Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorTorres Osorio, Viviana
dc.contributor.advisorCampos Gaona, Rómulo
dc.contributor.authorAmaya Barragán, Lina Marcela
dc.date.accessioned2021-09-30T20:11:57Z
dc.date.available2021-09-30T20:11:57Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80346
dc.descriptionIlustraciones, tablas
dc.description.abstractLas hojas de Moringa oleifera tienen compuestos como vitaminas, minerales y metabolitos secundarios que le confieren propiedades antioxidantes. Sin embargo, el extracto de esta planta no ha sido estudiado como suplemento en los medios de cultivo en la producción in vitro de embriones bovinos. Por tanto, el objetivo fue evaluar si el medio de maduración in vitro con extracto de Moringa oleifera mejora la competencia del oocito y la calidad del blastocisto, a través de la tasa de maduración nuclear, tasa de blastocistos totales, niveles de especies reactivas de oxígeno (EROs), niveles de glutatión (GSH) intracelular y número de células totales. La extracción fitoquímica se realizó a partir de hojas maduras de Moringa oleifera. Los oocitos provenientes de ovarios de una planta de beneficio (1446) se maduraron en medio TCM 199 suplementado con 0 (control- , C), 50, 100 y 150 μg mL1 de extracto de Moringa oleifera y 50 μg mL-1 de ácido ascórbico (Control+ , AA). Pasadas 24 horas, se fertilizaron y cultivaron de acuerdo con el procedimiento estándar. Los datos obtenidos fueron analizados con la prueba Kruskal-Wallis. No se observaron diferencias significativas entre tratamientos (P>0,05), a excepción de los niveles de GSH y EROs, que se redujeron un 59% y 57%, respectivamente, con el uso de 150 μg mL-1 de extracto. En conclusión, el extracto de Moringa oleifera redujo las EROs, sin embargo las concentraciones de GSH intracelular también se redujeron y no hubo un efecto significativo en la maduración in vitro de oocitos bovinos ni en el desarrollo embrionario temprano. (Texto tomado de la fuente)
dc.description.abstractMoringa oleifera leaves have compounds such as vitamins, minerals and secondary metabolites that give it antioxidant properties. However, the extract of this plant has not been studied as a supplement in culture media in the in vitro production of bovine embryos. Therefore, the objective was to evaluate whether the in vitro maturation medium with Moringa oleifera extract improves oocyte competence and blastocyst quality, through the nuclear maturation rate, total blastocyst rate, levels of reactive oxygen species. (ROS), intracellular glutathione (GSH) levels and total cell number. The phytochemical extraction was carried out from mature leaves of Moringa oleifera. The oocytes from ovaries of a beneficiation plant (1446) were matured in TCM 199 medium supplemented with 0 (control- , C), 50, 100 and 150 μg mL-1 of Moringa oleifera extract and 50 μg mL-1 of ascorbic acid (Control + , AA). After 24 hours, they were fertilized and cultivated according to the standard procedure. The data obtained were analyzed with the Kruskal-Wallis test. No significant differences were observed between treatments (P> 0.05), with the exception of GSH and ROS levels, which were reduced by 59% and 57%, respectively, with the use of 150 μg mL-1 of extract. In conclusion, Moringa oleifera extract reduced ROS, however intracellular GSH concentrations were also reduced and there was no significant effect on in vitro maturation of bovine oocytes or early embryonic development
dc.format.extent85 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc630 - Agricultura y tecnologías relacionadas
dc.titleEfecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.contributor.datacuratorVélez, Mauricio
dc.contributor.researchgroupConservación, Mejoramiento y Utilización del Ganado Criollo Hartón del Valle y Otros Recursos Genéticos Animales en el Sur Occidente Colombiano
dc.contributor.subjectmatterexpertTorres Castañeda, Harlen
dc.contributor.subjectmatterexpertUrrego, Rodrigo
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.methods1. Obtención del extracto de hojas de Moringa oleifera 2. Fraccionamiento del extracto 3. Análisis fitoquímico preliminar 4. Determinación colorimétrica a microescala de compuestos fenólicos 5. Contenido total de fenoles (CTF) 6. Contenido de Flavonoides Totales (CFT) 7.Contenido total de catequinas (CTC) 8. Determinación de la actividad antioxidante (DPPH, FRAP, ABTS) 9. Recolección de ovarios 10. Aspiración folicular y obtención de oocitos 11. Maduración in vitro (MIV) 12. Fertilización in vitro (FIV) 13. Cultivo in vitro (CIV) 14. Evaluación de la maduración nuclear 15. Evaluación de los niveles de EROs y GSH intracelulares 16. Evaluación de la calidad embrionaria
dc.description.researchareaProducción animal tropical
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agropecuarias
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAbdel Fattah, M. E., Sobhy, H. M., Reda, A., & Abdelrazek, H. M. A. (2020). Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate–induced liver injury in male Wistar rats. Environmental Science and Pollution Research, 27(34), 43028–43043. https://doi.org/10.1007/s11356-020-10161-z
dc.relation.referencesAdeoye, O., Olawumi, J., Opeyemi, A., & Christiania, O. (2018). Review on the role of glutathione on oxidative stress and infertility. Jornal Brasileiro de Reproducao Assistida, 22(1), 61–66. https://doi.org/10.5935/1518-0557.20180003
dc.relation.referencesAgarwal, A., Durairajanayagam, D., & du Plessis, S. S. (2014). Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reproductive Biology and Endocrinology, 12(1). https://doi.org/10.1186/1477-7827-12-112
dc.relation.referencesAgarwal, A., Virk, G., Ong, C., & du Plessis, S. S. (2014). Effect of Oxidative Stress on Male Reproduction. The World Journal of Men’s Health, 32(1), 1. https://doi.org/10.5534/wjmh.2014.32.1.1
dc.relation.referencesAju, B. Y., Rajalakshmi, R., & Mini, S. (2019). Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon, 5(12), 2935. https://doi.org/10.1016/j.heliyon.2019.e02935
dc.relation.referencesAkorede, G. J., Ambali, S. F., Hudu, M. G., Suleiman, M. M., Suleiman, K. Y., Abdulrahim, H. A., … AbdulMajeed, I. (2020). Carbamazepine evoked reproductive toxicity in male Wistar rats: protective properties of Moringa oleifera leaves methanolic extract. Comparative Clinical Pathology, 29(6), 1179–1187. https://doi.org/10.1007/s00580-020-03169-x
dc.relation.referencesAL Juhaimi, F., Ghafoor, K., Ahmed, I. A. M., Babiker, E. E., & Özcan, M. M. (2017). Comparative study of mineral and oxidative status of Sonchus oleraceus, Moringa oleifera and Moringa peregrina leaves. Journal of Food Measurement and Characterization, 11(4), 1745–1751. https://doi.org/10.1007/s11694-017-9555-9
dc.relation.referencesAlamgir, A. N. M. (2018). Therapeutic Use of Medicinal Plants and Their Extracts. In Progress in Drug Research (Vol. 74). Retrieved from http://dx.doi.org/10.1007/978-3-319-63862-1
dc.relation.referencesAlvarez, G. M., Morado, S. A., Soto, M. P., Dalvit, G. C., & Cetica, P. D. (2015). The Control of Reactive Oxygen Species Influences Porcine Oocyte In Vitro Maturation. Reproduction in Domestic Animals, 50(2), 200–205. https://doi.org/10.1111/rda.12469
dc.relation.referencesAnand, J., Upadhyaya, B., Rawat, P., & Rai, N. (2015). Biochemical characterization and pharmacognostic evaluation of purified catechins in green tea (Camellia sinensis) cultivars of India. 3 Biotech, 5(3), 285–294. https://doi.org/10.1007/s13205-014-0230-0
dc.relation.referencesAremu, A., Kingsley, E. I., Talha, B. K., Akeem, A. O., Ibrahim, R. A., Jimoh, A. G., & Yusuf, S. K. (2018). Methanolic leaf extract of Moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei. International Journal of Veterinary Science and Medicine, 6(1), 39–44. https://doi.org/10.1016/j.ijvsm.2018.04.006
dc.relation.referencesAssiene Agamou, J. A., Fombang, E. N., & Mbofung, C. M. F. (2015). Particular benefits can be attributed to Moringa oleifera lam leaves based on origin and stage of maturity. Journal of Experimental Biology and Agricultural Sciences, 3(6), 541–555. https://doi.org/10.18006/2015.3(6).541.555
dc.relation.referencesBajpai, V. K., Majumder, R., & Park, J. G. (2016). Isolation and purification of plant secondary metabolites using column-chromatographic technique. Bangladesh Journal of Pharmacology, 11(4), 844–848. https://doi.org/10.3329/bjp.v11i4.28185
dc.relation.referencesBarakat, I. A. H., Khalil, W. K. B., & Al-Himaidi, A. R. (2015). Moringa oleifera extract modulates the expression of fertility related genes and elevation of calcium ions in sheep oocytes. Small Ruminant Research, 130, 67–75. https://doi.org/10.1016/j.smallrumres.2015.06.011
dc.relation.referencesBarriera, S., Moutinho, C., Silva, A. M. N., Neves, J., Seo, E.-J., Hegazy, Mohamed-Elamir Efferthc, T., & Gomes, L. R. (2020). Phytochemical characterization and biological activities of green tea ( Camellia sinensis ) produced in the Azores , Portugal Department of Pharmaceutical Biology , Institute of Pharmacy and Biochemistry , Johannes. In Phytomedicine Plus. https://doi.org/10.1016/j.phyplu.2020.100001
dc.relation.referencesBennour, N., Mighri, H., Eljani, H., Zammouri, T., & Akrout, A. (2020). Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. South African Journal of Botany, 129, 181–190. https://doi.org/10.1016/j.sajb.2019.05.005
dc.relation.referencesBharti, R., & Singh, B. (2020). Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel, 262. https://doi.org/10.1016/j.fuel.2019.116658
dc.relation.referencesBlanco, M. R., Demyda, S., Moreno Millán, M., & Genero, E. (2012). Developmental competence of in vivo and in vitro matured oocytes: A review. Animal Reproduction Science, 9(3), 281–289.
dc.relation.referencesBó, G. A., & Mapletoft, R. J. (2014). Historical perspectives and recent research on superovulation in cattle. Theriogenology, 81(1), 38–48. https://doi.org/10.1016/j.theriogenology.2013.09.020
dc.relation.referencesBoots, A. W., Li, H., Schins, R. P. F., Duffin, R., Heemskerk, J. W. M., Bast, A., & Haenen, G. R. M. M. (2007). The quercetin paradox. Toxicology and Applied Pharmacology, 222(1), 89–96. https://doi.org/10.1016/j.taap.2007.04.004
dc.relation.referencesBraham, F., Carvalho, D. O., Almeida, C. M. R., Zaidi, F., Magalhães, J. M. C. S., Guido, L. F., & Gonçalves, M. P. (2019). Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. South African Journal of Botany, 1–9. https://doi.org/10.1016/j.sajb.2019.04.001
dc.relation.referencesCadorin Oldoni, T. L., Merlin, N., Karling, M., Carpes, S. T., Alencar, S. M. de, Morales, R. G. F., … Pilau, E. J. (2019). Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Research International, 125(August), 108647. https://doi.org/10.1016/j.foodres.2019.108647
dc.relation.referencesCai, L. yun, Shi, F. xiang, & Gao, X. (2011). Preliminary phytochemical analysis of Acanthopanan trifoliatus ( L .) Merr. Journal of Medicinal Plants, 5(1097), 4059–4064.
dc.relation.referencesChen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59451-z
dc.relation.referencesChowdhury, M. M. R., Choi, B. H., Khan, I., Lee, K. L., Mesalam, A., Song, S. H., … Kong, I. K. (2017). Supplementation of lycopene in maturation media improves bovine embryo quality in vitro. Theriogenology, 103, 173–184. https://doi.org/10.1016/j.theriogenology.2017.08.003
dc.relation.referencesCombelles, C. M. H., Gupta, S., & Agarwal, A. (2009). Could oxidative stress influence the in-vitro maturation of oocytes? Reproductive BioMedicine Online, 18(6), 864–880. https://doi.org/10.1016/S1472-6483(10)60038-7
dc.relation.referencesConrad, M., Ingold, I., Buday, K., Kobayashi, S., & Angeli, J. P. F. (2015). ROS, thiols and thiol-regulating systems in male gametogenesis. Biochimica et Biophysica Acta - General Subjects, 1850(8), 1566–1574. https://doi.org/10.1016/j.bbagen.2014.10.020
dc.relation.referencesCoy, P., Grullon, L., Canovas, S., Romar, R., Matas, C., & Aviles, M. (2008). Hardening of the zona pellucida of unfertilized eggs can reduce polyspermic fertilization in the pig and cow. Reproduction, 135(1), 19–27. https://doi.org/10.1530/REP-07-0280
dc.relation.referencesdu Plessis, S. S., Makker, K., Desai, N. R., & Agarwal, A. (2008). Impact of oxidative stress on IVF. Expert Review of Obstetrics & Gynecology, 3(4), 539–554. https://doi.org/10.1586/17474108.3.4.539
dc.relation.referencesFan, Z., Yang, M., Regouski, M., & Polejaeva, I. A. (2017). Effects of three different media on in vitro maturation and development, intracellular glutathione and reactive oxygen species levels, and maternal gene expression of abattoir-derived goat oocytes. Small Ruminant Research, 147, 106–114. https://doi.org/10.1016/j.smallrumres.2016.12.041
dc.relation.referencesFarooq, B., & Koul, B. (2019). Comparative analysis of the antioxidant, antibacterial and plant growth promoting potential of five Indian varieties of Moringa oleifera L. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2018.12.014
dc.relation.referencesFerré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P., & Ross, P. J. (2020). Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal, 14(5), 991–1004. https://doi.org/10.1017/S1751731119002775
dc.relation.referencesFerré, L., & Cattaneo, L. (2013). Biotecnologías reproductivas: producción in vitro de embriones y semen sexado. (¿La pareja perfecta?). Rev. Med. Vet., 94(2), 28–36.
dc.relation.referencesFoti, M. C. (2015). Use and Abuse of the DPPH• Radical. Journal of Agricultural and Food Chemistry, 63(40), 8765–8776. https://doi.org/10.1021/acs.jafc.5b03839
dc.relation.referencesFotio, A. L., Nguepi, M. S. D., Tonfack, L. B., Temdie, R. J. G., & Nguelefack, T. B. (2020). Acetaminophen induces liver injury and depletes glutathione in mice brain: Prevention by Moringa oleifera extract. South African Journal of Botany, 129, 317–323. https://doi.org/10.1016/j.sajb.2019.08.037
dc.relation.referencesFurnus, C. C., de Matos, D. G., Picco, S., García, P. P., Inda, A. M., Mattioli, G., & Errecalde, A. L. (2008). Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Animal Reproduction Science, 109(1–4), 88–99. https://doi.org/10.1016/j.anireprosci.2007.12.003
dc.relation.referencesGarcía, J. R., Romero, J., Astiz, S., & Ruiz, S. (2013). Adición de sustancias antioxidantes en los medios de cultivo empleados en la producción in vitro de embriones en mamíferos Addition of antioxidant substances to culture media used in the in vitro production of mammal. 35(1), 10–19.
dc.relation.referencesGlasauer, A., & Chandel, N. S. (2013). Ros. Current Biology, 23(3), R100–R102. https://doi.org/10.1016/j.cub.2012.12.011
dc.relation.referencesGonçalves, D. R., Leroy, J. L. M. R., Van Hees, S., Xhonneux, I., Bols, P. E. J., Kiekens, F., & Marei, W. F. A. (2021). Cellular uptake of polymeric nanoparticles by bovine cumulus-oocyte complexes and their effect on in vitro developmental competence. European Journal of Pharmaceutics and Biopharmaceutics, 158(November 2020), 143–155. https://doi.org/10.1016/j.ejpb.2020.11.011
dc.relation.referencesGuemra, S., Monzani, P. S., Santos, E. S., Zanin, R., Ohashi, O. M., Miranda, M. S., & Adona, P. R. (2013). Maturação in vitro de oócitos bovinos em meios suplementados com quercetina e seu efeito sobre o desenvolvimento embrionário. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65, 1616–1624.
dc.relation.referencesGuérin, P., El Mouatassim, S., & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175–189. https://doi.org/10.1093/humupd/7.2.175
dc.relation.referencesGuimarães, A. C. G., Leivas, F. G., Santos, F. W., Schwengber, E. B., Giotto, A. B., Machado, C. I. U., … Brum, D. S. (2014). Reduction of centrifugation force in discontinuous percoll gradients increases in vitro fertilization rates without reducing bovine sperm recovery. Animal Reproduction Science, 146, 103–110. https://doi.org/10.1016/j.anireprosci.2014.02.016
dc.relation.referencesGutnisky, C., Morado, S., Gadze, T., Donato, A., Alvarez, G., Dalvit, G., & Cetica, P. (2020). Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology, 143, 18–26. https://doi.org/10.1016/j.theriogenology.2019.11.037
dc.relation.referencesHamed, Y. S., Abdin, M., Akhtar, H. M. S., Chen, D., Wan, P., Chen, G., & Zeng, X.(2019). Extraction, purification by macrospores resin and in vitro antioxidant activity of flavonoids from Moringa oliefera leaves. South African Journal of Botany, 124, 270–279. https://doi.org/10.1016/j.sajb.2019.05.006
dc.relation.referencesHansen, J. M., & Harris, C. (2015). Glutathione during embryonic development. Biochimica et Biophysica Acta - General Subjects, 1850(8), 1527–1542. https://doi.org/10.1016/j.bbagen.2014.12.001
dc.relation.referencesHolguín, V., García, I., & Mora, J. (2018). Arboles y arbustos para silvopasturas: uso, calidad y alometría (Colors Edi). Retrieved from https://www.researchgate.net/profile/Jairo_Mora-Delgado/publication/326720362_Arboles_y_arbustos_para_silvopasturas/links/5b6090f6458515c4b256c0f3/Arboles-y-arbustos-para-silvopasturas.pdf#page=44
dc.relation.referencesHong, G., Wang, J., Zhang, Y., Hochstetter, D., Zhang, S., Pan, Y., … Wang, Y. (2014). Biosynthesis of catechin components is differentially regulated indark-treated tea (Camellia sinensis L.). Plant Physiology and Biochemistry, 78, 49–52. https://doi.org/10.1016/j.plaphy.2014.02.017
dc.relation.referencesHuang, Z., Pang, Y., Hao, H., Du, W., Zhao, X., & Zhu, H. (2018). Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro. Asian-Australasian Journal of Animal Sciences, 31(9), 1420–1430. https://doi.org/10.5713/ajas.17.0880
dc.relation.referencesIdoga, E. S., Ambali, S. F., Ayo, J. O., & Mohammed, A. (2018). Assessment of antioxidant and neuroprotective activities of methanol extract of Moringa oleifera Lam. leaves in subchronic chlorpyrifos-intoxicated rats. Comparative Clinical Pathology, 27(4), 917–925. https://doi.org/10.1007/s00580-018-2682-9
dc.relation.referencesIghodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001
dc.relation.referencesJaiswal, D., Rai, P. K., Mehta, S., Chatterji, S., Shukla, S., Rai, D. K., … Watal, G. (2013). Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pacific Journal of Tropical Medicine, 6(6), 426–432. https://doi.org/10.1016/S1995-7645(13)60068-1
dc.relation.referencesKang, J.-T., Kwon, D.-K., Park, S.-J., Kim, S.-J., Moon, J.-H., Kim, T., … Lee, B.-C. (2013). Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. Biology of Reproduction, 12(1), 15–20. https://doi.org/10.1093/biolreprod/87.s1.217
dc.relation.referencesKang, J. T., Moon, J. H., Choi, J. Y., Park, S. J., Kim, S. J., Saadeldin, I. M., & Lee, B. C. (2016). Effect of antioxidant flavonoids (Quercetin and Taxifolin) on in vitro maturation of porcine oocytes. Asian-Australasian Journal of Animal Sciences, 29(3), 352–358. https://doi.org/10.5713/ajas.15.0341
dc.relation.referencesKarthivashan, G., Arulselvan, P., Tan, S. W., & Fakurazi, S. (2015). The molecular mechanism underlying the hepatoprotective potential of Moringa oleifera leaves extract against acetaminophen induced hepatotoxicity in mice. Journal of Functional Foods, 17, 115–126. https://doi.org/10.1016/j.jff.2015.05.007
dc.relation.referencesKashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. (2017). Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal of Functional Foods, 30, 203–219. https://doi.org/10.1016/j.jff.2017.01.022
dc.relation.referencesKelley, R. L., & Gardner, D. K. (2019). Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and postimplantation development. Reproductive BioMedicine Online, 1–16. https://doi.org/10.1016/j.rbmo.2019.03.102
dc.relation.referencesKere, M., Siriboon, C., Lo, N.-W., Nguyen, N. T., & Ju, J.-C. (2013). Ascorbic Acid Improves the Developmental Competence of Porcine Oocytes after Parthenogenetic Activation and Somatic Cell Nuclear Transplantation. Journal of Reproduction and Development, 59(1). https://doi.org/10.1262/jrd.2012-114
dc.relation.referencesKhalafalla, M. M., Abdellatef, E., Dafalla, H. M., Nassrallah, A. A., Aboul-Enein, K. M., Lightfoot, D. A., … El-Shemy, H. A. (2010). Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. African Journal of Biotechnology, 9(49), 8467–8471. https://doi.org/10.4314/ajb.v9i49
dc.relation.referencesKhalil, S. R., El Bohi, K. M., Khater, S., Abd El-fattah, A. H., Mahmoud, F. A., & Farag, M. R. (2020). Moringa oleifera leaves ethanolic extract influences DNA damage signaling pathways to protect liver tissue from cobalt -triggered apoptosis in rats. Ecotoxicology and Environmental Safety, 200(May), 110716. https://doi.org/10.1016/j.ecoenv.2020.110716
dc.relation.referencesKwak, S.-S., Cheong, S.-A. A., Jeon, Y., Lee, E., Choi, K.-C. C., Jeung, E.-B. B., & Hyun, S.-H. H. (2012). The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology, 78(1), 86–101. https://doi.org/10.1016/j.theriogenology.2012.01.024
dc.relation.referencesLee, S., Jin, J. X., Taweechaipaisankul, A., Kim, G. A., & Lee, B. C. (2018). Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology, 114, 191–198. https://doi.org/10.1016/j.theriogenology.2018.03.040
dc.relation.referencesLi, H. J., Sutton-Mcdowall, M. L., Wang, X., Sugimura, S., Thompson, J. G., & Gilchrist, R. B. (2016). Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions. Human Reproduction, 31(4), 810–821. https://doi.org/10.1093/humrep/dew020
dc.relation.referencesLi, W., Goossens, K., Van Poucke, M., Forier, K., Braeckmans, K., Van Soom, A., & Peelman, L. J. (2014). High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reproduction, Fertility and Development, 28(7), 948–959. https://doi.org/10.1071/RD14133
dc.relation.referencesLim, T. K. (2011). Edible Medicinal and Non-Medicinal Plants. In D. Springer (Ed.), Edible Medicinal and Non-Medicinal Plants (Vol. 3, pp. 453–485). https://doi.org/10.1007/978-94-017-7276-1
dc.relation.referencesLin, M., Zhang, J., & Chen, X. (2018). Bioactive flavonoids in Moringa oleifera and their health-promoting properties. Journal of Functional Foods, 47(May), 469–479. https://doi.org/10.1016/j.jff.2018.06.011
dc.relation.referencesLiu, M. J., Sun, A. G., Zhao, S. G., Liu, H., Ma, S. Y., Li, M., … Liu, H. Bin. (2018). Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertility and Sterility, 109(5), 900–907. https://doi.org/10.1016/j.fertnstert.2018.01.020
dc.relation.referencesLiu, Y., Wang, X., Wei, X., Gao, Z., & Han, J. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 1–8. https://doi.org/https://doi.org/10.1016/j.chmed.2018.09.002
dc.relation.referencesLonergan, P., Rizos, D., Ward, F., & Boland, M. P. (2001). Factors influencing oocyte and embryo quality in cattle. Reproduction Nutrition Development, 41(5), 427–437. https://doi.org/10.1051/rnd:2001142
dc.relation.referencesLoren, P., Sánchez, R., Arias, M. E., Felmer, R., Risopatrón, J., & Cheuquemán, C. (2017). Melatonin scavenger properties against oxidative and nitrosative stress:Impact on gamete handling and in vitro embryo production in humans and other mammals. International Journal of Molecular Sciences, 18(6), 1–18. https://doi.org/10.3390/ijms18061119
dc.relation.referencesLushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175. https://doi.org/10.1016/j.cbi.2014.10.016
dc.relation.referencesLv, L., Yue, W., Liu, W., Ren, Y., Li, F., Lee, K. B., & Smith, G. W. (2010). Effect of oocyte selection, estradiol and antioxidant treatment on in vitro maturation of oocytes collected from prepubertal Boer goats. Italian Journal of Animal Science, 9(1), 50–54. https://doi.org/10.4081/ijas.2010.e11
dc.relation.referencesMadrid Gaviria, S., López Herrera, A., Restrepo Betancur, G., Urrego, R., & Echeverri Zuluaga, J. J. (2019). Supplementation with resveratrol during culture improves the quality of in vitro produced bovine embryos. Livestock Science, 221(September 2018), 139–143. https://doi.org/10.1016/j.livsci.2019.01.025
dc.relation.referencesMadrid Gaviria, S., López Herrera, A., Urrego, R., Restrepo Betancur, G., & Echeverri Zuluaga, J. J. (2019). Effect of resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology, 89(63), 42–50. https://doi.org/10.1016/j.cryobiol.2019.05.008
dc.relation.referencesMagata, F., Ideta, A., Okubo, H., Matsuda, F., Urakawa, M., & Oono, Y. (2019). Growth potential of bovine embryos presenting abnormal cleavage observed through time lapse cinematography. Theriogenology, 133, 119–124. https://doi.org/10.1016/j.theriogenology.2019.04.031
dc.relation.referencesMahmoud, K. G. M., El-Sokary, M. M. M., Kandiel, M. M. M., Abou El-Roos, M. E. A., & Sosa, G. M. S. (2016). Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, 17(3), 165–170. https://doi.org/10.22099/ijvr.2016.3810
dc.relation.referencesMaillo, V., Lopera-Vasquez, R., Hamdi, M., Gutierrez-Adan, A., Lonergan, P., & Rizos, D. (2016). Maternal-embryo interaction in the bovine oviduct: Evidence from in vivo and in vitro studies. Theriogenology, 86(1), 443–450. https://doi.org/10.1016/j.theriogenology.2016.04.060
dc.relation.referencesMandawala, A. A., Harvey, S. C., Roy, T. K., & Fowler, K. E. (2016). Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology, 86(7), 1637–1644.https://doi.org/10.1016/j.theriogenology.2016.07.018
dc.relation.referencesMarí, M., Morales, A., Colell, A., García-Ruiz, C., Kaplowitz, N., & Fernández-Checa, J. C. (2013). Mitochondrial glutathione: Features, regulation and role in disease. Biochimica et Biophysica Acta - General Subjects, 1830(5), 3317–3328. https://doi.org/10.1016/j.bbagen.2012.10.018
dc.relation.referencesMartinez, C. A., Nohalez, A., Ceron, J. J., Rubio, C. P., Roca, J., Cuello, C., … Gil, M. A. (2017). Peroxidized mineral oil increases the oxidant status of culture media and inhibits in vitro porcine embryo development. Theriogenology, 103, 17–23. https://doi.org/10.1016/j.theriogenology.2017.07.028
dc.relation.referencesMateo-Otero, Y., Yeste, M., Damato, A., & Giaretta, E. (2021). Cryopreservation and oxidative stress in porcine oocytes. Research in Veterinary Science, 135(January), 20–26. https://doi.org/10.1016/j.rvsc.2020.12.024
dc.relation.referencesMbemya, G. T., Vieira, L. A., Canafistula, F. G., Pessoa, O. D. L., & Rodrigues, A. P. R. (2017). Reports on in vivo and in vitro contribution of medicinal plants to improve the female reproductive function. Reproducao e Climaterio, 32(2), 109–119. https://doi.org/10.1016/j.recli.2016.11.002
dc.relation.referencesMckee, T., & Mckee, J. R. (2014). Bioquímica: Las bases moleculares de la vida. (McGRAW-HI). México D. F.
dc.relation.referencesMenezo, Y. J. R., Silvestris, E., Dale, B., & Elder, K. (2016). Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reproductive BioMedicine Online, 33(6), 668–683. https://doi.org/10.1016/j.rbmo.2016.09.006
dc.relation.referencesMorado, S. A., Cetica, P. D., Beconi, M. T., & Dalvit, G. C. (2009). Reactive oxygen species in bovine oocyte maturation in vitro. Reproduction, Fertility and Development, 21(4), 608–614. https://doi.org/10.1071/RD08198
dc.relation.referencesMorin, S. J. (2017). Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? Journal of Assisted Reproduction and Genetics, 34, 309–314. https://doi.org/10.1007/s10815-017-0880-z
dc.relation.referencesMoyo, B., Oyedemi, S., Masika, P. J., & Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science, 91, 441–447. https://doi.org/10.1016/j.meatsci.2012.02.029
dc.relation.referencesMukherjee, A., Malik, H., Saha, A. P., Dubey, A., Singhal, D. K., Boateng, S., … Malakar, D. (2014). Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. Journal of Assisted Reproduction and Genetics, 31(2), 229–239. https://doi.org/10.1007/s10815-013-0116-9
dc.relation.referencesMuratori, M., Tarozzi, N., Carpentiero, F., Danti, S., Perrone, F. M., Cambi, M., … Baldi, E. (2019). Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-43981-2
dc.relation.referencesMwamatope, B., Tembo, D., Chikowe, I., Kampira, E., & Nyirenda, C. (2020). Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 9. https://doi.org/10.1016/j.sciaf.2020.e00481
dc.relation.referencesNascimento, J. A., Araújo, K. L. G. V., Epaminondas, P. S., Souza, A. S., Magnani, M., Souza, A. L., … Souza, A. G. (2013). Ethanolic extracts of Moringa oleifera Lam.: Evaluation of its potential as an antioxidant additive for fish oil. Journal of Thermal Analysis and Calorimetry, 114(2), 833–838. https://doi.org/10.1007/s10973-013-3045-z
dc.relation.referencesNohalez, A., Martinez, C. A., Parrilla, I., Roca, J., Gil, M. A., Rodriguez-Martinez, H., … Cuello, C. (2018). Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology, 113, 113–119. https://doi.org/10.1016/j.theriogenology.2018.02.014
dc.relation.referencesNolfi Donegan, D., Braganza, A., & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology, 37, 101674. https://doi.org/10.1016/j.redox.2020.101674
dc.relation.referencesNouman, W., Anwar, F., Gull, T., Newton, A., Rosa, E., & Domínguez-Perles, R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera Lam. Industrial Crops and Products, 83, 166–176. https://doi.org/10.1016/j.indcrop.2015.12.032
dc.relation.referencesOguntibeju, O. O., Aboua, G. Y., & Omodanisi, E. I. (2020). Effects of Moringa oleifera on oxidative stress, apoptotic and inflammatory biomarkers in streptozotocin-induced diabetic animal model. South African Journal of Botany, 129, 354–365. https://doi.org/10.1016/j.sajb.2019.08.039
dc.relation.referencesOladeji, O. S., Odelade, K. A., & Oloke, J. K. (2019). Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. African Journal of Science, Technology, Innovation and Development, 1–6. https://doi.org/10.1080/20421338.2019.1589082
dc.relation.referencesOlson, M. E., & Fahey, J. W. (2011). Moringa oleifera : un árbol multiusos para las zonas tropicales secas. Revista Mexicana De Biodiversidad, 82, 1071–1082. https://doi.org/http://dx.doi.org/10.7550/rmb.28737
dc.relation.referencesOseikria, M., Elis, S., Maillard, V., Corbin, E., & Uzbekova, S. (2016). N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle. Theriogenology, 85(9), 1625–1634. https://doi.org/10.1016/j.theriogenology.2016.01.019
dc.relation.referencesPachuau, L., Laldinchhana, Roy, P. K., Zothantluanga, J. H., Supratim, R., & Sanjib, D. (2021). Encapsulation of Bioactive Compound and Its Therapeutic Potential. https://doi.org/https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-030-54027-2_20
dc.relation.referencesPoprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., & Valko, M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 38(7), 592–607. https://doi.org/10.1016/j.tips.2017.04.005
dc.relation.referencesPrabakaran, M., Kim, S. H., Sasireka, A., Chandrasekaran, M., & Chung, I. M. (2018). Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Bioscience, 26(February), 23–29. https://doi.org/10.1016/j.fbio.2018.09.003
dc.relation.referencesRemião, M. H., Lucas, C. G., Domingues, W. B., Silveira, T., Barther, N. N., Komninou, E. R., … Collares, T. (2016). Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reproductive Toxicology, 63, 70–81. https://doi.org/10.1016/j.reprotox.2016.05.016
dc.relation.referencesRizos, D., Clemente, M., Bermejo-Alvarez, P., De La Fuente, J., Lonergan, P., & Gutiérrez-Adán, A. (2008). Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals, 43(SUPPL.4), 44–50. https://doi.org/10.1111/j.1439-0531.2008.01230.x
dc.relation.referencesRocha-Frigoni, N. A. S., Leão, B. C. S., Dall’Acqua, P. C., & Mingoti, G. Z. (2016). Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracellular and/or extracellular antioxidants is not associated with increased rates of embryo development. Theriogenology, 86(8), 1897–1905. https://doi.org/10.1016/j.theriogenology.2016.06.009
dc.relation.referencesRodrigues-Cunha, M. C., Mesquita, L. G., Bressan, F., Collado, M. del, Balieiro, J. C. C., Schwarz, K. R. L., … Leal, C. L. V. (2016). Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress, and subsequent embryo development. Theriogenology, 86(7), 1685–1694. https://doi.org/10.1016/j.theriogenology.2016.05.026
dc.relation.referencesRodrigues, B. A., Rodrigues, C. A., Salviano, M. B., Willhelm, B. R., Collares, F. J. F., & Rodrigues, J. L. (2013). Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%. Theriogenology, 79, 1224–1228. https://doi.org/10.1016/j.theriogenology.2013.02.022
dc.relation.referencesRodríguez Pérez, C., Quirantes Piné, R., Fernández Gutiérrez, A., & Segura Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246–254. https://doi.org/10.1016/j.indcrop.2015.01.002
dc.relation.referencesRoleira, F. M. F., Tavares-Da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J., & Borges, F. (2015). Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 183, 235–258. https://doi.org/10.1016/j.foodchem.2015.03.039
dc.relation.referencesRomek, M., Gajda, B., Krzysztofowicz, E., Kucia, M., Uzarowska, A., & Smorag, Z. (2017). Improved quality of porcine embryos cultured with hyaluronan due to the modification of the mitochondrial membrane potential and reactive oxygen species level. Theriogenology, 102, 1–9. https://doi.org/10.1016/j.theriogenology.2017.06.026
dc.relation.referencesRoychoudhury, S., Agarwal, A., Virk, G., & Cho, C. L. (2017). Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reproductive BioMedicine Online, 34(5), 487–498. https://doi.org/10.1016/j.rbmo.2017.02.006
dc.relation.referencesSalzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., … Gasparrini, B. (2014). Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Animal Reproduction Science, 151, 91–96. https://doi.org/10.1016/j.anireprosci.2014.09.018
dc.relation.referencesSen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91–100.
dc.relation.referencesShahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018
dc.relation.referencesSoto-Heras, S., & Paramio, M. T. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132, 342–350. https://doi.org/10.1016/j.rvsc.2020.07.013
dc.relation.referencesSouza, N. C., de Oliveira Nascimento, E. N., de Oliveira, I. B., Oliveira, H. M. L., Santos, E. G. P., Moreira Cavalcanti Mata, M. E. R., … de Bittencourt Pasquali, M. A. (2020). Anti-inflammatory and antixidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biomedicine and Pharmacotherapy, 128(May), 110–277. https://doi.org/10.1016/j.biopha.2020.110277
dc.relation.referencesSovernigo, T. C., Adona, P. R., Monzani, P. S., Guemra, S., Barros, F. D. A., Lopes, F. G., & Leal, C. L. V. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 52(4), 561–569. https://doi.org/10.1111/rda.12946
dc.relation.referencesSpinaci, M., Bucci, D., Muccilli, V., Cardullo, N., Nerozzi, C., & Galeati, G. (2019). A polyphenol-rich extract from an oenological oak-derived tannin influences in vitro maturation of porcine oocytes. Theriogenology, 129, 82–89. https://doi.org/10.1016/j.theriogenology.2019.02.017
dc.relation.referencesSreelatha, S., & Padma, P. R. (2009). Antioxidant Activity and Total Phenolic Content of Moringa oleifera Leaves in Two Stages of Maturity. Plant Foods for Human Nutrition, 64(303).
dc.relation.referencesSun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. Journal of Agricultural and Food Chemistry, 46(10), 4267–4274. https://doi.org/10.1021/jf980366j
dc.relation.referencesTarazona, M., Olivera, M., & Lenis, Y. (2010). Mitochondrial rol and oxidative stress in the developmental blockade of in vitro produced bovine embryos. Archivos de Medicina Veterinaria, 133(3), 125–133. https://doi.org/10.4067/S0301-732X2010000300003
dc.relation.referencesTiloke, C., Anand, K., Gengan, R. M., & Chuturgoon, A. A. (2018). Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomedicine and PharmTiloke, 108(April), 457–466. https://doi.org/10.1016/j.biopha.2018.09.060
dc.relation.referencesTimme, A. R., Hahn, M. E., Hansen, J. M., Rastogi, A., & Roy, M. A. (2018). Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Seminars in Cell and Developmental Biology, 80, 17–28. https://doi.org/10.1016/j.semcdb.2017.09.019
dc.relation.referencesToit, E. S. d., Sithole, J., & Vorster, J. (2020). Leaf harvesting severity affects total phenolic and tannin content of fresh and dry leaves of Moringa oleifera Lam. trees growing in Gauteng, South Africa. South African Journal of Botany, 129, 336–340. https://doi.org/10.1016/j.sajb.2019.08.035
dc.relation.referencesTorres C., H., Colmenares D., A. J., & Isaza M., J. H. (2013). Total Phenolics Antioxidant Activity and Phytochemical Profile of Some Plants From the Yotoco National Protected Forest. Revista de Ciencias, 17, 35–44.
dc.relation.referencesTorres, V., Muñoz B, L., Urrego B, R., Echeverry, J. J., & Lopez, A. (2016). 81 RESVERATROL DURING IN VITRO MATURATION IMPROVES THE QUALITY OF BOVINE OOCYTE AND ENHANCES EMBRYONIC DEVELOPMENT IN VITRO. Reproduction, Fertility and Development, 29(1), 199–199. https://doi.org/10.1071/RDv29n1Ab181
dc.relation.referencesVarghese, A., Ly, K., Corbin, C., Mendiola, J., & Agarwal, A. (2011). Oocyte developmental competence and embryo development: impact of lifestyle and enviromental risk factors. Reproductive BioMedicine, 22, 410–420.
dc.relation.referencesVásquez, N., Torres, V., & Rojano, B. (2014). Efecto del Ácido Ascórbico durante Maduración In Vitro de Oocitos Bovinos en la Producción de Especies Reactivas de Oxígeno (ERO) y Competencia para el Desarrollo Embrionario. Información Tecnológica, 25(2), 141–150. https://doi.org/10.4067/S0718-07642014000200016
dc.relation.referencesVats, S., & Gupta, T. (2017). Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiology and Molecular Biology of Plants, 23(1), 239–248. https://doi.org/10.1007/s12298-016-0407-6
dc.relation.referencesVázquez-León, L. A., Páramo-Calderón, D. E., Robles-Olvera, V. J., Valdés-Rodríguez, O. A., Pérez-Vázquez, A., García-Alvarado, M. A., & Rodríguez-Jimenes, G. C. (2017). Variation in bioactive compounds and antiradical activity of Moringa oleifera leaves: influence of climatic factors, tree age, and soil parameters. European Food Research and Technology, 243(9), 1593–1608. https://doi.org/10.1007/s00217-017-2868-4
dc.relation.referencesVelez, I. C., Chica, A., Urrego, R., Torres, V., Jimenez-Escobar, C., & Zambrano-Varon, J. (2017). Producción in vitro de embriones a partir de complejos cúmulos oocitos tipo II en bovinos Bos indicus. CES Medicina Veterinaria y Zootecnia, 12(2), 76–87. https://doi.org/10.21615/cesmvz.12.2.1
dc.relation.referencesVerma, A. R., Vijayakumar, M., Mathela, C. S., & Rao, C. V. (2009). In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology, 47(9), 2196–2201. https://doi.org/10.1016/j.fct.2009.06.005
dc.relation.referencesViana, J. (2020). 2019 Statistics of Embryo Collection and Transfer in Domestic Farm Animals. Embryo Transfer Newletter, 38(4), 14–26.
dc.relation.referencesVyas, S., Kachhwaha, S., & Kothari, S. L. (2015). Comparative analysis of phenolic contents and total antioxidant capacity of Moringa oleifera Lam. Pharmacognosy Journal, 7(1), 44–51. https://doi.org/10.5530/pj.2015.7.5
dc.relation.referencesWang, Fang, Long, S., Zhang, J., Yu, J., Xiong, Y., Zhou, W., … Jiang, H. (2020). Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer. Food Bioscience, 37(July), 100691. https://doi.org/10.1016/j.fbio.2020.100691
dc.relation.referencesWang, Feng, Tan, D., He, C., Tian, X., Liu, GuoShiLi, Y., Ji, P., & Zhang, L. (2013). Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertility and Sterility, 101(2), 577-586.e1. https://doi.org/10.1016/j.fertnstert.2013.10.041
dc.relation.referencesWill, M. A., Clark, N. A., & Swain, J. E. (2011). Biological pH buffers in IVF: Help or hindrance to success. Journal of Assisted Reproduction and Genetics, 28(8), 711–724. https://doi.org/10.1007/s10815-011-9582-0
dc.relation.referencesWrenzycki, C. (2016). In vitro culture systems: How far are we from optimal conditions? Animal Reproduction, 13(3), 279–282. https://doi.org/10.21451/1984-3143-AR869
dc.relation.referencesWu, L., Li, L., Chen, S., Wang, L., & Lin, X. (2020). Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247. https://doi.org/10.1016/j.seppur.2020.117014
dc.relation.referencesWulandari, L. R., Umiati, S., & Sujuti, H. (2019). Protective effect of methanol extract of kelor (Moringa oleifera) leaves on glutathione peroxidase (gpx) levels in trabecular meshwork cell culture of primary congenital glaucoma patients. EurAsian Journal of BioSciences, 13(2), 839–844.
dc.relation.referencesYang, J., & Liu, R. H. (2013). The phenolic profiles and antioxidant activity in different types of tea. International Journal of Food Science and Technology, 48(1), 163–171. https://doi.org/10.1111/j.1365-2621.2012.03173.x
dc.relation.referencesZabihi, A., Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2019). Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domestic Animal Endocrinology, 68, 25–31. https://doi.org/10.1016/j.domaniend.2018.12.010
dc.relation.referencesZabihi, Adeleh, Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2021). In vitro maturation medium supplementation with resveratrol improves cumulus cell expansion and developmental competence of Sanjabi sheep oocytes. Livestock Science, 243(December 2020), 104378. https://doi.org/10.1016/j.livsci.2020.104378
dc.relation.referencesZhang, Y., Lin, H., Liu, C., Huang, J., & Liu, Z. (2020). A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomedicine and Pharmacotherapy, 127(April), 110186. https://doi.org/10.1016/j.biopha.2020.110186
dc.relation.referencesZhao, X. ‐ M., Wang, N., Hao, H. ‐ S., Li, C.-Y., Zhao, Y. ‐ H., Yan, C. ‐ L., … Hua-Bin. (2018). Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. Journal of Pineal, 64(1), 42–49. https://doi.org/10.1111/ijlh.12426
dc.relation.referencesZhong, R. zhen, & Zhou, D. wei. (2013). Oxidative stress and role of natural plant derived antioxidants in animal reproduction. Journal of Integrative Agriculture, 12(10), 1826–1838. https://doi.org/10.1016/S2095-3119(13)60412-8
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocExtractos de hoja
dc.subject.agrovocExtractos vegetales
dc.subject.agrovocAntioxidantes
dc.subject.agrovocMoringa
dc.subject.proposalblastocisto
dc.subject.proposalBiotecnología
dc.subject.proposalEstrés oxidativo
dc.subject.proposalPlanta medicinal
dc.subject.proposalGanado vacuno
dc.subject.proposalblastocyst
dc.subject.proposalbiotechnology
dc.subject.proposaloxidative stress
dc.subject.proposalmedicinal plant
dc.subject.proposalcattle
dc.title.translatedAntioxidant effect of Moringa oleifera extract in the in vitro maturation of bovine oocytes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_e19f295774971610
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit