Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOrdúz Peralta, Sergio
dc.contributor.advisorMontoya Campuzano, Olga Inés
dc.contributor.advisorRuíz Villadiego, , Orlando Simón
dc.contributor.authorVélez Zuluaga, Juan Alberto
dc.date.accessioned2021-06-01T20:45:36Z
dc.date.available2021-06-01T20:45:36Z
dc.date.issued2018
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79588
dc.description.abstractLa producción de biosólidos en la Planta de Tratamiento de Aguas Residuales (PTAR) San Fernando de propiedad de Empresas Públicas de Medellín (EPM) en Medellín, Antioquia, Colombia, está regulada por el Ministerio de Medio Ambiente Colombiano y custodiada por la autoridad regional ambiental Corporación Autónoma Regional del Centro de Antioquia (Corantioquia). Uno de los metales más cuestionados y vigilados en la producción de biosólidos en el mundo es el cromo derivado de múltiples actividades antrópicas, cuyas formas más significativas son la especie hexavalente (Cr6+) conocida por sus propiedades ácidas de naturaleza oxidante, que ocasiona daño a los tejidos y lesiones en los órganos, generando serios trastornos en la salud humana y animal con efectos mutagénicos, teratogénicos y carcinogénicos y la especie trivalente (Cr3+), considerada vital y necesaria para la síntesis de la glucosa, algunos lípidos y proteínas. Las posibilidades de oxidoreducción entre estas dos especies son motivo de serias discusiones y múltiples investigaciones, pero todavía son inciertos algunos de los mecanismos que influyen y gobiernan estas reacciones de doble vía. Cinco experimentos fueron llevados a cabo en la Universidad Nacional de Medellín tendientes a encontrar hongos y bacterias que fuesen capaces de crecer en medios de cultivo enriquecidos con cromo, con el objeto de aislarlos, purificarlos y multiplicarlos; para someterlos a concentraciones crecientes del metal, hasta encontrar la Concentración Mínima Inhibitoria (CMI), con el objeto de ser utilizados posteriormente como posibles alternativas biotecnológicas en la remediación de ambientes con presencia de cromo. Los microorganismos fueron obtenidos mediante aislados de aguas residuales de la empresa Curtiembres de Itagüí, Antioquia y de los biosólidos de la PTAR San Fernando, de los ceparios de la Universidad Nacional y de la Universidad de Antioquia, aportes de las empresas privadas Natural Control y Soluciones Microbiales para el Trópico; también se recurrió al interior del laboratorio a contaminantes ambientales colonizadores de un medio de cultivo enriquecido con cromo y fueron evaluados algunos fitopatógenos aleatorios obtenidos del cultivo del cacao. Aquellos organismos seleccionados por su cromotolerancia, fueron evaluados en forma de consorcio microbiano bajo invernadero, en macetas plásticas de 2 kilogramos de peso, con suelos contrastantes (Andisol e Inceptisol) y adiciones de biosólidos (20 Ton Ha-1) de la PTAR San Fernando, en presencia de una dosis alta de dicromato de potasio equivalente al doble de la CMI explorada (2.400 mg kg-1). Como planta bioindicadora se utilizó frijol arbustivo Phaseolus vulgaris durante todo el período vegetativo y reproductivo por 4 meses al cabo de los cuales se tomaron muestras de suelo rizosférico y no rizosférico con el propósito de llevar a cabo pruebas de metagenómica para rastrear la trazabilidad de las especies adicionadas y observar potenciales géneros nuevos que no hayan sido investigados. Los microorganismos que demostraron mayor potencial por su capacidad para remover cromo total o reducir cromo hexavalente a trivalente fueron caracterizados molecularmente en la Universidad de Antioquia y bioquímicamente en la Universidad Nacional, sede de Medellín mediante el empleo del Kit API y del sistema Biolog Microstation ID System. Posteriormente purificados y escalados y previa confrontación con los hallazgos de otros investigadores a nivel global, fueron empleados en pruebas de biotest de toxicidad, para confirmar su capacidad remediadora en presencia de silicato de magnesio y en ausencia de él como posible agente neutralizador del cromo en el suelo, usando prototipos no comerciales de Rhizotrones como herramientas de diagnóstico. Plantas de lechuga Lactuca sativa y lenteja Lens culinaris fueron empleadas como biosensores por su alta sensibilidad a los metales traza. Finalmente las bacterias Ochrobactrum antropi, O. intermedium, Bacillus amyloliquefacien, Bacillus cereus , B. megaterium, B. firmus; Staphylococcus saprophyticus y los hongos Scedosporium dehoogii, S. boydii, Paecilomyces lilacinus y Trichoderma sp., fueron elegidos como los organismos con mayor potencial para ser usados como bioremediadores de ambientes con presencia de cromo mediante la utilización de un biofiltro a través de un consorcio microbiano, o de manera individual empleados in situ, en combinación con correctivos que contengan silicatos de magnesio, dado su poder neutralizador de cromo en el suelo, como fue demostrado en este estudio.
dc.description.abstractThe biosolid production in the water treatment plant (PTAR) San Fernando property of EPM de Medellin is regulated by the environment minister of Colombia and monitored by the regional environment authority Corantioquia. One of the most questioned and guarded metals in the production of biosolids is Chrome. This metal originates in several anthropic activities and has as its most representative forms the hexavalent (Cr6+) species. This from is known for its acidic properties and oxidant nature, it produces damage to tissues and organ injuries generating serious disorders in human and animal health that include mutagenic, teratogenic and carcinogenic effects. The trivalent species (Cr3+) is considered vital and necessary for the synthesis of glucose, and some lipids and proteins. The possibilities of oxide reduction between these two species are object of serious discussions and multiple researches but the mechanisms that govern and influentiate these double way reactions are still uncertain. Five experiments were made in the Universidad Nacional de Medellin aiming to find fungus and bacteria that were able to grow in chrome enriched environment with the objective of aisle, purify and multiply them. Then they would be exposed to incremental concentration of the metal until finding the minimum inhibitory concentration (CMI), with the objective of using them in possible biotechnological alternatives aiming to remediate environments with chrome presence. The microorganisms where obtained by isolating samples from the company Curtiembres de Itagui and from the Biosolids of the PTAR San Fernando property of Empresas Públicas de Medellín (EPM), borrowings from the stumps of Universidad Nacional and Universidad de Antioquia, contributions from the private companies Natural Control and Soluciones Microbiales para el Tropico, environmental colonizer contaminants to the chrome enriched media where also used and some phytopathogens obtained randomly from cacao plantations where also evaluated. The microorganisms selected due to their chrome tolerance where exposed to react under a greenhouse microbiological consortium in plastic pots weighing 2kg. Contrasting soils (Andisol and Inceptisol) and added biosolids (20 Ton Ha-1) of the PTAR San Fernando un presence of a high dose of potassium dichromate equivalent to double of the explored CMI (2.400 mg kg-1). The arbustive bean Phaseolus vulgaris was used as a bioindicator, the whole vegetative and reproductive period was followed for a period of 4 moths during which samples of rizospheric and non rizospheric soil where taken with the purpose of developing metagenomics tests keeping track of the traceability of the added genera and observe potential new genera that haven’t been investigated. The microorganism that demonstrated a higher potential based on their capacity to remove total chrome, reduce hexavalent chrome to trivalent where characterized molecularly at the Universidad de Antioquia and biochemically at the Universidad Nacional using the API protocol and Biolog Microstation ID System. After a confrontation against other researchers at a global level the microorganisms where purified and escalated and then used in bio toxicity tests in order to confirm their corrective capacity in presence and absence of magnesium silicate as a possible neutralizing agent of Chrome in the soil, non-commercial prototypes of Rhizotrones where used to as diagnostic tools. Lettuce Lactuca sativa and lentil Lens culinaris where used as biosensors due to their high sensitivity to trace metals. Finally the bacteria Ochrobactrum antropi, O. intermedium, Bacillus amyloliquefacien, B. cereus, B. megaterium, B. firmus; Staphylococcus saprophyticus and fungus Scedosporium dehoogii, S. boydii, Paecilomyces lilacinus y Trichoderma sp. Where selected as the microorganisms with the highest potential to be used as bio-remediating agents for environments with chrome presence using them as a biofilter in a microbial consortium or in a individual way using them in situ in combination with correctives containing magnesium silicates due to its chrome neutralizing capacity as shown in this study.
dc.format.extent167 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología
dc.subject.ddc660 - Ingeniería química
dc.titleEstrategias biotecnológicas para evaluar la presencia de cromo en la generación de biosólidos seguros: Posibles alternativas de bioremediación
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Doctorado en Ecología
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ecología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ciencias Forestales
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAcevedo, F. ; Espinosa, A. ; Rodríguez I, Rivera, M. ; Ávila, M. ; Wrobel ,K. ; Lappe, P.; Ulloa, M. ; Gutiérrez, J. (2006). Hexavalent chromium removal in Vitro and from industrial wastes, using chromate resistant strains of filamentous fungi indigenous to contaminated wastes. Can. J. Microbiol. 52 (9), 809-815.
dc.relation.referencesAchal, V., Kumari, D., & Pan, X. (2011). Bioremediation of Chromium Contaminated Soil by a Brown-rot Fungus, Gloeophyllum sepiarium. Research Journal of Microbiology, 6(2), 166–171. https://doi.org/10.3923/jm.2011.166.171
dc.relation.referencesAgency for Toxic Substances and Disease Registry (ATSDR) (1998) Toxicological Profile for Chromium. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
dc.relation.referencesAhluwalia, S. S., & Goyal, D. (2013). Microbial Waste Biomass for Removal of Chromium(VI) from Chrome Effluent. Bioremediation Journal, 17(3), 190–199. https://doi.org/10.1080/10889868.2013.807770
dc.relation.referencesAhmed, E., Abdulla, H. M., Mohamed, A. H., & El-Bassuony, A. D. (2016). Remediation and recycling of chromium from tannery wastewater using combined chemical–biological treatment system. Process Safety and Environmental Protection, 104, 1–10. https://doi.org/10.1016/j.psep.2016.08.004
dc.relation.referencesAkram, M., Bhatti, H. N., Iqbal, M., Noreen, S., & Sadaf, S. (2017). Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies. Journal of Environmental Chemical Engineering, 5(1), 400–411. https://doi.org/10.1016/j.jece.2016.12.002
dc.relation.referencesAmorena, A. (1995). Plan integral de reutilización de los lodos de la depuradora de la comarca de Pamplona. Gestión y utilización de residuos urbanos para la Agricultura. Barcelona: Fundación la Caixa, pp. 45-53.
dc.relation.referencesAlekhya Iyengar, C., & Subbaiah Usha, M. (2016). Removal of chromium by Staphylococcus saprophyticus subsp. bovis strain 1. Biologija, 62(1). https://doi.org/10.6001/biologija.v62i1.3285
dc.relation.referencesApte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/J.JHAZMAT.2005.02.010
dc.relation.referencesAruoja, V. Kahru, A., Dubourguier, H. (2008). Toxicity of ZnO, TiO2 and CuO nanoparticles to microalgae Pseudokirchneriella subcapitata. Toxicology Letters, 180 (1) p 220.
dc.relation.referencesAsatiani, N. V., Abuladze, M. K., Kartvelishvili, T. M., Bakradze, N. G., Sapojnikova, N. A., Tsibakhashvili, N. Y., … Holman, H.-Y. (2004). Effect of Chromium(VI) Action on Arthrobacter oxydans. Current Microbiology, 49(5), 321–326. https://doi.org/10.1007/s00284-004-4351-2
dc.relation.referencesAvudainayagam, S., Megharaj, M., Owens, G., Kookana, R. S., Chittleborough, D., & Naidu, R. (2003). Chemistry of Chromium in Soils with Emphasis on Tannery Waste Sites (pp. 53–91). Springer, New York, NY. https://doi.org/10.1007/0-387-21728-2_3
dc.relation.referencesAzmat, R., & Khanum, R. (2005). Effect of Chromium Metal on the Uptakes of Mineral Atoms in Seedlings of Bean Plant Vigna radiata (L.) Wilckzek. Pakistan Journal of Biological Sciences, 8(2), 281–283. https://doi.org/10.3923/pjbs.2005.281.283
dc.relation.referencesBachate, S. P., Nandre, V. S., Ghatpande, N. S., & Kodam, K. M. (2013). Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent. Chemosphere, 90(8), 2273–2278. https://doi.org/10.1016/j.chemosphere.2012.10.081
dc.relation.referencesBalls, M., Fentem, J., Jooint, E. (1992). Animal Experiments. Hobson Publishing, Cambridge. 2-15.
dc.relation.referencesBartlett, R., & James, B. (1979). Behavior of Chromium in Soils: III. Oxidation1. Journal of Environment Quality, 8(1), 31. https://doi.org/10.2134/jeq1979.00472425000800010008x
dc.relation.referencesBedoya-Urrego, K., Acevedo-Ruíz, J. M., Peláez-Jaramillo, C. A., & Del Pilar Agudelo-López, S. (2013). Caracterización de biosólidos generados en la planta de tratamiento de agua residual San Fernando, Itagüí (Antioquia, Colombia) The characterization of biosolids produced by the San Fernando wastewater treatment plant in Itagui, Antioquia, Colombia. Rev. Salud pública.Enviado Para Modificación, 15(22), 778–790. Retrieved from http://www.scielo.org.co/pdf/rsap/v15n5/v15n5a13.pdf
dc.relation.referencesBeltrán-Pineda, M. E., & Gómez-Rodríguez, A. M. (2016). Biorremediación de Metales Pesados Cadmio (Cd), Cromo (Cr) y Mercurio (Hg), Mecanismos Bioquímicos e Ingeniería Genética: Una Revisión. Revista Facultad de Ciencias Básicas, 12(2), 172–197. https://doi.org/10.18359/RFCB.2027
dc.relation.referencesBharagava, R. N., & Mishra, S. (2018). Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicology and Environmental Safety. https://doi.org/10.1016/j.ecoenv.2017.08.040
dc.relation.referencesBhattacharya, A., Gupta, A., Kaur, A., & Malik, D. (2014). Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Applied Microbiology and Biotechnology, 98(23). https://doi.org/10.1007/s00253-014-5910-5
dc.relation.referencesBielefeldt, A. R., & Vos, C. (2014). Stability of biologically reduced chromium in soil. Journal of Environmental Chemical Engineering, 2(1). https://doi.org/10.1016/j.jece.2013.10.012
dc.relation.referencesBishop, M. E., Glasser, P., Dong, H., Arey, B., & Kovarik, L. (2014). Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochimica et Cosmochimica Acta, 133, 186–203. https://doi.org/10.1016/j.gca.2014.02.040
dc.relation.referencesBrose, D. A., & James, B. R. (2008a). Oxidation-Reduction Transformations of Chromium in Electron-Shuttling Quinones in Chemical and Microbiological pathways, (Vi).
dc.relation.referencesBrose, D. A., & James, B. R. (2008b). Title of Thesis: Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones in chemical and microbiological pathways.
dc.relation.referencesBulich, A., (1979). Use of luminiscent bacteria for determining toxicity in aquatic environments. Aquatic Toxicology. ASTM 667. L. L. Markings y R. A. Kimerle (Eds.). American Society for Testing Materials. 98- 106.
dc.relation.referencesBulich, A. (1988) Analytical application of the MICROTOX system. Analytical Techniques and Residuals Management.Conference En:___WaterPollutionControlFederationSpecialty.19-20.Atlanta
dc.relation.referencesBusch, J., Mendelssohn, I. A., Lorenzen, B., Brix, H., & Miao, S. (2006). A rhizotron to study root growth under flooded conditions tested with two wetland Cyperaceae. Flora - Morphology, Distribution, Functional Ecology of Plants, 201(6), 429–439. https://doi.org/10.1016/J.FLORA.2005.08.007
dc.relation.referencesCala, V., Cases, M. A., & Walter, I. (2005). Biomass production and heavy metal content of Rosmarinus officinalis grown on organic waste-amended soil. Journal of Arid Environments, 62(3), 401–412. https://doi.org/10.1016/J.JARIDENV.2005.01.007
dc.relation.referencesCalleja, M. ; Persoone, G. ( 1992). The potential of ecotoxicological tests for prediction of acute toxicity in man as avaluates on the first ten chemicals of the MEIC programme. 20 (3), 396-405.
dc.relation.referencesCárdenas-González, J. F., Martínez-Juárez, V. M., & Acosta-Rodríguez, I. (2011). Remoción de Cromo (VI) por una Cepa de Paecilomyces sp Resistente a Cromato. Información Tecnológica, 22(4), 43–50. https://doi.org/10.4067/S0718-07642011000400006
dc.relation.referencesCervantes, C., & Campos-García, J. (2007). Reduction and Efflux of Chromate by Bacteria. In Molecular Microbiology of Heavy Metals (pp. 407–419). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/7171_2006_087
dc.relation.referencesChaney, R, y Giordano, P. (1977). Microelements as related to plant deficiencies and toxicities.
dc.relation.referencesCharrier, T., Durand, M., Affi, M., Jouanneau, S., Gezekel, H., Thouand, G., (2006). Bacterial Bioluminescent Biosensor Characterisation for On-line Monitoring of Heavy Metals Pollutions Waste Water Treatment Plant Effluents. University of Nantes. Department of Biology. Francia.
dc.relation.referencesCheng, Y., Yan, F., Huang, F., Chu, W., Pan, D., Chen, Z., … Wu, Z. (2010). Bioremediation of Cr ( VI ) and Immobilization as Cr ( III ) by Ochrobactrum anthropi. Environmental Science & Technology, 44(16), 6357–6363. https://doi.org/10.1021/es100198v
dc.relation.referencesChoong, C. E., Ibrahim, S., Yoon, Y., & Jang, M. (2018). Removal of lead and bisphenol A using magnesium silicate impregnated palm-shell waste powdered activated carbon: Comparative studies on single and binary pollutant adsorption. Ecotoxicology and Environmental Safety, 148, 142–151. https://doi.org/10.1016/J.ECOENV.2017.10.025
dc.relation.referencesColeman, R. N., & Qureshi, A. A. (1985). Microtox® andSpirillum volutans tests for assessing toxicity of environmental samples. Bulletin of Environmental Contamination and Toxicology, 35(1), 443–451. https://doi.org/10.1007/BF01636536
dc.relation.referencesCoreño-Alonso, A., Solé, A., Diestra, E., Esteve, I., Gutiérrez-Corona, J. F., Reyna López, G. E., … Tomasini, A. (2014). Mechanisms of interaction of chromium with Aspergillus niger var tubingensis strain Ed8. Bioresource Technology, 158, 188–192. https://doi.org/10.1016/j.biortech.2014.02.036
dc.relation.referencesDáguer, G. P. (s.f.). Gestión de biosólidos en Colombia. Retrieved from http://www.bvsde.paho.org/bvsaar/fulltext/biosolidos.pdf
dc.relation.referencesDalzell, D. J. B., Alte, S., Aspichueta, E., de la Sota, A., Etxebarria, J., Gutierrez, M., … Christofi, N. (2002). A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere, 47(5), 535–545. https://doi.org/10.1016/S0045-6535(01)00331-9
dc.relation.referencesDas, A., Davis, M. A., & Rudel, L. L. (2008). Identification of putative active site residues of ACAT enzymes. Journal of Lipid Research, 49(8), 1770–1781. https://doi.org/10.1194/jlr.M800131-JLR200
dc.relation.referencesDas, S., Mishra, J., Das, S. K., Pandey, S., Rao, D. S., Chakraborty, A., … Thatoi, H. (2014). Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere, 96, 112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080
dc.relation.referencesDe Flora, S., D’Agostini, F., Balansky, R., Micale, R., Baluce, B., & Izzotti, A. (2008). Lack of genotoxic effects in hematopoietic and gastrointestinal cells of mice receiving chromium(VI) with the drinking water. Mutation Research/Reviews in Mutation Research, 659(1–2), 60–67. https://doi.org/10.1016/J.MRREV.2007.11.005
dc.relation.referencesDuarte, B., Silva, V., & Caçador, I. (2012). Hexavalent chromium reduction, uptake and oxidative biomarkers in Halimione portulacoides. Ecotoxicology and Environmental Safety, 83, 1–7. https://doi.org/10.1016/J.ECOENV.2012.04.026
dc.relation.referencesDvorak, P. Benova, K. Vitek, J., (s.f.) Aternative Biotes on Artemia franciscana. University of veterinary and pharmaceutical Science, Czech Republic and Slovack republic.
dc.relation.referencesFaisal. M, & S. H. (2006). Harazdous Impact of Chromium on Environment and its Appropriate Remediations.Journalof Pharmacology and Toxicology, 1(3), 248–258. https://doi.org/10.3923/jpt.2006.248.258
dc.relation.referencesFelipo, M. (1.995) Reutilización de residuos urbanos y posible contaminación. Gestión y utilización de residuos urbanos para la agricultura. Madrid: Editorial Aedos. 23-36.
dc.relation.referencesFukuda, T., Ishino, Y., Ogawa, A., Tsutsumi, K., & Morita, H. (2008). Cr(VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits. The Journal of General and Applied Microbiology, 54(5), 295–303. https://doi.org/10.2323/jgam.54.295
dc.relation.referencesGadd, G. M. (1993). Interactions of fungip with toxic metals. New Phytologist, 124(1), 25–60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
dc.relation.referencesGantzer, C., Gaspard, P., Galvez, L., Huyard, A., Dumouthier, N., & Schwartzbrod, J. (2001). Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Research, 35(16), 3763–70. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12230157
dc.relation.referencesGhate, S., & Chaphekar, S. . (2000). Plagiochasma appendiculatum as a biotest for water quality assessment. Environmental Pollution, 108(2), 173–181. https://doi.org/10.1016/S0269-7491(99)00243-2
dc.relation.referencesGómez, S., Torres, V., García, Y., Fraga, L. M., Sarduy, L., & Savón, L. L. (2012). Comparación de modelos de efectos fijos y mixto en el análisis de un experimento con cepas mutantes de hongos celulolíticos Trichoderma viride. Revista Cubana de Ciencia Agrícola, 46(2). Retrieved from http://www.redalyc.org/pdf/1930/193024447002.pdf
dc.relation.referencesGove, L., Cooke, C. M., Nicholson, F. A., & Beck, A. J. (2001). Movement of water and heavy metals (Zn, Cu, Pb and Ni) through sand and sandy loam amended with biosolids under steady-state hydrological conditions. Bioresource Technology, 78(2), 171–179. https://doi.org/10.1016/S0960-8524(01)00004-9
dc.relation.referencesGruiz, K., Fenyvesi, É., Kriston, É., Molnár, M., & Horváth, B. (1996). Potential use of Cyclodextrins in Soil Bioremediation. In Proceedings of the Eighth International Symposium on Cyclodextrins (pp. 609–612). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-5448-2_133
dc.relation.referencesGuillén-Jiménez, F. de M., Morales-Barrera, L., Morales-Jiménez, J., Hernández-Rodríguez, C. H., & Cristiani-Urbina, E. (2008). Modulation of tolerance to Cr(VI) and Cr(VI) reduction by sulfate ion in a Candida yeast strain isolated from tannery wastewater. Journal of Industrial Microbiology & Biotechnology, 35(11), 1277–1287. https://doi.org/10.1007/s10295-008-0425-7
dc.relation.referencesGutiérrez Corona, J. F., Espino Saldaña, Á. E., Coreño Alonso, A., Acevedo Aguilar, F. J., Reyna López, G. E., Fernández, F. J., … Wrobel, K. (2010). Mecanismos de interacción con cromo y aplicaciones biotecnológicas en hongos. Revista Latinoamericana de Biotecnología Amb Algal, 1(1), 47–63. Retrieved from http://www.ambientalex.info/revistas/Mecintcroaplbiohon.pdf
dc.relation.referencesHassan, S. H. A., Van Ginkel, S. W., & Oh, S.-E. (2012). Detection of Cr 6+ by the Sulfur Oxidizing Bacteria Biosensor: Effect of Different Physical Factors. Environmental Science & Technology, 46(14), 7844–7848. https://doi.org/10.1021/es301360a
dc.relation.referencesHindák, F., & Hindáková, A. (2008). Morphology and taxonomy of some rare chlorococcalean algae (Chlorophyta). Biologia, 63(6). https://doi.org/10.2478/s11756-008-0099-7
dc.relation.referencesHlywka, J., Beck, M. , Bullerman, L. (1997). The Use of the Chicken Embryo Screening Test and Brine Shrimp (Artemia salina) Bioassays to Assess the Toxicity of Fumonisin B1 Mycotoxin. Food and Chemical Toxicology, 35(10-11), 991-999.
dc.relation.referencesHorbath, B. , Gruiz, K., Sara, B. (1996). Ecotoxicological testing of soil by four bacterial Biotest. Technical University of Budapest.
dc.relation.referencesHuang, G., Wang, W., & Liu, G. (2015). Simultaneous chromate reduction and azo dye decolourization by Lactobacillus paracase CL1107 isolated from deep sea sediment. Journal of Environmental Management, 157, 297–302. https://doi.org/10.1016/j.jenvman.2015.04.031
dc.relation.referencesIlhan, S., Cabuk, A., Filik, C., Calikan, F., (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass. Trakya. Univ. J. Sc.
dc.relation.referencesIvask, A., Virta, M., Kahru, A. (2002). Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium. Soil Biol. And Biochem. 34 (1439-1447).
dc.relation.referencesJavaid, M., & Sultan, S. (2013). Plant growth promotion traits and Cr (VI) reduction potentials of Cr (VI) resistant Streptomyces strains. Journal of Basic Microbiology, 53(5), 420–428. https://doi.org/10.1002/jobm.201200032
dc.relation.referencesKang, C.-H., Kwon, Y.-J., & So, J.-S. (2016). Bioremediation of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64–69. https://doi.org/10.1016/j.ecoleng.2016.01.023
dc.relation.referencesKasemets, K., Ivask, A., Dubourguier, H.-C., & Kahru, A. (2009). Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicology in Vitro, 23(6), 1116–1122. https://doi.org/10.1016/j.tiv.2009.05.015
dc.relation.referencesKavita, B., & Keharia, H. (2012). Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech, 2(1), 79–87. https://doi.org/10.1007/s13205-011-0038-0
dc.relation.referencesKhambhaty, Y., Mody, K., Basha, S., & Jha, B. (2009). Biosorption of Cr(VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World Journal of Microbiology and Biotechnology, 25(8), 1413–1421. https://doi.org/10.1007/s11274-009-0028-0
dc.relation.referencesKotaś, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution. https://doi.org/10.1016/S0269-7491(99)00168-2
dc.relation.referencesKsheminska, H., Honchar, T., Gayda, G., & Gonchar, M. (2006). Extra-cellular chromate-reducing activity of the yeast cultures. Open Life Sciences, 1(1), 137–149. https://doi.org/10.2478/s11535-006-0009-3
dc.relation.referencesKumral, E. (2007). “Speciation of Chromium in Waters Via Sol-Gel Preconcentration Prior To Atomic Spectrometric Determination”. master degree in chemistry, (July).
dc.relation.referencesLabunska, I., Brigden, K., Johnston, R., Santillo, P., & Ashton, D. &. (n.d.). Identificación y trascendencia ambiental de contaminantes orgánicos y metales pesados asociados con la curtiembre Arlei S.A., Las Toscas, Provincia de Santa Fe, Argentina 2000. Retrieved from http://www.greenpeace.org/argentina/Global/argentina/report/2006/4/identificaci-n-y-trascendencia-2.pdf
dc.relation.referencesLackner, M., Najafzadeh, M. J., Sun, J., Lu, Q., & Hoog, G. S. de. (2012). Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Applied and Environmental Microbiology, 78(1), 126–33. https://doi.org/10.1128/AEM.05280-11
dc.relation.referencesLee, D.-J., Tay, J.-H., Hung, Y.-T., & He, P. J. (2005). Introduction to Sludge Treatment. In Physicochemical Treatment Processes (pp. 677–703). Totowa, NJ: Humana Press. https://doi.org/10.1385/1-59259-820-x:677
dc.relation.referencesLewis,B., Levering, D. (2004). A high-level disinfection standard for land-applied sewage sludges (biosolids). Retrieved March 4, 2018, from https://www.thefreelibrary.com/Lewis%2c+David+Levering-a195
dc.relation.referencesLovley, D. R. (1995). Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology, 14(2), 85–93. https://doi.org/10.1007/BF01569889
dc.relation.referencesMahmoud, M. E., Yakout, A. A., Abdel-Aal, H., & Osman, M. M. (2015). Speciation and Selective Biosorption of Cr(III) and Cr(VI) Using Nanosilica Immobilized-Fungi Biosorbents. Journal of Environmental Engineering, 141(4), 4014079. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000899
dc.relation.referencesMandal, K., Singh, B., Jariyal, M., & Gupta, V. K. (2014). Bioremediation of fipronil by a Bacillus firmus isolate from soil. Chemosphere, 101, 55–60. https://doi.org/10.1016/j.chemosphere.2013.11.043
dc.relation.referencesMcDougall, W. B. (1916). The Growth of Forest Tree Roots. American Journal of Botany, 3(7), 384. https://doi.org/10.2307/2435018
dc.relation.referencesMegharaj, M., Avudainayagam, S., & Naidu, R. (2003). Toxicity of Hexavalent Chromium and Its Reduction by Bacteria Isolated from Soil Contaminated with Tannery Waste. Current Microbiology, 47(1), 51–54. https://doi.org/10.1007/s00284-002-3889-0
dc.relation.referencesMontauban-González, R. (2013). Determinación de Cromo(III) y Cromo (VI) mediantes tecnicas electroquímicas de análisis, 2(Iii), 1–118.
dc.relation.referencesMora Collazos, A. (2016). Bacillus sp. G3 un microorganismo promisorio en la biorremediación de aguas industriales contaminadas con cromo hexavalente. Nova Scientia, 8(17), 361. https://doi.org/10.21640/ns.v8i17.655
dc.relation.referencesMorales-Barrera, L., & Cristiani-Urbina, E. (2007). Hexavalent Chromium Removal by a Trichoderma inhamatum Fungal Strain Isolated from Tannery Effluent. Water, Air, and Soil Pollution, 187(1–4), 327–336. https://doi.org/10.1007/s11270-007-9520-z
dc.relation.referencesNendza, M. (2002). Inventory of marine biotest methods for the evaluation of dredged material and sediments. Chemosphere, 48(8), 865–883. https://doi.org/10.1016/S0045-6535(02)00003-6
dc.relation.referencesNepomuscene, N. J., Daniel, D., & Krastanov, A. (2007). Biosensor to detect chromium in wastewater. Biotechnology and Biotechnological Equipment, 21(3), 377–381. https://doi.org/10.1080/13102818.2007.10817477
dc.relation.referencesNguyên-nhu, N. T., & Knoops, B. (2002). Alkyl hydroperoxide reductase 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicology Letters, 135(3), 219–228. https://doi.org/10.1016/S0378-4274(02)00280-1
dc.relation.referencesNicolotti, G., & Egli, S. (1998). Soil contamination by crude oil: impact on the mycorrhizosphere and on the revegetation potential of forest trees. Environmental Pollution, 99(1), 37–43. https://doi.org/10.1016/S0269-7491(97)00179-6
dc.relation.referencesNiculescu, M., Dana Ionita, A., & Filipescu, L. (2010). Bucureoti) 61 Nr. REV. CHIM, 2. Retrieved from http://www.revistadechimie.ro200
dc.relation.referencesNiculescu, M., Dana Ionita, A., & Filipescu, L. (2010). Bucureoti) ♦ 61♦ Nr. REV. CHIM, 2. Retrieved from http://www.revistadechimie.ro200
dc.relation.referencesNies, D. H. (1999). Microbial heavy-metal resistance, 730–750.
dc.relation.referencesOvercash, M. R., Sims, R. C., Sims, J. L., Nieman, K. C., Overcash, M. R. ;, Sims, R. C. ;, … Nieman, C. (2005). Beneficial Reuse and Sustainability: The Fate of Organic Compounds in the Land-Applied Waste Recommended Citation Beneficial Reuse and Sustainability: The Fate of Organic Compounds in Land-Applied Waste. Retrieved from http://digitalcommons.usu.edu/bioeng_facpub
dc.relation.referencesPan, X., Liu, Z., Chen, Z., Cheng, Y., Pan, D., Shao, J., … Guan, X. (2014). Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Research, 55(Vi), 21–29. https://doi.org/10.1016/j.watres.2014.01.066
dc.relation.referencesPanda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17(1), 95–102. https://doi.org/10.1590/S1677-04202005000100008
dc.relation.referencesPillichshammer, M., Pompel, T., Powder, R., Eller, K., Klima, J., & Schinner, F. (1995). Biosorption of chromium to fungi. Biometals, 8(2), 117–121. https://doi.org/10.1007/BF00142010
dc.relation.referencesRatto, C. M. & L. M. (200)). Metales pesados por aplicacion de biosolidos en un hapludol de tucuman, republica Argentina ... Retrieved March 3, 2018, from https://www.researchgate.net/publication/237756197_
dc.relation.referencesRamírez-Díaz, M. I., Díaz-Pérez, C., Vargas, E., Riveros-Rosas, H., Campos-García, J., & Cervantes, C. (2008). Mechanisms of bacterial resistance to chromium compounds. BioMetals, 21(3), 321–332. https://doi.org/10.1007/s10534-007-9121-8
dc.relation.referencesRamírez-Ramírez, R., Calvo-Méndez, C., Ávila-Rodríguez, M., Lappe, P., Ulloa, M., Vázquez-Juárez, R., & Félix Gutiérrez-Coron, J. (2004). Cr(VI) reduction in a chromate-resistant strain of Candida maltosa isolated from the leather industry. Antonie van Leeuwenhoek, 85(1), 63–68. https://doi.org/10.1023/B:ANTO.0000020151.22858.7f
dc.relation.referencesReish, D., Oshida, O. (1987). Manual of Methods in aquatic environment research. Part 10. Short-term static bioassays . FAO, Rome Fisheries Technical Paper (247), pp 62.
dc.relation.referencesSandana Mala, J. G., Sujatha, D., & Rose, C. (2015). Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiological Research, 170, 235–241. https://doi.org/10.1016/j.micres.2014.06.001
dc.relation.referencesSchmidt, B., Schafer, A. (2012). Development of a system to investigate the contamination level in soils by use of collembola as bioindicators. Aachen University. Thailand
dc.relation.referencesSchnoor, J. L. (n.d.). Ground-Water Remediation Technologies Analysis Center. Retrieved from https://clu-in.org/download/toolkit/phyto_e.pdf
dc.relation.referencesSemra Ilhan, Cansu Filik, Ahmet Çabuk, F. C. (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass (PDF Download Available). Retrieved February 24, om https://www.researchgate.net/publication/268186503_Effect_of_pretreatment_on_biosorption_of_heavy metals_by_fungal_biomass
dc.relation.referencesSemra Ilhan,Cansu Filik,Ahmet Çabuk, F. C. (2004). Effect of pretreatment on biosorption of heavy metals by fungal biomass (PDF Download Available). Retrieved February 24, 2018, from https://www.researchgate.net/publication/268186503_Effect_of_pretreatment_on_biosorption_of_heavy_metals_by_fungal_biomass
dc.relation.referencesSeoánez Calvo, M., & Gutiérrez de Ojesto, A. (1999). Aguas residuales : tratamiento por humedales artificiales : fundamentos científicos : tecnologías : diseño. Mundi-Prensa.
dc.relation.referencesShanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. https://doi.org/10.1016/j.envint.2005.02.003
dc.relation.referencesSharma, S., & Adholeya, A. (2012). Hexavalent Chromium Reduction in Tannery Effluent by Bacterial Species Isolated from Tannery Effluent Contaminated Soil. Journal of Environmental Science and Technology, 5(3), 142–154. https://doi.org/10.3923/jest.2012.142.154
dc.relation.referencesSharma, S., & Malaviya, P. (2016). Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecological Engineering, 91, 419–425. https://doi.org/10.1016/j.ecoleng.2016.03.005
dc.relation.referencesSilva, J., Torrejón, G., Bay-Schmith, E., & Larrain, A. (n.d.). Calibration of the acute toxicity bioassay with daphnia pulex (crustacea:cladocera)using a reference toxicant. Retrieved from https://scielo.conicyt.cl/pdf/gayana/v67n1/art11.pdf
dc.relation.referencesSingh, N., Verma, T., & Gaur, R. (2013). Detoxification of hexavalent chromium by an indigenous facultative anaerobic Bacillus cereus strain isolated from tannery effluent. African Journal of Biotechnology, 12(10), 1091–1103. https://doi.org/10.5897/AJB12.1636
dc.relation.referencesSingh, R., Dong, H., Liu, D., Zhao, L., Marts, A. R., Farquhar, E., … Briggs, B. R. (2016). Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochimica et Cosmochimica Acta, 148, 442–456. https://doi.org/10.1016/j.gca.2014.10.012.Reduction
dc.relation.referencesSmith, S. R. (2009). A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 35(1), 142–56. https://doi.org/10.1016/j.envint.2008.06.009
dc.relation.referencesStein, K., & Schwedt, G. (1994a). Speciation of chromium in the waste water from a tannery. Fresenius’ Journal of Analytical Chemistry, 350(1–2), 38–43. https://doi.org/10.1007/BF00326250
dc.relation.referencesSumner, E. R., Shanmuganathan, A., Sideri, T. C., Willetts, S. A., Houghton, J. E., & Avery, S. V. (2005). Oxidative protein damage causes chromium toxicity in yeast. Microbiology, 151(6), 1939–1948. https://doi.org/10.1099/mic.0.27945-0
dc.relation.referencesTait, K., Sayer, J. A., Gharieb, M. M., & Gadd, G. M. (1999). Fungal production of calcium oxalate in leaf litter microcosms. Soil Biology and Biochemistry, 31(8), 1189–1192. https://doi.org/10.1016/S0038-0717(99)00008-5
dc.relation.referencesTejeda-Benitez, L., Flegal, R., Odigie, K., & Olivero-Verbel, J. (2016). Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environmental Pollution, 212, 238–250. https://doi.org/10.1016/j.envpol.2016.01.057
dc.relation.referencesTelles-Mosquera, J. , Carvajal, R., Gaitan, A. (2004). Aspectos toxicológicos relacionados con la utilización del cromo en el proceso productivo de curtiembres. Retrieved March 3, 2018, from http://www.imbiomed.com.mx/1/1/articulos.php?method=showDetail&id_articulo=29604&id_seccion=1979&id_ejemplar=3035&id_revista=121
dc.relation.referencesTenenbaum, D. (1997). The beauty of biosolids. Environmental Health Perspectives, 105(1), 32–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9074877
dc.relation.referencesTewari, N., Vasudevan, P., & Guha, B. K. (2005). Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal, 23(2), 185–192. https://doi.org/10.1016/J.BEJ.2005.01.011
dc.relation.referencesThatoi, H., Das, S., Mishra, J., Rath, B. P., & Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. Journal of Environmental Management, 146, 383–399. https://doi.org/10.1016/j.jenvman.2014.07.014
dc.relation.referencesTigini, V., Bevione, F., Prigione, V., Poli, A., Ranieri, L., Spennati, F., … Varese, G. C. (2018). Tannery mixed liquors from an ecotoxicological and mycological point of view: Risks vs potential biodegradation application. Science of The Total Environment, 627, 835–843. https://doi.org/10.1016/J.SCITOTENV.2018.01.240
dc.relation.referencesTorres, P. L., Parra, C. A. M., & Puentes, G. V. M. (2008). Estabilización alcalina de biosólidos compostados de plantas de tratamiento de aguas residuales domésticas para aprovechamiento agrícola. Revista Facultad Nacional de Agronomía - Medellín, 61(1), 4432–4444. Retrieved from http://www.redalyc.org/exportarcita.oa?id=179914077019
dc.relation.referencesTortorelli, M. ; H. D. (n.d.). Descripción de un protocolo estandarizado de toxicidad aguda para cladóceros (página 2) - Monografias.com. Retrieved February 23, 2018, from http://www.monografias.com/trabajos11/clado/clado2.shtml
dc.relation.referencesTrottier, S., Blaise, C., Kusui, T., & Johnson, E. M. (1997). Acute toxicity assessment of aqueous samples using a microplate-basedHydra attenuata assay. Environmental Toxicology and Water Quality, 12(3), 265–271. https://doi.org/10.1002/(SICI)1098-2256(1997)12:3<265::AID-TOX10>3.0.CO;2-9
dc.relation.referencesTurdean, G. (2011) Design and Development of Biosensors for the Detection of Heavy Metal Toxicity. International Journal of Electrochemistry Physical. Chemistry Department Babes Bolyai, University Napoca, Romania.
dc.relation.referencesTroung, P. (2005). Application of the Vetiver system phytoremediation of mercury pollution in the lake and Yolo counties, northern California.
dc.relation.referencesUS Environmental Protection Agency (EPA) (1993) A Guide to the Biosolids. Risk Assessments for the EPA Part 503 Rule.
dc.relation.referencesUS Environmental Protection Agency EPA (2002) Nomination guidance biosolids exemplary. Management awards programs for operating projects, Technology Development Research and Public Acceptance.
dc.relation.referencesUS Environmental Protection Agency EPA (2003) Progress Report. Metal biosensors. Development and environmental testing.
dc.relation.referencesUS Environmental Protection Agency (EPA) (2012) Leyes y Normas: el proceso de reglamentación: EPA en español.
dc.relation.referencesVerce, M. F., Stiles, A. R., Chong, K. C., & Terry, N. (2012). Isolation of an extremely boron-tolerant strain of Bacillus firmus.: EBSCOhost. https://doi.org/10.1139/W2012-049
dc.relation.referencesVerma, J. P., Yadav, J., Tiwari, K. N., . L., & Singh, V. (2010). Impact of Plant Growth Promoting Rhizobacteria on Crop Production. International Journal of Agricultural Research, 5(11), 954–983. https://doi.org/10.3923/ijar.2010.954.983
dc.relation.referencesVerma, T., Garg, S. K., & Ramteke, P. W. (2009). Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. Journal of Applied Microbiology, 107(5), 1425–1432. https://doi.org/10.1111/j.1365-2672.2009.04326.x
dc.relation.referencesVillegas, L. B., Fernández, P. M., Amoroso, M. J., & de Figueroa, L. I. C. (2008). Chromate removal by yeasts isolated from sediments of a tanning factory and a mine site in Argentina. BioMetals, 21(5), 591–600. https://doi.org/10.1007/s10534-008-9145-8
dc.relation.referencesViolante, A., Cozzolino, V., Perelomov, L., Caporale, A. ., & Pigna, M. (2010). Mobility and Bioavailability of Heavy Metals and Metalloids in Soil Environments. Journal of Soil Science and Plant Nutrition, 10(3), 268–292. https://doi.org/10.4067/S0718-95162010000100005
dc.relation.referencesViti, C., Pace, A., & Giovannetti, L. (2003). Characterization of Cr(VI)-Resistant Bacteria Isolated from Chromium-Contaminated Soil by Tannery Activity. Current Microbiology, 46(1), 1–5. https://doi.org/10.1007/s00284-002-3800-z
dc.relation.referencesViti, C., Pace, A., & Giovannetti, L. (2003). Characterization of Cr(VI)-Resistant Bacteria Isolated from Chromium-Contaminated Soil by Tannery Activity. Current Microbiology, 46(1), 1–5.
dc.relation.referencesXu, W., Liu, Y., Zeng, G., Zhou, M., Fan, T., Wang, X., & Xia, W. (2009). Speciation of chromium in soil inoculated with Cr(VI)-reducing strain, Bacillus sp. XW-4. Journal of Central South University of Technology, 16(2), 253–257. https://doi.org/10.1007/s11771-009-0043-1
dc.relation.referencesYang, H., & Wang, H. Z. (2013). Adsorption of Nickel and Cobalt Ions on Magnesium Silicate. Advanced Materials Research, 726–731, 2855–2858. https://doi.org/10.4028/www.scientific.net/AMR.726-731.2855
dc.relation.referencesZeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2016.06.059
dc.relation.referencesZhang, K., Chen, Q., Luo, H. B., & Li, X. T. (2014). Accumulation of Chromium in Vetiveria zizanioides Assisted by Earthworm in Contaminated Soil. Advanced Materials Research, 989–994, 1313–1318. https://doi.org/10.4028/www.scientific.net/AMR.989-994.1313
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembBioremediación
dc.subject.lembBiodegradación del agua
dc.subject.lembBacterias patogenas
dc.subject.proposalBioremediación
dc.subject.proposalBiosólidos
dc.subject.proposalMetales Pesados
dc.subject.proposalBacterias remediadoras
dc.subject.proposalOxido-reducción
dc.subject.proposalBiosolids
dc.subject.proposalBioremediation
dc.subject.proposalHexavalent Chromium
dc.subject.proposalOxide-Reduction
dc.subject.proposalRemedial Bacteria
dc.subject.proposalRhizotron
dc.title.translatedBiotechnological strategies to evaluate the presence of chromium in the generation of safe biosolids. Possible bioremediation alternatives
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleGeneración de Biosólidos Seguros
oaire.fundernameEmpresas Públicas de Medellín EPM


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit