Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMolina Herrera, Maritzabel
dc.contributor.advisorDueñas Puentes, Diego Ernesto
dc.contributor.authorBeleño Hernández, Andrés Alejandro Santander
dc.date.accessioned2021-06-29T19:19:18Z
dc.date.available2021-06-29T19:19:18Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79738
dc.descriptionilustraciones
dc.description.abstractLos puentes esviados, en particular de tipo viga losa de concreto, son empleados en la infraestructura vial de Colombia por su versatilidad para ajustarse en topografías complejas. Sin embargo, parámetros como el esviaje, influyen en el comportamiento de su estructura. Este trabajo final se enfoca en el estudio del comportamiento mecánico de la superestructura de puentes esviados de concreto. Se analizaron 30 modelos por el método de elementos finitos, para puentes de 15, 25 y 35 metros con esviajes de 0,15, 30,45 y 60 grados, aplicando cargas vehiculares del CCP-14. Se compararon los resultados obtenidos de los modelos realizados con dos metodologías de simulación numérica, una en 3D donde las vigas y losas se simularon con elementos solids, y otra en 2D, donde las losas se modelaron con elementos shells y vigas como elementos frames. También se consideró el método analítico, en el cual se analiza una viga simplemente apoyada y se determinan las solicitaciones internas con base en las formulaciones presentadas en el CCP-14. Así mismo, se estudió la influencia en el comportamiento de los puentes esviados con riostras de extremo y de riostras intermedias, con el método 2D. En el caso particular de las riostras intermedias, se contemplaron dos orientaciones, una paralela al esviaje, y otra perpendicular al eje vial. En lo que corresponde a su cantidad de riostras intermedias, se compararon tres configuraciones de puentes: sin riostras, con una y con dos riostras intermedias. Finalmente se aplicó la metodología simplificada mediante la analogía de parrillas en donde se plantea su uso como alternativa para las metodologías de simulación numérica, en particular con los métodos tradicionales 3D y 2D.
dc.description.abstractSkewed bridges, particularly of the concrete slab beam type, are used in Colombia's road infrastructure due to their versatility to fit complex topographies. However, parameters such as skew influence the behavior of its structure. This final work focuses on the study of the mechanical behavior of the superstructure of concrete skew bridges. 30 models were analyzed by the finite element method, for bridges of 15, 25 and 35 meters with skewness of 0, 15, 30, 45 and 60 degrees, applying vehicular loads of the CCP-14. The results obtained from the models made with two numerical simulation methodologies were compared, one in 3D where the beams and slabs were simulated with solid elements, and the other in 2D, where the slabs were modeled with shells and beams as frame elements. The analytical method was also considered, in which a simply supported beam is analyzed and internal stresses are determined based on the formulations presented at CCP-14. Likewise, the influence on the behavior of skewed bridges with end braces and intermediate braces was studied with the 2D method. In the particular case of the intermediate braces, two orientations were considered, one parallel to the skew, and the other perpendicular to the road axis. Regarding their number of intermediate braces, three bridge configurations were compared: without braces, with one and with two intermediate braces. Finally, the simplified methodology was applied through the grillage analogy where its use as an alternative for numerical simulation methodologies is proposed, in particular with traditional 3D and 2D methods.
dc.format.extent244 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados del autor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleComportamiento mecánico de puentes esviados tipo viga-losa de concreto
dc.typeTrabajo de grado - Maestría
dcterms.audienceGeneral
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.contributor.researchgroupAnálisis, diseño y materiales - GIES
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Estructuras
dc.description.researchareaAnálisis estructural
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Civil y Agrícola
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAASHTO. (2012). AASHTO LRFD Bridge design specifications (6th ed.). AASHTO. www.transportation.org
dc.relation.referencesAIS. (2014). SECCION 4 - ANALISIS Y EVALUACION ESTRUCTURAL. In Norma Colombiana de Diseño de Puentes LRFD CCP-14 (p. 88). AIS.
dc.relation.referencesC.S Surana, & Agrawal, R. (1998). Grillage Analogy in Bridge Deck Analysis - C. S. Surana, Ramji Agrawal - Google Libros (Narosa (ed.); Ilustrada). https://books.google.com.co/books/about/Grillage_Analogy_in_Bridge_Deck_Analysis.html?id=oXUH54dbZKcC&redir_esc=y
dc.relation.referencesChilds, D. (2013). Grillage Analysis of Bridge Decks. http://www.bridgedesign.org.uk/tutorial/grillage.html
dc.relation.referencesCSI KNOWLEDGE BASE. (2013). Home - CSiBridge - Computers and Structures, Inc. - Technical Knowledge Base. https://wiki.csiamerica.com/display/CSiBridge/Home
dc.relation.referencesE C Hambly. (1991). Bridge Deck Behaviour, Second Edition - E C Hambly - Google Libros (CRC Press (ed.); 2nd, revisada ed.). https://books.google.com.co/books/about/Bridge_Deck_Behaviour_Second_Edition.html?id=Yu8BMi80VW8C&redir_esc=y
dc.relation.referencesE Lightfoot, & F Sawko. (1959). Structural frame analysis by electronic computer: grid frameworks resolved by generalized slope deflection. Engineering, 187(1), 18–20. https://scholar.google.com/scholar_lookup?title=Structural frame analysis by electronic computer: grid frameworks resolved by generalized slope deflection&author=E. Lightfoot &author=F. Sawko&publication_year=1959
dc.relation.referencesFu, G., & Chun, P. (2013). Skewed Highway Bridges.
dc.relation.referencesHarba, I. S. I. (2011). Effect of skew angle on behavior of simply supported R. C. T-beam bridge decks. Journal of Engineering and Applied Sciences, 6(8), 1–14.
dc.relation.referencesKhatri, V., Maiti, P. R., & Singh, P. K. (2012). Study on effect of skew angle in skew bridges. International Journal of Engineering Research and Development, 2(12), 13–18.
dc.relation.referencesKothari, V., & Murnal, P. (2015). Seismic Analysis of Skew Bridges. Journal of Civil Engineering and Enviromental Technology, 2(10), 71–76. http://www.krishisanskriti.org/jceet.html
dc.relation.referencesMinalu, K. K. (2010). FINITE ELEMENT MODELLING OF SKEW SLAB-GIRDER BRIDGES. TUDElft.
dc.relation.referencesNastran. (2015). Shell Element Forces and Moments - Nastran - Eng-Tips. https://www.eng-tips.com/viewthread.cfm?qid=391116
dc.relation.referencesParke, & Hewson. (2008). ICE manual of bridge engineering (Thomas Telford (ed.)). Thomas Telford Limited. https://www.academia.edu/4978701/ICE_manual_of_bridge_engineering_SECOND_EDITION
dc.relation.referencesPetersen-gauthier, J. A., & Hueste, M. B. (2013). Application of the Grillage Methodology To Determine Load Distribution Factors for Spread Slab Beam Bridges. August.
dc.relation.referencesSanchez Grunauer, T. A. (2011). Influence of Bracing Systems on the Behavior of Curved and Skewed Steel I-Girder Bridges During Construction (Issue December). Georgia Institute of Tecnology.
dc.relation.referencesVallecilla Baena, C. R. (2018). Fundamentos De Diseño De Puentes, Ejemplos Resueltos (primera). Editorial Colombiana.
dc.relation.referencesVelhal, O., & Patankar, J. P. (2016). Study of R . C . C . T-Beam Bridge with Skew. IJIRSET, 5(6), 9316–9321. https://doi.org/10.15680/IJIRSET.2016.0506090
dc.relation.referencesWhat When How. (n.d.). FEM for Frames (Finite Element Method) Part 1. Retrieved September 14, 2020, from http://what-when-how.com/the-finite-element-method/fem-for-frames-finite-element-method-part-1/
dc.relation.referencesWilson, T. (2013). Seismic Performance of Skewed and Curved RC Bridges. In Master of Science. Colorado State University.
dc.relation.referencesZokaie, T., Osterkamp, T. A., & Imbsen, R. A. (1991). Distribution of Wheel Loads of Highway Bridges : NCHRP12-26/1 Final Report.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPuentes esviados
dc.subject.proposalModelación numérica
dc.subject.proposalMEF 3D
dc.subject.proposalMEF 2D
dc.subject.proposalMétodo simplificado
dc.subject.proposalSkewed bridges
dc.subject.proposalNumerical models
dc.subject.proposalFEM 3D
dc.subject.proposalFEM 2D
dc.subject.proposalSimplified method
dc.subject.unescoElemento estructural (construcción)
dc.subject.unescoInfraestructura de transportes
dc.title.translatedMechanical behavior of concrete beam-slab skewed bridges
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit