estudio permitirán soportar a las empresas que deben enfrentan los retos de un ambiente VICA y están expuestas a riesgos emergentes y eventos extremos, también conocidos como Cisnes Negros. Así mismo, el marco de referencia y los esquemas de medición propuestos permitirán fortalecer las disciplinas de gestión de riesgos y administración de empresas.
dc.format.extent1 recurso en línea (145 páginas)
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.subject.otherGestión de riesgos
dc.subject.otherRisk management
dc.subject.otherIncertidumbre
dc.subject.otherUncertainty
dc.titleA Framework to study Antifragility for Enterprise Risk Management: Case Study of Unconventional Oil and Gas Operations in Latin America
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Industria y Organizaciones
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería - Industria y Organizaciones
dc.description.methodsInvestigación de análisis multimétodo
dc.description.researchareaGestión del riesgo
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAdamus, W., & Florkowski, W. J. (2016). The evolution of shale gas development and energy security in Poland: Presenting a hierarchical choice of priorities. Energy Research and Social Science, 20, 168–178. https://doi.org/10.1016/j.erss.2016.08.010
dc.relation.referencesAltman, E. I., Iwanicz-Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial Distress Prediction in an International Context: A Review and Empirical Analysis of Altman’s Z-Score Model. Journal of International Financial Management and Accounting, 28(2), 131–171. https://doi.org/10.1111/jifm.12053
dc.relation.referencesAven, T. (2014). Risk, Surprises, and Black Swans. Routledge.
dc.relation.referencesAven, T., & Kristensen, V. (2005). Perspectives on risk: Review and discussion of the basis for establishing a unified and holistic approach. Reliability Engineering and System Safety, 90(1), 1–14. https://doi.org/10.1016/j.ress.2004.10.008
dc.relation.referencesAven, Terje. (2012). The risk concept-historical and recent development trends. Reliability Engineering and System Safety, 99(0951), 33–44. https://doi.org/10.1016/j.ress.2011.11.006
dc.relation.referencesAven, Terje. (2015a). Implications of black swans to the foundations and practice of risk assessment and management. Reliability Engineering and System Safety, 134, 83–91. https://doi.org/10.1016/j.ress.2014.10.004
dc.relation.referencesAven, Terje. (2015b). The concept of antifragility and its implications for the practice of risk analysis. Risk Analysis, 35(3), 476–483. https://doi.org/10.1111/risa.12279
dc.relation.referencesAven, Terje. (2016). Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1), 1–13. https://doi.org/10.1016/j.ejor.2015.12.023
dc.relation.referencesAven, Terje. (2017a). How some types of risk assessments can support resilience analysis and management. Reliability Engineering and System Safety, 167(March), 536–543. https://doi.org/10.1016/j.ress.2017.07.005
dc.relation.referencesAven, Terje. (2017b). How some types of risk assessments can support resilience analysis and management. Reliability Engineering and System Safety, 167(March), 536–543. https://doi.org/10.1016/j.ress.2017.07.005
dc.relation.referencesAven, Terje. (2017c). What Defines Us as Professionals in the Field of Risk Analysis? Risk Analysis, 37(5), 854–860. https://doi.org/10.1111/risa.12680
dc.relation.referencesAven, Terje. (2018). An Emerging New Risk Analysis Science: Foundations and Implications. Risk Analysis, 38(5), 876–888. https://doi.org/10.1111/risa.12899
dc.relation.referencesAven, Terje, & Krohn, B. S. (2014). A new perspective on how to understand, assess and manage risk and the unforeseen. Reliability Engineering and System Safety, 121, 1–10. https://doi.org/10.1016/j.ress.2013.07.005
dc.relation.referencesAven, Terje, & Renn, O. (2015). An Evaluation of the Treatment of Risk and Uncertainties in the IPCC Reports on Climate Change. Risk Analysis, 35(4), 701–712. https://doi.org/10.1111/risa.12298
dc.relation.referencesBakshi, V. (2017). Shale Gas (Second). Global Business and Business Limited.
dc.relation.referencesBenaben, F., Montreuil, B., Gou, J., Li, J., Koura, I., Mu, W., Benaben, F., Montreuil, B., Gou, J., Li, J., Lauras, M., & Tentative, A. (2019). A Tentative Framework for Risk and Opportunity Detection in A Collaborative Environment Based on Data Interpretation To cite this version : HAL Id : hal-01988039.
dc.relation.referencesBjerga, T., & Aven, T. (2015). Adaptive risk management using new risk perspectives - An example from the oil and gas industry. Reliability Engineering and System Safety, 134, 75–82. https://doi.org/10.1016/j.ress.2014.10.013
dc.relation.referencesBond, C. J. (2014). Positive peace and sustainability in the mining context: Beyond the triple bottom line. Journal of Cleaner Production, 84(1), 164–173. https://doi.org/10.1016/j.jclepro.2014.01.033
dc.relation.referencesBravo, O., & Hernandez, D. (2020a). Critical Factors for Unconventional Hydrocarbon Resources Development. CT&F - Ciencia, Tecnología & Futuro, 10(2). InPress
dc.relation.referencesBravo, O., & Hernandez, D. (2020b). Risk Management Strategies Required for Unconventional Oil and Gas Exploration and Development in Latin America. SPE-199430-MS, 16. https://doi.org/10.2118/199430-MS
dc.relation.referencesBravo, O., Mogollón, L., & Parra, J. (2008). Valuation of a Real Options Portfolio. http://www.realoptions.org/papers2008
dc.relation.referencesBravo, O., & Sanchez, M. (2012). Gestión Integral de Riesgos - Tomo 2 (Bravo & Sá).
dc.relation.referencesBrezuleanu, S. et al. (2015). Relationships between Fashion Enterprises Resilience under Market Disruption and Employees’ Creative Involvement and Wellbeing Degree. Revista de Cercetare Şi Intervenţie Socială, 48, 50–59.
dc.relation.referencesBryman, A. (2007). Barriers to Integrating Quantitative and Qualitative Research. Journal of Mixed Methods Research, 1(1), 8–22. https://doi.org/10.1177/2345678906290531
dc.relation.referencesCalandro, J. (2007). Considering the utility of Altman’s Z-score as a strategic assessment and performance management tool. Strategy and Leadership, 35(5), 37–43. https://doi.org/10.1108/10878570710819206
dc.relation.referencesCano, M., Matthew, A., Quinn, B., Cano, M., Matthew, A., Quinn, B., Hydraulic, G., Matthew, A. U., Quinn, B., &
dc.relation.referencesCano, M. (2015). Scotland To cite this version : HAL Id : hal-01149782 Implementing a Greener Hydraulic Fracturing in Scotland.
dc.relation.referencesCasey et al. (2017). The triple bottom line for efficiency. IEEE Power & Energy Magazine, january/february, 34–42.
dc.relation.referencesCastro-Alvarez, F., et al. (2018). Sustainability lessons from shale development in the United States for Mexico and other emerging unconventional oil and gas developers. Renewable and Sustainable Energy Reviews, 82(June 2017), 1320–1332. https://doi.org/10.1016/j.rser.2017.08.082
dc.relation.referencesCokins, G. (2009). Performance Management (1 st). Wiley.
dc.relation.referencesCooper, J., Stamford, L., & Azapagic, A. (2016). Shale Gas: A Review of the Economic, Environmental, and Social Sustainability. In Energy Technology. https://doi.org/10.1002/ente.201500464
dc.relation.referencesCr, M., & Hafner, M. (2018). Shale gas production costs : Historical developments and outlook lodie Mistr e. 20, 20–25. https://doi.org/10.1016/j.esr.2018.01.001
dc.relation.referencesCreswell, J. W., & Creswell, D. (2018). Research Design (Fifth). SAGE Publications.
dc.relation.referencesDe Smet, A., et al. (2020). The need for speed in the post-COVID-19 era — and how to achieve it (Issue September). https://www.mckinsey.com/~/media/McKinsey/Business Functions/Organization/Our Insights/The need for speed in the post COVID-19 era and how to achieve it/The-need-for-speed-in-the-post-COVID-19-and-how-to-achieve-it.pdf
dc.relation.referencesDerbyshire, J., & Wright, G. (2014). Preparing for the future: Development of an “antifragile” methodology that complements scenario planning by omitting causation. Technological Forecasting and Social Change, 82(1), 215–225. https://doi.org/10.1016/j.techfore.2013.07.001
dc.relation.referencesEditor. (2010). Editor’ S Comments : Construct Clarity in Theories of. Academy of Management Review, 35(3), 346–357.
dc.relation.referencesEIA. (2015). World Shale Resource Assessments. 2011–2014.
dc.relation.referencesFlage, R., & Aven, T. (2015). Emerging risk - Conceptual definition and a relation to black swan type of events. Reliability Engineering and System Safety, 144, 61–67. https://doi.org/10.1016/j.ress.2015.07.008
dc.relation.referencesGao, J., & You, F. (2017a). Design and optimization of shale gas energy systems : Overview, research challenges, and future directions. Computers and Chemical Engineering, 106, 699–718. https://doi.org/10.1016/j.compchemeng.2017.01.032
dc.relation.referencesGao, J., & You, F. (2017b). Economic and Environmental Life Cycle Optimization of Noncooperative Supply Chains and Product Systems: Modeling Framework, Mixed-Integer Bilevel Fractional Programming Algorithm, and Shale Gas Application. https://doi.org/10.1021/acssuschemeng.7b00002
dc.relation.referencesGerring, J. (2017). Case Study Research (Second). Cambridge University Press.
dc.relation.referencesGhasemi, A., & Alizadeh, M. (2017). Evaluating Organizational Antifragility Via Fuzzy Logic. The case of an Iranian Company. Operations Research and Decisions, 27(2), 21–43. https://doi.org/10.5277/ord170202
dc.relation.referencesGuzman, R. et al. (2018). Building momentum – oil and gas in Latin America (p. 16). Arthur D Little. www.adl.com/BuildingMomentum
dc.relation.referencesHajikazemi, S., Ekambaram, A., Andersen, B., & Zidane, Y. J.-T. (2016). The Black Swan – Knowing the Unknown in Projects. Procedia - Social and Behavioral Sciences, 226(1877), 184–192. https://doi.org/10.1016/j.sbspro.2016.06.178
dc.relation.referencesHayum, L. (2018). Latin America month in brief archive. December 2017.
dc.relation.referencesHuimin Tan, Jianhua Xu, G. W.-P. (2019). The politics of Asian fracking: Public risk perceptions towards shale gas development in China. Energy Research & Social Science, 2015–2017. https://doi.org/10.1016/j.erss.2019.03.007
dc.relation.referencesIRGC. (2014). Risk Governance Guidelines Development - Policy Brief. 1–16.
dc.relation.referencesIRGC. (2017). Introduction To the IRGC Risk Governance Framework. irgc.epfl.ch and irgc.org
dc.relation.referencesIRGC. (2018). Irgc Guidelines for the Governance. Guidelines for the Governance of Systemic Risks. Lausanne: International Risk Governance Center (IRGC). www.irgc.org
dc.relation.referencesJackson, S. (2007). A multidisciplinary framework for resilence to disasters and disruptions. Journal of Integrated Design and Process Science, 11(2), 91–108. https://www.scopus.com/inward/record.uri?eid=2-s2.0-62749148341&partnerID=40&md5=b620f5c869c295fd3403ecf8ce49550d
dc.relation.referencesJohnson, J., & Gheorghe, A. V. (2013). Antifragility analysis and measurement framework for systems of systems. International Journal of Disaster Risk Science, 4(4), 159–168. https://doi.org/10.1007/s13753-013-0017-7
dc.relation.referencesJones, K. H. (2014). Engineering antifragile systems: A change in design philosophy. Procedia Computer Science, 32(Antifragile), 870–875. https://doi.org/10.1016/j.procs.2014.05.504
dc.relation.referencesKennon, D., Schutte, C. S. L., & Lutters, E. (2015). An alternative view to assessing antifragility in an organization: A case study in a manufacturing SME. CIRP Annals - Manufacturing Technology, 64(1), 177–180. https://doi.org/10.1016/j.cirp.2015.04.024
dc.relation.referencesKim, J. H., & Lee, Y. G. (2017). Analyzing the learning path of US shale players by using the learning curve method. Sustainability (Switzerland), 9(12). https://doi.org/10.3390/su9122232
dc.relation.referencesKoller, D. & H. (2011). Value - The Four Cornerstones of Corporate Finance. John Wiley & Sons, Inc.
dc.relation.referencesLe, M. (2018). An assessment of the potential for the development of the shale gas industry in countries outside of North America. Heliyon, November 2017, e00516. https://doi.org/10.1016/j.heliyon.2018.e00516
dc.relation.referencesLichtman, M., Vondal, M. T., Clancy, T. C., & Reed, J. H. (2018). Antifragile Communications. IEEE Systems Journal, 12(1), 659–670. https://doi.org/10.1109/JSYST.2016.2517164
dc.relation.referencesLinnenluecke, M. K., & Griffiths, A. (2010). Corporate sustainability and organizational culture. 45, 357–366. https://doi.org/10.1016/j.jwb.2009.08.006
dc.relation.referencesLunn, S. R. D., Decatur, M. R., Allen, M. L., & Mire, R. A. (2014). One company’s upstream water resources management guide. Society of Petroleum Engineers - SPE International Conference on Health, Safety and Environment 2014: The Journey Continues, 3(March), 1585–1595.
dc.relation.referencesMartinetti, A., Chatzimichailidou, M. M., Maida, L., & van Dongen, L. (2019). Safety I–II, resilience and antifragility engineering: a debate explained through an accident occurring on a mobile elevating work platform. International Journal of Occupational Safety and Ergonomics, 25(1), 66–75. https://doi.org/10.1080/10803548.2018.1444724
dc.relation.referencesMatthew Cotton, Ralf Barkemeyer, Barbara Gabriella Renzi, G. N. (2019). Fracking and metaphor: Analysing newspaper discourse in the USA, Australia and the United Kingdom. Ecological Economics Journal, Ext, Tel Jorge, U, 2015–2017. https://doi.org/10.1016/j.ecolecon.2019.106426
dc.relation.referencesMehtha, R. (2020). PREDICTION OF FINANCIAL DISTRESS USING FINANCIAL PARAMETERS AND ALTMAN Z SCORE WITH JSPM ’ S RAJARSHI SHAH U COLLEGE OF ENGINEERING. 11, 1–4.
dc.relation.referencesMuerta, V., & Trip, F. (2016). Vaca Muerta Field Trip December 2016. December.
dc.relation.referencesMun, J. (2015). Case Studies in Certified Quantitative Risk Management (Second). John Wiley & Sons, Inc.
dc.relation.referencesMun, Johnathan. (2006). Real Options Analysis (Second). John Wiley & Sons, Inc.
dc.relation.referencesPassos, D. S., Coelho, H., & Sarti, F. M. (2018). From Resilience to the Design of Antifragility. PESARO 2018: The Eight International Conference on Performance, Safety, and Robustness in Complex Systems and Applications, c, 7–11.
dc.relation.referencesPlatje, J. J. (2015). Efficiency, Fragility, and Unsustainable Development. Research Papers of Wrocław University of Economics, 452, 46–57. https://doi.org/10.15611/pn.2016.452.04
dc.relation.referencesPlattner, T., Plapp, T., & Hebel, B. (2006). Intergrating public risk perception into formal natural hazard risk assessment. Natural Hazards and Earth System Sciences, 6, 471–483. http://www.nat-hazards-earth-syst-sci.net/6/471/2006
dc.relation.referencesRahm, B. G., Bates, J. T., Bertoia, L. R., Galford, A. E., Yoxtheimer, D. A., & Riha, S. J. (2013). Wastewater management and Marcellus Shale gas development: Trends, drivers, and planning implications. Journal of Environmental Management, 120, 105–113. https://doi.org/10.1016/j.jenvman.2013.02.029
dc.relation.referencesReed, H., & Meyer, E. (2020). No Rules Rules - Netflix and the Culture of Reinvention. Penguin Press.
dc.relation.referencesRodger, J. A., & George, J. A. (2017). Triple bottom line accounting for optimizing natural gas sustainability: A statistical linear programming fuzzy ILOWA optimized sustainment model approach to reducing supply chain global cybersecurity vulnerability through information and communications t. Journal of Cleaner Production, 142, 1931–1949. https://doi.org/10.1016/j.jclepro.2016.11.089
dc.relation.referencesRuiz-Martin, C., Lopez-Paredes, A., & Wainer, G. (2018). What we know and do not know about organizational resilience. International Journal of Production Management and Engineering, 6(1), 11. https://doi.org/10.4995/ijpme.2018.7898
dc.relation.referencesS., H. (2006). Tight Gas Sands. Journal of Petroleum Technology, 58(6), 84–90. https://doi.org/10.2118/103356-JPT
dc.relation.referencesScrum@Scale en Drummond, (2017). https://scrumcolombia.org/caso-estudio-scrumatscale-drummond/
dc.relation.referencesSeuring, S. (2011). Supply Chain Management for Sustainable. Business Strategy and the Environment, 20(November 2010), 471–484. https://doi.org/10.1002/bse
dc.relation.referencesSheard, S., & Mostashari, A. (2009). A Framework for System Resiliance. 703, 1–15. http://www.stevens.edu/csr/fileadmin/csr/Publications/Sheard_SystemsResilienceDiscussions.pdf%5Cnpapers3://publication/uuid/4054750A-2BCF-4001-8FB4-4ACF7BCB4C4B
dc.relation.referencesShortridge, J., Aven, T., & Guikema, S. (2017). Risk assessment under deep uncertainty: A methodological comparison. Reliability Engineering and System Safety, 159(February 2016), 12–23. https://doi.org/10.1016/j.ress.2016.10.017
dc.relation.referencesSon, J. H., Hanif, A., Dhanasekar, A., & Carlson, K. H. (2018). Colorado Water Watch: real-time groundwater monitoring for possible contamination from oil and gas activities. Environmental Monitoring and Assessment, 190(3), 1660–1687. https://doi.org/10.1007/s10661-018-6509-6
dc.relation.referencesTaleb, N. (2012). Antifragile. Random House.
dc.relation.referencesTaleb, N N. (2010). The Black Swan. Random House.
dc.relation.referencesTaleb, Nassim Nicholas. (2012). Antifragile. In Antifragile (pp. 3–27).
dc.relation.referencesThaler, R., & Sunstein, C. (2009). Nudge. Penguin Press.
dc.relation.referencesThekdi, S., & Aven, T. (2016). An enhanced data-analytic framework for integrating risk management and performance management. Reliability Engineering and System Safety, 156, 277–287. https://doi.org/10.1016/j.ress.2016.07.010
dc.relation.referencesThekdi, S., & Aven, T. (2019). An integrated perspective for balancing performance and risk. Reliability Engineering and System Safety, 190(October 2018), 106525. https://doi.org/10.1016/j.ress.2019.106525
dc.relation.referencesTong, X., Zhang, G., Wang, Z., Wen, Z., Tian, Z., Wang, H., Ma, F., & Wu, Y. (2018). Distribution and potential of global oil and gas resources. Petroleum Exploration and Development, 45(4), 779–789. https://doi.org/10.1016/S1876-3804(18)30081-8
dc.relation.referencesTorres, L., Prakash, O., & Khan, E. (2016). Science of the Total Environment A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. Science of the Total Environment, The, 539, 478–493. https://doi.org/10.1016/j.scitotenv.2015.09.030
dc.relation.referencesTorres, L., Prakash, O., & Khan, E. (2017). Chemosphere Holistic risk assessment of surface water contamination due to Pb-210 in oil produced water from the Bakken Shale. Chemosphere, 169, 627–635. https://doi.org/10.1016/j.chemosphere.2016.11.125
dc.relation.referencesTorres, L., Prakash, O., & Khan, E. (2018). Science of the Total Environment Risk assessment of human exposure to Ra-226 in oil produced water from the Bakken Shale. Science of the Total Environment, 626, 867–874. https://doi.org/10.1016/j.scitotenv.2018.01.171
dc.relation.referencesToseroni, F., Romagnoli, F., & Marincioni, F. (2016). Adapting and Reacting to Measure an Extreme Event: A Methodology to Measure Disaster Community Resilience. Energy Procedia, 95, 491–498. https://doi.org/10.1016/j.egypro.2016.09.074
dc.relation.referencesTrump, B., Florin, M. V., & Linkov, I. (2018). IRGC resource guide on resilience (vol. 2): Domains of resilience for complex interconnected systems (Vol. 2). https://doi.org/10.5075/epfl-irgc-262527
dc.relation.referencesTseitlin, A. (2013). The antifragile organization. Communications of the ACM, 56(8), 40. https://doi.org/10.1145/2492007.2492022
dc.relation.referencesVargas, C. (2012). Evaluating total Yet-to-Find hydrocarbon volume in Colombia. Earth Sciences Research Journal, 16(Special Issue April), 1–246.
dc.relation.referencesVelandia, C. (2017). Yacimientos No Convencionales en Colombia - Evolución y Regulación. Grupo Editorial Ibañez.
dc.relation.referencesWANG, H., MA, F., TONG, X., LIU, Z., ZHANG, X., WU, Z., LI, D., WANG, B., XIE, Y., & YANG, L. (2016). Assessment of global unconventional oil and gas resources. Petroleum Exploration and Development, 43(6), 925–940. https://doi.org/10.1016/S1876-3804(16)30111-2
dc.relation.referencesWang, K., Vredenburg, H., Wang, T., & Feng, L. (2019). Financial return and energy return on investment analysis of oil sands, shale oil and shale gas operations. Journal of Cleaner Production, 223, 826–836. https://doi.org/10.1016/j.jclepro.2019.03.039
dc.relation.referencesWilliams, P. R. D. (2015). Applying risk analysis to two divisive topics: Hydraulic fracking and marijuana use. Risk Analysis, 35(5), 762–765. https://doi.org/10.1111/risa.12420
dc.relation.referencesWinston, A. (2017). The Big Pivot. In The Big Pivot Chapter 14. Harvard Business Review Press.
dc.relation.referencesWoods, D. D. (2015). Four concepts for resilience and the implications for the future of resilience engineering. Reliability Engineering and System Safety, 141(April 2015), 5–9. https://doi.org/10.1016/j.ress.2015.03.018
dc.relation.referencesYang, Y., Wang, L., Fang, Y., & Mou, C. (2017). Integrated value of shale gas development : A comparative analysis in the United States and China. Renewable and Sustainable Energy Reviews, 76(November 2016), 1465–1478. https://doi.org/10.1016/j.rser.2016.11.174
dc.relation.referencesYin, R. K. (2018). Case Study Research and Applications (Sixth). SAGE Publications.
dc.relation.referencesZerda, M. A. D. La, Erdmann, E., Tecnológico, I., Aires, D. B., Sarandón, R., & De, U. N. (2017). SPE-185546-MS Importance of the Study of Environmental Aspects in the Exploitation of Unconventional Reservoirs for Risk Assessment of the Activity in Argentina.
dc.relation.referencesZio, E. (2018). The future of risk assessment. Reliability Engineering and System Safety, 177(April), 176–190. https://doi.org/10.1016/j.ress.2018.04.020
dc.relation.referencesZuluaga Guerra, A. D., & Monterroza Villalba, R. I. (2019). Licencia social como mecanismo de desarrollo de yacimientos de hidrocarburos no convencionales en el departamento del Cesar-Colombia. Revista Fuentes El Reventón Energético, 17(2), 101–110. https://doi.org/10.18273/revfue.v17n2-2019009
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAntifragility
dc.subject.proposalOrganizational Resilience
dc.subject.proposalOptionality
dc.subject.proposalRisk-Performance Metrics
dc.subject.proposalAntifragilidad
dc.subject.proposalResiliencia Organizacional
dc.subject.proposalOpcionalidad
dc.subject.proposalIndicadores Riesgo-Desempeño
dc.title.translatedMarco de Referencia para la aplicación de la Antifragilidad en la Gestión de Riesgos Empresarial: Estudio de Caso del Desarrollo de Operaciones de Yacimientos no Convencionales en Latinoamérica
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit