dc.rights.license | Atribución-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Diab Forero, Yamil Antonio |
dc.contributor.author | Olaya Santamaría, César Arnoldo |
dc.date.accessioned | 2021-05-31T17:22:03Z |
dc.date.available | 2021-05-31T17:22:03Z |
dc.date.issued | 2021 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/79576 |
dc.description | diagramas, ilustraciones a color, fotografías, tablas |
dc.description.abstract | Resumen Caracterización del Escaneo Visual de Instrumentos en Desorientación Espacial Inducida en Pilotos de Ala Fija de la Fuerza Aérea Colombiana* Descripción: Este trabajo de investigación abordo el tema de la desorientación espacial en los pilotos en quienes se ha propuesto como contramedida la técnica visual de chequeo de instrumentos como base para optimizar el rendimiento ante esta ilusión fisiológica. Este estudio busca caracterizar los comportamientos visuales utilizados en el entrenamiento simulado en un escenario de desorientación espacial de tipo inclinaciones. Problemática Se ha observado que algunos pilotos con poca experiencia en su entrenamiento en el simulador de desorientación espacial presentan dificultades con el control de la aeronave. Encontrar métodos de retroalimentación positiva para el uso del instructor puede mejorar los resultados de aprendizaje de estos ejercicios. Objetivo Del Proyecto Determinar los patrones de escaneo visual de la técnica visual de chequeo cruzado de instrumentos en la población de estudio, mediante los tiempos de fijación en los instrumentos de control y comportamiento durante la ilusión de inclinación inducida en el desorientador espacial GYRO II; Tener puntos de partida para proponer mejoras en el programa de entrenamiento en desorientación espacial de la Fuerza Aérea Colombiana Diseño o Metodología Se empleó un simulador de desorientación espacial GYRO IPT II integrado con controles interactivos de la aeronave T6 Texan II y un dispositivo de rastreo ocular Tobi I. Participaron veinticuatro pilotos militares competentes en mantener un vuelo recto y nivelado que habían probado tener habilidades para volar este simulador. Los pilotos fueron expuestos al perfil de la ilusión inclinaciones mientras el simulador desaceleraba su velocidad angular o de guiñada. El comportamiento del punto de vista fue monitoreado en la fase de la inducción de desorientación. Resultados Se encuentra que el 83.1% de la población del estudio ha experimentado la desorientación espacial tipo 1 o reconocida de forma leve. Inmediatamente al quedar bajo la percepción errada del sistema vestibular los pilotos presentan técnica visual de chequeo de instrumentos en las que concentran su mirada principalmente en los instrumentos ADI, ALT y VSI intentando conservar la altitud. Todos los sujetos reconocieron la desorientación espacial y presentaron una correlación significativa entre una técnica visual de chequeo cruzado de instrumentos adecuada y las variables menores perdida de altura p=0,002, no violación de MSA p=0.011 y mayor número de fijaciones en instrumentos p=0,04. No se encontró una relación entre las variables de desempeño y la experiencia según horas de vuelo. Conclusión La ilusión de inclinación en el simulador de desorientación espacial avanzado GYRO IPT II afecta el control de la aeronave y una adecuada técnica visual de chequeo instrumentos, observada mediante el dispositivo de rastreo de mirada, contrarresta la perdida de altura. Palabras clave: Desorientación espacial, comportamiento de la mirada, seguimiento ocular, simulador de desorientación espacial. |
dc.description.abstract | Abstract
Characterization of Visual Scanning of Instruments in Induced Spatial Disorientation in Fixed Wing Pilots of the Colombian Air Force *
*Description:
This research work addressed the issue of spatial disorientation in pilots in whom the visual instrument check technique has been proposed as a countermeasure as a basis for optimizing performance in the face of this physiological illusion. This study seeks to characterize the visual behaviors used in simulated training in an inclination-type spatial disorientation scenario.
Problematic
It has been observed that some pilots with little experience in their training in the disorientation simulator have difficulties with the control of the aircraft. Finding positive feedback methods for use by the instructor can improve the learning outcomes of these exercises.
The objective of the project
To determine the visual scanning patterns of the visual technique of cross-checking of instruments in the study population, using the fixation times in the control instruments and behavior during the inclination illusion induced in the GYRO II spatial disorientation; Have starting points to propose improvements in the space disorientation training program of the Colombian Air Force
Design or Methodology
A GYRO IPT II spatial disorientation simulator integrated with interactive controls from the T6 Texan II aircraft and an Eye-Tracker device was used. Twenty-four military pilots
proficient in maintaining a straight and level flight participated who have proven their abilities to fly this simulator. The speed pilots were exposed to the profile of the tilting illusion while the simulator decelerated their yaw or angle. Point of view behavior was monitored in the disorientation induction phase.
Results
I know that 83.1% of the study population has experienced spatial disorientation type 1 or recognized mildly. Immediately upon being under the wrong perception of the vestibular system, the pilots present a visual instrument check technique in which they concentrate their gaze mainly on the ADI, ALT, and VSI instruments, trying to preserve altitude. All the subjects recognized the spatial disorientation and presented a significant correlation between a visual technique of cross-checking of suitable instruments and the minor variables loss of height p = 0.002, no violation of MSA p = 0.011, and a greater number of fixations in instruments p = 0, 04. No relationship was found between performance variables and experience according to flight hours.
Conclusion
The illusion of tilt in the GYRO IPT II advanced spatial disorientation simulator affects aircraft control and an adequate visual instrument check technique, observed by the gaze tracking device, counteracts the loss of height.
Keywords: Spatial disorientation, gaze behavior, Eye-Tracker , spatial disorientation simulator. |
dc.format.extent | 1 recurso en línea (147 páginas) |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ |
dc.subject.ddc | 610 - Medicina y salud |
dc.title | Caracterización del escaneo visual de instrumentos en desorientación espacial inducida en pilotos de ala fija de la Fuerza Aérea Colombiana |
dc.type | Trabajo de grado - Especialidad Médica |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Medicina - Especialidad en Medicina Aeroespacial |
dc.description.degreelevel | Especialidades Médicas |
dc.description.degreename | Especialista en Medicina Aeroespacial |
dc.description.researcharea | Factores Humanos |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Medicina Interna |
dc.publisher.faculty | Facultad de Medicina |
dc.publisher.place | Bogotá |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Allsop, J., & Gray, R. (2014). Flying under pressure: Effects of anxiety on attention and gaze behavior in aviation. Journal of Applied Research in Memory and Cognition, 3(2), 63-71. https://doi.org/10.1016/j.jarmac.2014.04.010 |
dc.relation.references | Álvarez, J. H. M. (2004). Inferencia estadística. Universidad Nacional de Colombia. |
dc.relation.references | Bałaj, B., Lewkowicz, R., Francuz, P., Augustynowicz, P., Fudali-Czyż, A., Stróżak, P., & Truszczyński, O. (2018). Spatial disorientation cue effects on gaze behaviour in pilots and non-pilots. Cognition, Technology & Work, 21(3), 473-486. https://doi.org/10.1007/s10111-018-0534-7 |
dc.relation.references | Barra, J., Bray, A., Sahni, V., Golding, J. F., & Gresty, M. A. (2006). Increasing cognitive load with increasing balance challenge: recipe for catastrophe. Experimental Brain Research, 174(4), 734-745. https://doi.org/10.1007/s00221-006-0519-2 |
dc.relation.references | Bles, W. (2008). Spatial Disorientation Training – Demonstration and Avoidance. The Research and Technology Organisation. https://www.researchgate.net/publication/235197713_Spatial_Disorientation_Training_Demonstration_and_Avoidance_entrainement_a_la_desorientation_spatiale_-_Demonstration_et_reponse |
dc.relation.references | Boril, J., Smrz, V., Leuchter, J., & Blasch, E. (2016). Increasing flight safety using flight sensory illusions on a spatial disorientation simulator. 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 1-5. https://doi.org/10.1109/dasc.2016.7778095 |
dc.relation.references | Braithwaite, M. G.(1997), DeRoche, S. L., Alvarez, E. A., & Reese MA. Proceedings of the First Triservice Conference on Rotary-Wing Spatial Disorientation: Spatial Disorientation in the Operational Rotary-Wing Environment. Army aeromedical research lab fort rucker al., editor. Is hqmc concerned? p p. 30-34. https://apps.dtic.mil/dtic/tr/fulltext/u2/a324991.pdf |
dc.relation.references | Brams, S., Hooge, I. T. C., Ziv, G., Dauwe, S., Evens, K., De Wolf, T., Levin, O., Wagemans, J., & Helsen, W. F. (2018). Does effective gaze behavior lead to enhanced performance in a complex error-detection cockpit task? PLOS ONE, 13(11), e0207439. https://doi.org/10.1371/journal.pone.0207439 |
dc.relation.references | Breedlove P. M. (2010) Manual, A. F. Manual 11-217, Instrument Flight Procedures, 29 December 2000. In: The United States Air Force manual of instrument flying procedures. Air Force Departmental Publishing Office. 1. p. 12. www.e-Publishing.af.mil |
dc.relation.references | Campbell, R. D., & Bagshaw, M. (2002). Human Performance and Limitations in Aviation. Wiley. |
dc.relation.references | Cheung B. (2017) Nonvisual Spatial Orientation Mechanisms. In: Paul Zarchan E-CMLL, Lexington M, editors. Spatial Disorientation in Aviation. firts. San Antonio, Texas: American Institute of Aeronautics and Astronautics. pp. 37–82 |
dc.relation.references | Cheung B. Nonvisual Illusions in Flight. In: Paul Zarchan, Laboratory ML, editors. Spatial Disorientation in Aviation. 1st ed. Lexington, Massachusetts: American Institute of Aeronautics and Astronautics, Inc.; 2004. p. 243–75. |
dc.relation.references | Cheung, B. (2013). Spatial Disorientation: More Than Just Illusion. Aviation, Space, and Environmental Medicine, 84(11), 1211-1214. https://doi.org/10.3357/asem.3657.2013 |
dc.relation.references | Cheung, B., & Hofer, K. (2003). Eye tracking, point of gaze, and performance degradation during disorientation. Aviat Space Environ Med, 74(1), 11-20. https://pubmed.ncbi.nlm.nih.gov/12546294/ |
dc.relation.references | Dehais, F., Behrend, J., Peysakhovich, V., Causse, M., & Wickens, C. D. (2017). Pilot Flying and Pilot Monitoring’s Aircraft State Awareness During Go-Around Execution in Aviation: A Behavioral and Eye Tracking Study. The International Journal of Aerospace Psychology, 27(1-2), 15-28. https://doi.org/10.1080/10508414.2017.1366269 |
dc.relation.references | Dehais, F., Peysakhovich, V., Scannella, S., Fongue, J., & Gateau, T. (2015). «Automation Surprise» in Aviation. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 2525-2534. https://doi.org/10.1145/2702123.2702521 |
dc.relation.references | Dreibelbis, J. A., & Organ, B. E. (2018). Semicircular Canal Dehiscence Syndrome and Vestibular Dysfunction Disqualify a Military Student Pilot. Aerospace Medicine and Human Performance, 89(10), 923-926. https://doi.org/10.3357/amhp.4877.2018 |
dc.relation.references | Ercoline W. (2016) Spatial Disorientation Training. In: States. SOAMWPAOWPAU, editor. Handbook of Aerospace and Operational Physiology 2nd ed. Wright-Patterson AFB, OH: DISTRIBUTION STATEMENT A. Approved for public release. pp. 727–39.https://apps.dtic.mil/dtic/tr/fulltext/u2/1020889.pdf |
dc.relation.references | Ercoline, W. (2016). Spatial Disorientation. En E. Geiselman & A. McKinley (Eds.), Handbook of Aerospace and Operational Physiology (2.a ed., pp. 477-513). In: Medicine US of A, Department AM, Division AP, 2510 Fifth St. B 840, editors. https://apps.dtic.mil/sti/pdfs/AD1020889.pdf |
dc.relation.references | FAA. (2007) Instrument Flying Handbook. Oklahoma city: Skyhorse Publishing Inc;(2) 3. http://www.faa.gov/about/offi ce_org/headquarters_offi ces/avs/offi ces/afs/afs6 |
dc.relation.references | Federal Aviation Administration. (2011) Airplane Flying Handbook (FAA-H-8083-3A). US Departm. Vol. 4. Oklahoma city: Skyhorse Publishing Inc.;. (4)3–2 https://books.google.es/books?hl=en&lr=&id=Zd5pt-nu6HUC&oi=fnd&pg=PA1&dq=AIRPLANE+FLYING+HANDBOOK&ots=Mh3rBM9O7P&sig=sbsvv-PSg8D1C3BaQtCkBDkTDS0#v=onepage&q=AIRPLANE FLYING HANDBOOK&f=false |
dc.relation.references | Force IA. (2006). Spatial Disorientation Training. Indian J Aerosp Med., 50(1), 8-10. https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/aam/cami/library/online_libraries/aerospace_medicine/sd/media/Final%20Report%20FA8650-04-C-6457.pdf |
dc.relation.references | Fuerza Aerea Colombiana. (2015) Desorientador especial avanzado GYRO IPT II" al servicio de la Fuerza Aérea Colombiana. https://www.fac.mil.co/desorientador-especial-avanzado-gyro-ipt-ii-al-servicio-de-la-fuerza-aérea-colombiana-0 |
dc.relation.references | García Morales, D. M. (2010). Análisis de Factores Humanos y Accidentalidad Aérea en Colombia. ADREP 2000 (TFM). https://repositorio.unal.edu.co/handle/unal/51312 |
dc.relation.references | Gaydos, S. J., Harrigan, M. J., & Bushby, A. J. R. (2012). Ten Years of Spatial Disorientation in U.S. Army Rotary-Wing Operations. Aviation, Space, and Environmental Medicine, 83(8), 739-745. https://doi.org/10.3357/asem.3196.2012 |
dc.relation.references | Gibb, R., Ercoline, B., & Scharff, L. (2011). Spatial Disorientation: Decades of Pilot Fatalities. Aviation, Space, and Environmental Medicine, 82(7), 717-724. https://doi.org/10.3357/asem.3048.2011 |
dc.relation.references | Gibb, R., Gray, R., & Scharff, L. (2010). Aviation Visual Perception. Ashgate. https://issuu.com/batdelger1/docs/aviation_visual_perception__ashgate_studies_in_hum |
dc.relation.references | Gresty, M. A., & Golding, J. F. (2009). Impact of Vertigo and Spatial Disorientation on Concurrent Cognitive Tasks. Annals of the New York Academy of Sciences, 1164(1), 263-267. https://doi.org/10.1111/j.1749-6632.2008.03744.x |
dc.relation.references | Gresty, M. A., Golding, J. F., Le, H., & Nightingale, K. (2008). Cognitive Impairment by Spatial Disorientation. Aviation, Space, and Environmental Medicine, 79(2), 105-111. https://doi.org/10.3357/asem.2143.20 |
dc.relation.references | Haslbeck, A., & Zhang, B. (2017). I spy with my little eye: Analysis of airline pilots’ gaze patterns in a manual instrument flight scenario. Applied Ergonomics, 63, 62-71. https://doi.org/10.1016/j.apergo.2017.03.015 |
dc.relation.references | Holmes, S. R., Bunting, A., Brown, D. L., Hiatt, K. L., Braithwaite, M. G., & Harrigan, M. J. (2003). Survey of spatial disorientation in military pilots and navigators. Aviat Space Environ Med ., 74(9), 957-965. https://pubmed.ncbi.nlm.nih.gov/14503674/ |
dc.relation.references | Kerr, B., Condon, S. M., & McDonald, L. A. (1985). Cognitive spatial processing and the regulation of posture. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 617-622. https://doi.org/10.1037/0096-1523.11.5.617 |
dc.relation.references | Kowalczuk, K. P., Gazdzinski, S. P., Janewicz, M. ł., Gąsik, M., Lewkowicz, R. ł., & Wyleżoł, M. (2016). Hypoxia and Coriolis Illusion in Pilots During Simulated Flight. Aerospace Medicine and Human Performance, 87(2), 108-113. https://doi.org/10.3357/amhp.4412.2016 |
dc.relation.references | Ledegang, W. D., & Groen, E. L. (2018). Spatial Disorientation Influences on Pilots’ Visual Scanning and Flight Performance. Aerospace Medicine and Human Performance, 89(10), 873-882. https://doi.org/10.3357/amhp.5109.2018 |
dc.relation.references | Lewkowicz, R. ł., Fudali-Czyż, A., Bałaj, B., & Francuz, P. (2018). Change Detection Flicker Task Effects on Simulator-Induced Spatial Disorientation Events. Aerospace Medicine and Human Performance, 89(10), 863-872. https://doi.org/10.3357/amhp.5042.2018 |
dc.relation.references | Lyons, T. J., Ercoline, W., O’Toole, K., & Grayson, K. (2006). Aircraft and related factors in crashes involving spatial disorientation: 15 years of U.S. Air Force data. Aviat Space Environ Med ., 720-723. https://pubmed.ncbi.nlm.nih.gov/16856357/ |
dc.relation.references | Martínez, J. L. (2018). Caracterización y comparación del escaneo visual de pilotos expertos y novatos durante un aterrizaje VFR. Ciencia y Poder Aéreo, 13(1), 26. https://doi.org/10.18667/cienciaypoderaereo.584 |
dc.relation.references | Meeks, R. K., Anderso N, J., & Bell, P. M. (2020). Physiology Of Spatial Orientation. https://www.ncbi.nlm.nih.gov. https://www.ncbi.nlm.nih.gov/books/NBK518976/ |
dc.relation.references | Monroy, L. G. D., & Rivera, M. A. M. (2012). Análisis estadístico de datos multivariados. Universidad Nacional de Colombia. |
dc.relation.references | Mortimer, R. G. (1995). General Aviation Airplane Accidents Involving Spatial Disorientation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 39(1), 25-29. https://doi.org/10.1177/154193129503900107 |
dc.relation.references | Mumaw, R. J., Groen, E., Fucke, L., Anderson, R., Bos, J., & Houben, M. (2015). A New Tool for Analyzing thePotential Influence of Vestibular Illusions. Proceedings of the International Society of Air Safety Investigators, 49(1), 6-12. https://www.isasi.org/Documents/library/technical-papers/2015/Vestibular%20Illusion%20Tool.pdf |
dc.relation.references | Neubauer, J. C. (2000). Classifying spatial disorientation mishaps using different definitions. IEEE Engineering in Medicine and Biology Magazine, 19(2), 28-34. https://doi.org/10.1109/51.827402 |
dc.relation.references | Newman, D. G., Authority, A. C. A., Flight Medicine Systems Pty, Ltd, Australian Transport Safety Bureau, Australia. Civil Aviation Authority, & Flight Medicine Systems Pty, L. (2007). An Overview of Spatial Disorientation as a Factor in Aviation Accidents and Incidents. Australian Transport Safety Bureau. |
dc.relation.references | Nooij, S. A. E., & Groen, E. L. (2011). Rolling into Spatial Disorientation: Simulator Demonstration of the Post-Roll (Gillingham) Illusion. Aviation, Space, and Environmental Medicine, 82(5), 505-512. https://doi.org/10.3357/asem.2946.2011 |
dc.relation.references | Peißl, S., Wickens, C. D., & Baruah, R. (2018). Eye-Tracker Measures in Aviation: A Selective Literature Review. The International Journal of Aerospace Psychology, 28(3-4), 98-112. https://doi.org/10.1080/24721840.2018.1514978 |
dc.relation.references | Pennings, H. J. M., Oprins, E. A. P. B., Wittenberg, H., Houben, M. J., & Groen, E. L. (2020). Spatial Disorientation Survey Among Military Pilots. Aerospace Medicine and Human Performance, 91(1), 4-10. https://doi.org/10.3357/amhp.5446.2020 |
dc.relation.references | Petru A, Frantis P. Concept of improving pilot’s sensory illusion resistance. ICMT 2015 - Int Conf Mil Technol 2015. 2015; (figure 1):15–8 |
dc.relation.references | Poisson, R. J., & Miller, M. E. (2014). Spatial Disorientation Mishap Trends in the U.S. Air Force 1993–2013. Aviation, Space, and Environmental Medicine, 85(9), 919-924. https://doi.org/10.3357/asem.3971.2014 |
dc.relation.references | Powell-Dunford, N., Bushby, A., & Leland, R. A. (2016). Spatial Disorientation Training in the Rotor Wing Flight Simulator. Aerospace Medicine and Human Performance, 87(10), 890-893. https://doi.org/10.3357/amhp.4638.2016 |
dc.relation.references | Previc, F. H., Ercoline, W. R., & American Institute of Aeronautics and Astronautics. (2004). Spatial Disorientation in Aviation. AIAA (American Institute of Aeronautics & Astronautics). https://doi.org/10.2514/4.866708 |
dc.relation.references | Previc, F. H., Ercoline, W. R., & American Institute of Aeronautics and Astronautics. (2004). Spatial Disorientation in Aviation. AIAA (American Institute of Aeronautics & Astronautics). https://doi.org/10.2514/4.866708 |
dc.relation.references | Regis, N., Dehais, F., Rachelson, E., Thooris, C., Pizziol, S., Causse, M., & Tessier, C. (2014). Formal Detection of Attentional Tunneling in Human Operator–Automation Interactions. IEEE Transactions on Human-Machine Systems, 44(3), 326-336. https://doi.org/10.1109/thms.2014.230725 |
dc.relation.references | Reinhart, R. (2007). Basic Flight Physiology. McGraw-Hill Education. https://vdocuments.site/bookaviation-medicinebasic-flight-physiologypdf.htm |
dc.relation.references | Robinski, M., & Stein, M. (2013). Tracking Visual Scanning Techniques in Training Simulation for Helicopter Landing. Journal of Eye Movement Research, 6(2), 1-17. https://doi.org/10.16910/jemr.6.2.3 |
dc.relation.references | Rollin Stott, J. R., Benson, A. J., Gradwell, D. P., & Rainford DJ. Spatial orientation and disorientation in flight. In: Gradwell, D., & Rainford DJ, editor. Ernsting’s Aviation and Space Medicine 5E. 5th ed. Boca Raton, FL: CRC Press; 2016. p. 281–319. |
dc.relation.references | Ryan M. (2016) Vestibular Physiology. In: SCHOOL OF AEROSPACE MEDICINE WRIGHT PATTERSON AFB OH, editor. Handbook of Aerospace and Operational Physiology, 2nd Edition. 2th ed. WRIGHT PATTERSON AFB United States. pp. 100–122. |
dc.relation.references | Sánchez Rubio, L. M. (2005). ENTRENAMIENTO FISIOLÓGICO EN DESORIENTACIÓN ESPACIAL, VISIÓN NOCTURNA Y VISORES NOCTURNOS PARA TRIPULANTES DE LA AVIACIÓN MILITAR EN COLOMBIA. Revista Med, 13(1),106-113.[fecha de Consulta 28 de Febrero de 2021]. ISSN: 0121-5256. Disponible en: https://www.redalyc.org/articulo.oa?id=910/91001312 |
dc.relation.references | Sazel, M., Pavlik, J., Petricek, J., & Sedlaty, Z. (Eds.). (2005). SPATIAL DISORIENTATION TRAINING. In: 53rd INTERNATIONAL CONGRESS OF AVIATION AND SPACE MEDICINE. WARSAW, POLAND (Vol. 53, Número 1). International Academy of Aviation and Space Medicine. |
dc.relation.references | Sipes, W. E., & Lessard, C. S. (2000). A spatial disorientation survey of experienced instructor pilots. IEEE Engineering in Medicine and Biology Magazine, 19(2), 35-42. https://doi.org/10.1109/51.827403 |
dc.relation.references | Stott, J. R. R. (2013). Orientation and disorientation in aviation. Extreme Physiology & Medicine, 2(1), 1-11. https://doi.org/10.1186/2046-7648-2-2 |
dc.relation.references | Takada, Y., Hisada, T., Kuwada, N., Sakai, M., & Akamatsu, T. (2009). Survey of Severe Spatial Disorientation Episodes in Japan Air Self-Defense Force Fighter Pilots Showing Increased Severity in Night Flight. Military Medicine, 174(6), 626-630. https://doi.org/10.7205/milmed-d-01-6308 |
dc.relation.references | Webb, C. M., Estrada, A., Kelley, A. M., Ramiccio, J. G., Rath, E., Reeves, E. R., Hill, M. E., Crivello, M. J., & Jones, H. D. (2010). The Effects of Spatial Disorientation on Working Memory and Mathematical Processing. United States Army Aeromedical Research Laboratory Warfighter Performance and Health Division, 1-2. https://www.researchgate.net/publication/235107823_The_Effects_of_Spatial_Disorientation_on_Working_Memory_and_Mathematical_Processing |
dc.relation.references | Wickens, C. D. (2005). Attentional Tunneling and Task Management. International Symposium on Aviation Psychology, 812-817. https://core.ac.uk/download/pdf/212660687.pdf |
dc.relation.references | Yu, C., Wang, E. M., Li, W., & Braithwaite, G. (2014). Pilots’ visual scan patterns and situation awareness in flight operations. Aviat Space Environ Med ., 7, 708-714. https://doi.org/10.3357/ASEM.3847.2014 |
dc.relation.references | Ziv, G. (2016). Gaze Behavior and Visual Attention: A Review of Eye Tracking Studies in Aviation. The International Journal of Aviation Psychology, 26(3-4), 75-104. https://doi.org/10.1080/10508414.2017.1313096 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.decs | Medicina Aeroespacial |
dc.subject.decs | Fijación Ocular |
dc.subject.decs | Fixation, Ocular |
dc.subject.decs | Aerospace medicine |
dc.subject.lemb | Medicina espacial |
dc.subject.proposal | Desorientación espacial |
dc.subject.proposal | comportamiento de la mirada |
dc.subject.proposal | Seguimiento ocular |
dc.subject.proposal | Simulador de desorientación espacial |
dc.subject.proposal | Spatial disorientation |
dc.subject.proposal | Gaze behavior |
dc.subject.proposal | Eye-Tracke |
dc.subject.proposal | spatial disorientation simulator |
dc.title.translated | Characterization of Visual Scanning of Instruments in Induced Spatial Disorientation in Fixed Wing Pilots of the Colombian Air Force * |
dc.type.coar | http://purl.org/coar/resource_type/c_46ec |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |