Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRodríguez Blanco, Guillermo
dc.contributor.authorRippe Espinosa, Miguel Angel
dc.date.accessioned2021-09-28T15:00:34Z
dc.date.available2021-09-28T15:00:34Z
dc.date.issued2021-09-21
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80322
dc.description.abstractEn el presente trabajo, se tratan cuestiones tales como el buen planteamiento local en los espacios de Sobolev, espacios anisotrópicos con pesos y la existencia de ondas solitarias para el problema de valor inicial asociado a la ecuación: %En el presente trabajo, se estudia el buen planteamiento local en los espacios de Sobolev $H^s(\mathbb{R}^2)$ para $s>2$, del problema de valor inicial asociado a la ecuación: $$u_t-\partial_x\piz D_x^{1+\alpha}\pm D_y^{1+\beta}\pde u + u^pu_x=0,$$ donde $0\leq \alpha,\beta\leq1$ y $p\in\mathbb{Z}^+$, $x,y,t\in\Rn$. (Texto tomado de la fuente).
dc.description.abstractThe present work, deals with issues such as the local well-posedness in the Sobolev spaces, weighted anisotropic spaces and the existence of solitary waves, for the initial value problem associated to: %In this work, the local well-posedness in the Sobolev spaces $H^s(\mathbb{R}^2)$ for $s>2$ is studied, for the initial value problem associated to: $$u_t-\partial_x\piz D_x^{1+\alpha}\pm D_y^{1+\beta}\pde u + u^pu_x=0,$$ where $0\leq \alpha,\beta\leq1$ y $p\in\mathbb{Z}^+$, $x,y,t\in\Rn$.
dc.format.extentvii, 137 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc510 - Matemáticas::515 - Análisis
dc.titleEl problema de Cauchy asociado a una generalización de la ecuación Zakharov-Kuznetsov
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticas
dc.description.notesIncluye índice alfabético
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Matemáticas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Matemáticas
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesG. P. Agrawal. Fiber-optic communication systems, volume 222. John Wiley & Sons, 2012.
dc.relation.referencesJ. P. Albert. Concentration compactness and the stability of solitary-wave solutions to nonlocal equations. Contemporary Mathematics, 221:1–30, 1999.
dc.relation.referencesT. B. Benjamin. Internal waves of permanent form in fluids of great depth. Journal of Fluid Mechanics, 29(3):559–592, 1967.
dc.relation.referencesT. B. Benjamin, J. L. Bona, and J. J. Mahony. Model equations for long waves in nonlinear dispersive systems. Philosophical Transactions of the Royal Society of London A: Mathematical, physical and Engineering Sciences, 272(1220):47–78, 1972.
dc.relation.referencesH. A. Biagioni and F. Linares. Well-posedness Results for the Modified Zakharov-Kuznetsov Equation, pages 181–189. Birkhäuser Basel, Basel, 2003.
dc.relation.referencesJ. F. Bolaños Méndez. El problema de Cauchy asociado a una generalización de la ecuación ZK-BBM. Tesis doctoral, Universidad Nacional de Colombia-Sede Bogotá, 2018.
dc.relation.referencesJ. L. Bona and R. L. Sachs. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Communications in mathematical physics, 118(1):15–29, 1988.
dc.relation.referencesJ. L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 278(1287):555–601, 1975.
dc.relation.referencesJ. Boussinesq. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de mathématiques pures et appliquées, pages 55–108, 1872.
dc.relation.referencesE. Bustamante, J. J. Urrea, and J. Mejia. The Zakharov–Kuznetsov equation in weighted Sobolev spaces. Journal of Mathematical Analysis and Applications, 433(1):149–175, 2016.
dc.relation.referencesA. Cunha and A. Pastor. The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in weighted Sobolev spaces. Journal of Mathematical Analysis and Applications, 417(2):660–693, 2014.
dc.relation.referencesA. Cunha and A. Pastor. The IVP for the Benjamin–Ono–Zakharov–Kuznetsov equation in low regularity Sobolev spaces. Journal of Differential Equations, 261(3):2041–2067, 2016.
dc.relation.referencesA. Cunha and A. Pastor. Persistence properties for the dispersion generalized BO-ZK equation in weighted anisotropic Sobolev spaces. Journal of Differential Equations, 274:1067–1114, 2021.
dc.relation.referencesL. Dawson, H. McGahagan, and G. Ponce. On the decay properties of solutions to a class of Schrödinger equations. Proceedings of the American Mathematical Society, 136(6):2081–2090, 2008.
dc.relation.referencesA. De Bouard. Stability and instability of some nonlinear dispersive solitary waves in higher dimension. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 126(1):89–112, 1996.
dc.relation.referencesS. S. Dragomir. Some Gronwall type inequalities and applications. Nova Science, 2003.
dc.relation.referencesO. Duque. Sobre una versión bidimensional de la ecuación Benjamin-Ono generalizada. Tesis doctoral, Universidad Nacional de Colombia, Bogotá, 2014.
dc.relation.referencesA. Esfahani and A. Pastor. Instability of solitary wave solutions for the generalized BO–ZK equation. Journal of Differential equations, 247(12):3181–3201, 2009.
dc.relation.referencesA. Esfahani, A. Pastor, and J. L. Bona. Stability and decay properties of solitary-wave solutions to the generalized BO–ZK equation. Advances in Differential Equations, 20(9/10):801–834, 2015.
dc.relation.referencesA. V. Faminskii. The Cauchy problem for the Zakharov–Kuznetsov equation. Differentsial’nye Uravneniya, 31(6):1070–1081, 1995.
dc.relation.referencesL. Farah and M. Scialom. On the periodic “good” Boussinesq equation. Proceedings of the American Mathematical Society, 138(3):953–964, 2010.
dc.relation.referencesL. G. Farah. Global rough solutions to the critical generalized KdV equation. Journal of Differential Equations, 249(8):1968–1985, 2010.
dc.relation.referencesL. G. Farah, F. Linares, and A. Pastor. Global well-posedness for the k-dispersion generalized Benjamin-Ono equation. Differential and Integral Equations, 27(7/8):601–612, 2014.
dc.relation.referencesL. G. Farah and H. Wang. Global solutions in lower order Sobolev spaces for the generalized Boussinesq equation. Electronic Journal of Differential Equations, 2012(41):1–13, 2012.
dc.relation.referencesG. Fonseca, F. Linares, and G. Ponce. The IVP for the dispersion generalized Benjamin–Ono equation in weighted Sobolev spaces. In Annales de l’Institut Henri Poincare (C) Non Linear Analysis, volume 30, pages 763–790. Elsevier, 2013.
dc.relation.referencesG. Fonseca and M. Pachón. Well-posedness for the two dimensional generalized Zakharov–Kuznetsov equation in anisotropic weighted Sobolev spaces. Journal of Mathematical Analysis and Applications, 443(1):566–584, 2016.
dc.relation.referencesG. Fonseca and G. Ponce. The IVP for the Benjamin–Ono equation in weighted Sobolev spaces. Journal of Functional Analysis, 260(2):436–459, 2011.
dc.relation.referencesA. Grünrock and S. Herr. The Fourier restriction norm method for the Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 34(5):2061–2068, 2014.
dc.relation.referencesA. Halanay. Differential equations stability, oscillations, time lags. Academic Press inc., Londres, 23 edition, 1966.
dc.relation.referencesA. D. Ionescu and C. E. Kenig. Local and global wellposedness of periodic KP-I equations. In Mathematical Aspects of Nonlinear Dispersive Equations (AM-163), pages 181–212. Princeton University Press, 2009.
dc.relation.referencesR. J. Iório. KdV, BO and friends in weighted Sobolev spaces. In Functional-analytic methods for partial differential equations, pages 104–121. Springer, 1990.
dc.relation.referencesJ. R. J. Iório and V. de Magalhães Iório. Fourier Analysis and Partial Differential Equations. Cambridge University Press, Cambridge, 2001.
dc.relation.referencesM. Jorge, G. Cruz-Pacheco, L. Mier-y Teran-Romero, and N. F. Smyth. Evolution of two-dimensional lump nanosolitons for the Zakharov-Kuznetsov and electromigration equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(3):037104, 2005.
dc.relation.referencesR. José Iório, Jr. On the Cauchy problem for the Benjamin-Ono equation. Communications in partial differential equations, 11(10):1031–1081, 1986.
dc.relation.referencesT. Kato. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 8:93–128, 1983.
dc.relation.referencesT. Kato and G. Ponce. Commutator estimates and the Euler and Navier-Stokes equations. Communications on Pure and Applied Mathematics, 41(7):891–907, 1988.
dc.relation.referencesG. Keiser. Optical fiber communications. Wiley Online Library, 2003.
dc.relation.referencesC. E. Kenig, G. Ponce, and L. Vega. On the (generalized) Korteweg-de Vries equation. Duke Mathematical Journal, 59(3):585–610, 1989.
dc.relation.referencesC. E. Kenig, G. Ponce, and L. Vega. Well-posedness and scattering results for the generalized korteweg de vries equation via the contraction principle. Communications on Pure and Applied Mathematics, 46(4):527–620, 1993.
dc.relation.referencesC. E. Kenig, G. Ponce, and L. Vega. A bilinear estimate with applications to the KdV equation. Journal of the American Mathematical Society, 9(2):573–603, 1996.
dc.relation.referencesC. E. Kenig, G. Ponce, and L. Vega. On the unique continuation of solutions to the generalized KdV equation. Mathematical Research Letters, 10(5/6):833–846, 2003.
dc.relation.referencesS. Kinoshita. Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 38:451–505, 2021.
dc.relation.referencesN. Kishimoto. Sharp local well-posedness for the “good” Boussinesq equation. Journal of Differential Equations, 254(6):2393–2433, 2013.
dc.relation.referencesH. Koch and N. Tzvetkov. On the local well-posedness of the Benjamin-Ono equation in Hs(R). International Mathematics Research Notices, 2003(26):1449–1464, 2003.
dc.relation.referencesD. Korteweg and G. de Vries. On the change of long waves advancing in a rectangular canal and a new type of long stationary wave. Philosophical Magazine, 39:422–443, 1895.
dc.relation.referencesE. W. Laedke and K.-H. Spatschek. Nonlinear ion-acoustic waves in weak magnetic fields. The Physics of Fluids, 25(6):985–989, 1982.
dc.relation.referencesD. Lannes, F. Linares, and J.-C. Saut. The Cauchy problem for the Euler–Poisson system and derivation of the Zakharov–Kuznetsov equation. In Studies in phase space analysis with applications to PDEs, pages 181–213. Springer, 2013.
dc.relation.referencesJ. C. Latorre, A. Minzoni, C. Vargas, and N. F. Smyth. Evolution of Benjamin-Ono solitons in the presence of weak Zakharov-Kutznetsov lateral dispersion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 16(4):043103, 2006.
dc.relation.referencesF. Linares, M. Panthee, T. Robert, and N. Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems, 39(6):3521–3533, 2019.
dc.relation.referencesF. Linares and A. Pastor. Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation. SIAM Journal on Mathematical Analysis, 41(4):1323–1339, 2009.
dc.relation.referencesF. Linares and A. Pastor. Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation. Journal of Functional Analysis, 260(4):1060–1085, 2011.
dc.relation.referencesF. Linares, A. Pastor, and J.-C. Saut. Well-posedness for the ZK equation in a cylinder and on the background of a KdV soliton. Communications in Partial Differential Equations, 35(9):1674–1689, 2010.
dc.relation.referencesF. Linares and G. Ponce. Introduction to nonlinear dispersive equations. Springer, 2 edition, 2014.
dc.relation.referencesF. Linares and J.-C. Saut. The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems-A, 24(2):547, 2009.
dc.relation.referencesP.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. Annales de l’I.H.P. Analyse non linéaire, 1(2):109–145, 1984.
dc.relation.referencesP.-L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Annales de l’I.H.P. Analyse non linéaire, 1(4):223–283, 1984.
dc.relation.referencesP.-L. Lions. Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models, volume 2. Oxford University Press on Demand, 1996.
dc.relation.referencesJ. d. C. Lizarazo Osorio. El problema de Cauchy de la clase de ecuaciones de dispersión generalizada de Benjamin-Ono bidimensionales. Tesis doctoral, Universidad Nacional de Colombia-Sede Bogotá, 2018.
dc.relation.referencesL. Molinet and D. Pilod. Bilinear Strichartz estimates for the Zakharov–Kuznetsov equation and applications. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 32(2):347–371, 2015.
dc.relation.referencesA. Moliton. Solid-State physics for electronics. John Wiley & Sons, 2013.
dc.relation.referencesJ. Nahas and G. Ponce. On the persistent properties of solutions to semi-linear Schrödinger equation. Communications in Partial Differential Equations, 34(10):1208–1227, 2009.
dc.relation.referencesA. Nascimento. On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation. Communications on Pure & Applied Analysis, 19(9):4285, 2020.
dc.relation.referencesL. Nirenberg. On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa 3, 13:115–162, 1959.
dc.relation.referencesH. Ono. Algebraic solitary waves in stratified fluids. Journal of the Physical Society of Japan, 39(4):1082–1091, 1975.
dc.relation.referencesM. A. Pachón Higuera. Sobre el estudio del buen planteamiento de ecuaciones dispersivas en espacios con peso. Tesis doctoral, Universidad Nacional de Colombia-Sede Bogotá, 2016.
dc.relation.referencesM. Panthee. A note on the unique continuation property for Zakharov–Kuznetsov equation. Nonlinear Analysis: Theory, Methods & Applications, 59(3):425–438, 2004.
dc.relation.referencesJ. A. Pava. Nonlinear dispersive equations: existence and stability of solitary and periodic travelling wave solutions. American Mathematical Soc., 2009.
dc.relation.referencesO. G. Riaño. The IVP for a higher dimensional version of the Benjamin-Ono equation in weighted Sobolev spaces. Journal of Functional Analysis, 279(8):108707, 2020.
dc.relation.referencesF. Ribaud and S. Vento. A Note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations. Comptes Rendus Mathématique, 350(9-10):499–503, 2012.
dc.relation.referencesF. Ribaud and S. Vento. Well-Posedness Results for the Three-Dimensional Zakharov–Kuznetsov Equation. SIAM Journal on Mathematical Analysis, 44(4):2289–2304, 2012.
dc.relation.referencesF. Ribaud and S. Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 37(1):449, 2017.
dc.relation.referencesW. Rudin. Functional analysis. McGraw-Hill Science, Engineering & Mathematics, 2 edition, 1991.
dc.relation.referencesF. S. Salazar. El problema de Cauchy asociado a una ecuación del tipo rBO-ZK. Tesis doctoral, Universidad Nacional de Colombia-Sede Bogotá, 2015.
dc.relation.referencesR. Schippa. On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. Discrete & Continuous Dynamical Systems, 40(9):5189–5215, 2020.
dc.relation.referencesE. M. Stein. The characterization of functions arising as potentials. Bulletin of the American Mathematical Society, 67(1):102–104, 1961.
dc.relation.referencesT. Tao. Global well-posedness of the Benjamin–Ono equation inH1(R). Journal of Hyperbolic Differential Equations, 1(01):27–49, 2004.
dc.relation.referencesV. Zakharov and E. Kuznetsov. On threedimensional solitons. Zhurnal Eksp. Teoret. Fiz, 66:594–597, 1974.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCauchy problem
dc.subject.lembProblema de Cauchy
dc.subject.lembEspacios funcionales
dc.subject.lembFunction spaces
dc.subject.lembAnálisis funcional
dc.subject.lembFunctional analysis
dc.subject.proposalEcuación Z-K
dc.subject.proposalEspacios de Sobolev
dc.subject.proposalEspacios de Sobolev con pesos
dc.subject.proposalBuen planteamiento local
dc.subject.proposalZ-K equation
dc.subject.proposalSobolev’s spaces
dc.subject.proposalWeighted Sobolev spaces
dc.subject.proposalLocal well-posedness
dc.title.translatedThe Cauchy problem associated to a generalization of the Zakharov-Kuznetsov equation
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit