Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos
dc.rights.license | Reconocimiento 4.0 Internacional |
dc.contributor.advisor | Torres Osorio, Viviana |
dc.contributor.advisor | Campos Gaona, Rómulo |
dc.contributor.author | Amaya Barragán, Lina Marcela |
dc.date.accessioned | 2021-09-30T20:11:57Z |
dc.date.available | 2021-09-30T20:11:57Z |
dc.date.issued | 2021 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80346 |
dc.description | Ilustraciones, tablas |
dc.description.abstract | Las hojas de Moringa oleifera tienen compuestos como vitaminas, minerales y metabolitos secundarios que le confieren propiedades antioxidantes. Sin embargo, el extracto de esta planta no ha sido estudiado como suplemento en los medios de cultivo en la producción in vitro de embriones bovinos. Por tanto, el objetivo fue evaluar si el medio de maduración in vitro con extracto de Moringa oleifera mejora la competencia del oocito y la calidad del blastocisto, a través de la tasa de maduración nuclear, tasa de blastocistos totales, niveles de especies reactivas de oxígeno (EROs), niveles de glutatión (GSH) intracelular y número de células totales. La extracción fitoquímica se realizó a partir de hojas maduras de Moringa oleifera. Los oocitos provenientes de ovarios de una planta de beneficio (1446) se maduraron en medio TCM 199 suplementado con 0 (control- , C), 50, 100 y 150 μg mL1 de extracto de Moringa oleifera y 50 μg mL-1 de ácido ascórbico (Control+ , AA). Pasadas 24 horas, se fertilizaron y cultivaron de acuerdo con el procedimiento estándar. Los datos obtenidos fueron analizados con la prueba Kruskal-Wallis. No se observaron diferencias significativas entre tratamientos (P>0,05), a excepción de los niveles de GSH y EROs, que se redujeron un 59% y 57%, respectivamente, con el uso de 150 μg mL-1 de extracto. En conclusión, el extracto de Moringa oleifera redujo las EROs, sin embargo las concentraciones de GSH intracelular también se redujeron y no hubo un efecto significativo en la maduración in vitro de oocitos bovinos ni en el desarrollo embrionario temprano. (Texto tomado de la fuente) |
dc.description.abstract | Moringa oleifera leaves have compounds such as vitamins, minerals and secondary metabolites that give it antioxidant properties. However, the extract of this plant has not been studied as a supplement in culture media in the in vitro production of bovine embryos. Therefore, the objective was to evaluate whether the in vitro maturation medium with Moringa oleifera extract improves oocyte competence and blastocyst quality, through the nuclear maturation rate, total blastocyst rate, levels of reactive oxygen species. (ROS), intracellular glutathione (GSH) levels and total cell number. The phytochemical extraction was carried out from mature leaves of Moringa oleifera. The oocytes from ovaries of a beneficiation plant (1446) were matured in TCM 199 medium supplemented with 0 (control- , C), 50, 100 and 150 μg mL-1 of Moringa oleifera extract and 50 μg mL-1 of ascorbic acid (Control + , AA). After 24 hours, they were fertilized and cultivated according to the standard procedure. The data obtained were analyzed with the Kruskal-Wallis test. No significant differences were observed between treatments (P> 0.05), with the exception of GSH and ROS levels, which were reduced by 59% and 57%, respectively, with the use of 150 μg mL-1 of extract. In conclusion, Moringa oleifera extract reduced ROS, however intracellular GSH concentrations were also reduced and there was no significant effect on in vitro maturation of bovine oocytes or early embryonic development |
dc.format.extent | 85 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas |
dc.title | Efecto antioxidante del extracto de Moringa oleifera en la maduración in vitro de oocitos bovinos |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/publishedVersion |
dc.publisher.program | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias |
dc.contributor.datacurator | Vélez, Mauricio |
dc.contributor.researchgroup | Conservación, Mejoramiento y Utilización del Ganado Criollo Hartón del Valle y Otros Recursos Genéticos Animales en el Sur Occidente Colombiano |
dc.contributor.subjectmatterexpert | Torres Castañeda, Harlen |
dc.contributor.subjectmatterexpert | Urrego, Rodrigo |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ciencias Agrarias |
dc.description.methods | 1. Obtención del extracto de hojas de Moringa oleifera 2. Fraccionamiento del extracto 3. Análisis fitoquímico preliminar 4. Determinación colorimétrica a microescala de compuestos fenólicos 5. Contenido total de fenoles (CTF) 6. Contenido de Flavonoides Totales (CFT) 7.Contenido total de catequinas (CTC) 8. Determinación de la actividad antioxidante (DPPH, FRAP, ABTS) 9. Recolección de ovarios 10. Aspiración folicular y obtención de oocitos 11. Maduración in vitro (MIV) 12. Fertilización in vitro (FIV) 13. Cultivo in vitro (CIV) 14. Evaluación de la maduración nuclear 15. Evaluación de los niveles de EROs y GSH intracelulares 16. Evaluación de la calidad embrionaria |
dc.description.researcharea | Producción animal tropical |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.faculty | Facultad de Ciencias Agropecuarias |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Palmira |
dc.relation.references | Abdel Fattah, M. E., Sobhy, H. M., Reda, A., & Abdelrazek, H. M. A. (2020). Hepatoprotective effect of Moringa oleifera leaves aquatic extract against lead acetate–induced liver injury in male Wistar rats. Environmental Science and Pollution Research, 27(34), 43028–43043. https://doi.org/10.1007/s11356-020-10161-z |
dc.relation.references | Adeoye, O., Olawumi, J., Opeyemi, A., & Christiania, O. (2018). Review on the role of glutathione on oxidative stress and infertility. Jornal Brasileiro de Reproducao Assistida, 22(1), 61–66. https://doi.org/10.5935/1518-0557.20180003 |
dc.relation.references | Agarwal, A., Durairajanayagam, D., & du Plessis, S. S. (2014). Utility of antioxidants during assisted reproductive techniques: An evidence based review. Reproductive Biology and Endocrinology, 12(1). https://doi.org/10.1186/1477-7827-12-112 |
dc.relation.references | Agarwal, A., Virk, G., Ong, C., & du Plessis, S. S. (2014). Effect of Oxidative Stress on Male Reproduction. The World Journal of Men’s Health, 32(1), 1. https://doi.org/10.5534/wjmh.2014.32.1.1 |
dc.relation.references | Aju, B. Y., Rajalakshmi, R., & Mini, S. (2019). Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon, 5(12), 2935. https://doi.org/10.1016/j.heliyon.2019.e02935 |
dc.relation.references | Akorede, G. J., Ambali, S. F., Hudu, M. G., Suleiman, M. M., Suleiman, K. Y., Abdulrahim, H. A., … AbdulMajeed, I. (2020). Carbamazepine evoked reproductive toxicity in male Wistar rats: protective properties of Moringa oleifera leaves methanolic extract. Comparative Clinical Pathology, 29(6), 1179–1187. https://doi.org/10.1007/s00580-020-03169-x |
dc.relation.references | AL Juhaimi, F., Ghafoor, K., Ahmed, I. A. M., Babiker, E. E., & Özcan, M. M. (2017). Comparative study of mineral and oxidative status of Sonchus oleraceus, Moringa oleifera and Moringa peregrina leaves. Journal of Food Measurement and Characterization, 11(4), 1745–1751. https://doi.org/10.1007/s11694-017-9555-9 |
dc.relation.references | Alamgir, A. N. M. (2018). Therapeutic Use of Medicinal Plants and Their Extracts. In Progress in Drug Research (Vol. 74). Retrieved from http://dx.doi.org/10.1007/978-3-319-63862-1 |
dc.relation.references | Alvarez, G. M., Morado, S. A., Soto, M. P., Dalvit, G. C., & Cetica, P. D. (2015). The Control of Reactive Oxygen Species Influences Porcine Oocyte In Vitro Maturation. Reproduction in Domestic Animals, 50(2), 200–205. https://doi.org/10.1111/rda.12469 |
dc.relation.references | Anand, J., Upadhyaya, B., Rawat, P., & Rai, N. (2015). Biochemical characterization and pharmacognostic evaluation of purified catechins in green tea (Camellia sinensis) cultivars of India. 3 Biotech, 5(3), 285–294. https://doi.org/10.1007/s13205-014-0230-0 |
dc.relation.references | Aremu, A., Kingsley, E. I., Talha, B. K., Akeem, A. O., Ibrahim, R. A., Jimoh, A. G., & Yusuf, S. K. (2018). Methanolic leaf extract of Moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei. International Journal of Veterinary Science and Medicine, 6(1), 39–44. https://doi.org/10.1016/j.ijvsm.2018.04.006 |
dc.relation.references | Assiene Agamou, J. A., Fombang, E. N., & Mbofung, C. M. F. (2015). Particular benefits can be attributed to Moringa oleifera lam leaves based on origin and stage of maturity. Journal of Experimental Biology and Agricultural Sciences, 3(6), 541–555. https://doi.org/10.18006/2015.3(6).541.555 |
dc.relation.references | Bajpai, V. K., Majumder, R., & Park, J. G. (2016). Isolation and purification of plant secondary metabolites using column-chromatographic technique. Bangladesh Journal of Pharmacology, 11(4), 844–848. https://doi.org/10.3329/bjp.v11i4.28185 |
dc.relation.references | Barakat, I. A. H., Khalil, W. K. B., & Al-Himaidi, A. R. (2015). Moringa oleifera extract modulates the expression of fertility related genes and elevation of calcium ions in sheep oocytes. Small Ruminant Research, 130, 67–75. https://doi.org/10.1016/j.smallrumres.2015.06.011 |
dc.relation.references | Barriera, S., Moutinho, C., Silva, A. M. N., Neves, J., Seo, E.-J., Hegazy, Mohamed-Elamir Efferthc, T., & Gomes, L. R. (2020). Phytochemical characterization and biological activities of green tea ( Camellia sinensis ) produced in the Azores , Portugal Department of Pharmaceutical Biology , Institute of Pharmacy and Biochemistry , Johannes. In Phytomedicine Plus. https://doi.org/10.1016/j.phyplu.2020.100001 |
dc.relation.references | Bennour, N., Mighri, H., Eljani, H., Zammouri, T., & Akrout, A. (2020). Effect of solvent evaporation method on phenolic compounds and the antioxidant activity of Moringa oleifera cultivated in Southern Tunisia. South African Journal of Botany, 129, 181–190. https://doi.org/10.1016/j.sajb.2019.05.005 |
dc.relation.references | Bharti, R., & Singh, B. (2020). Green tea (Camellia assamica) extract as an antioxidant additive to enhance the oxidation stability of biodiesel synthesized from waste cooking oil. Fuel, 262. https://doi.org/10.1016/j.fuel.2019.116658 |
dc.relation.references | Blanco, M. R., Demyda, S., Moreno Millán, M., & Genero, E. (2012). Developmental competence of in vivo and in vitro matured oocytes: A review. Animal Reproduction Science, 9(3), 281–289. |
dc.relation.references | Bó, G. A., & Mapletoft, R. J. (2014). Historical perspectives and recent research on superovulation in cattle. Theriogenology, 81(1), 38–48. https://doi.org/10.1016/j.theriogenology.2013.09.020 |
dc.relation.references | Boots, A. W., Li, H., Schins, R. P. F., Duffin, R., Heemskerk, J. W. M., Bast, A., & Haenen, G. R. M. M. (2007). The quercetin paradox. Toxicology and Applied Pharmacology, 222(1), 89–96. https://doi.org/10.1016/j.taap.2007.04.004 |
dc.relation.references | Braham, F., Carvalho, D. O., Almeida, C. M. R., Zaidi, F., Magalhães, J. M. C. S., Guido, L. F., & Gonçalves, M. P. (2019). Online HPLC-DPPH screening method for evaluation of radical scavenging phenols extracted from Moringa oleifera leaves. South African Journal of Botany, 1–9. https://doi.org/10.1016/j.sajb.2019.04.001 |
dc.relation.references | Cadorin Oldoni, T. L., Merlin, N., Karling, M., Carpes, S. T., Alencar, S. M. de, Morales, R. G. F., … Pilau, E. J. (2019). Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Research International, 125(August), 108647. https://doi.org/10.1016/j.foodres.2019.108647 |
dc.relation.references | Cai, L. yun, Shi, F. xiang, & Gao, X. (2011). Preliminary phytochemical analysis of Acanthopanan trifoliatus ( L .) Merr. Journal of Medicinal Plants, 5(1097), 4059–4064. |
dc.relation.references | Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-59451-z |
dc.relation.references | Chowdhury, M. M. R., Choi, B. H., Khan, I., Lee, K. L., Mesalam, A., Song, S. H., … Kong, I. K. (2017). Supplementation of lycopene in maturation media improves bovine embryo quality in vitro. Theriogenology, 103, 173–184. https://doi.org/10.1016/j.theriogenology.2017.08.003 |
dc.relation.references | Combelles, C. M. H., Gupta, S., & Agarwal, A. (2009). Could oxidative stress influence the in-vitro maturation of oocytes? Reproductive BioMedicine Online, 18(6), 864–880. https://doi.org/10.1016/S1472-6483(10)60038-7 |
dc.relation.references | Conrad, M., Ingold, I., Buday, K., Kobayashi, S., & Angeli, J. P. F. (2015). ROS, thiols and thiol-regulating systems in male gametogenesis. Biochimica et Biophysica Acta - General Subjects, 1850(8), 1566–1574. https://doi.org/10.1016/j.bbagen.2014.10.020 |
dc.relation.references | Coy, P., Grullon, L., Canovas, S., Romar, R., Matas, C., & Aviles, M. (2008). Hardening of the zona pellucida of unfertilized eggs can reduce polyspermic fertilization in the pig and cow. Reproduction, 135(1), 19–27. https://doi.org/10.1530/REP-07-0280 |
dc.relation.references | du Plessis, S. S., Makker, K., Desai, N. R., & Agarwal, A. (2008). Impact of oxidative stress on IVF. Expert Review of Obstetrics & Gynecology, 3(4), 539–554. https://doi.org/10.1586/17474108.3.4.539 |
dc.relation.references | Fan, Z., Yang, M., Regouski, M., & Polejaeva, I. A. (2017). Effects of three different media on in vitro maturation and development, intracellular glutathione and reactive oxygen species levels, and maternal gene expression of abattoir-derived goat oocytes. Small Ruminant Research, 147, 106–114. https://doi.org/10.1016/j.smallrumres.2016.12.041 |
dc.relation.references | Farooq, B., & Koul, B. (2019). Comparative analysis of the antioxidant, antibacterial and plant growth promoting potential of five Indian varieties of Moringa oleifera L. South African Journal of Botany. https://doi.org/10.1016/j.sajb.2018.12.014 |
dc.relation.references | Ferré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P., & Ross, P. J. (2020). Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal, 14(5), 991–1004. https://doi.org/10.1017/S1751731119002775 |
dc.relation.references | Ferré, L., & Cattaneo, L. (2013). Biotecnologías reproductivas: producción in vitro de embriones y semen sexado. (¿La pareja perfecta?). Rev. Med. Vet., 94(2), 28–36. |
dc.relation.references | Foti, M. C. (2015). Use and Abuse of the DPPH• Radical. Journal of Agricultural and Food Chemistry, 63(40), 8765–8776. https://doi.org/10.1021/acs.jafc.5b03839 |
dc.relation.references | Fotio, A. L., Nguepi, M. S. D., Tonfack, L. B., Temdie, R. J. G., & Nguelefack, T. B. (2020). Acetaminophen induces liver injury and depletes glutathione in mice brain: Prevention by Moringa oleifera extract. South African Journal of Botany, 129, 317–323. https://doi.org/10.1016/j.sajb.2019.08.037 |
dc.relation.references | Furnus, C. C., de Matos, D. G., Picco, S., García, P. P., Inda, A. M., Mattioli, G., & Errecalde, A. L. (2008). Metabolic requirements associated with GSH synthesis during in vitro maturation of cattle oocytes. Animal Reproduction Science, 109(1–4), 88–99. https://doi.org/10.1016/j.anireprosci.2007.12.003 |
dc.relation.references | García, J. R., Romero, J., Astiz, S., & Ruiz, S. (2013). Adición de sustancias antioxidantes en los medios de cultivo empleados en la producción in vitro de embriones en mamíferos Addition of antioxidant substances to culture media used in the in vitro production of mammal. 35(1), 10–19. |
dc.relation.references | Glasauer, A., & Chandel, N. S. (2013). Ros. Current Biology, 23(3), R100–R102. https://doi.org/10.1016/j.cub.2012.12.011 |
dc.relation.references | Gonçalves, D. R., Leroy, J. L. M. R., Van Hees, S., Xhonneux, I., Bols, P. E. J., Kiekens, F., & Marei, W. F. A. (2021). Cellular uptake of polymeric nanoparticles by bovine cumulus-oocyte complexes and their effect on in vitro developmental competence. European Journal of Pharmaceutics and Biopharmaceutics, 158(November 2020), 143–155. https://doi.org/10.1016/j.ejpb.2020.11.011 |
dc.relation.references | Guemra, S., Monzani, P. S., Santos, E. S., Zanin, R., Ohashi, O. M., Miranda, M. S., & Adona, P. R. (2013). Maturação in vitro de oócitos bovinos em meios suplementados com quercetina e seu efeito sobre o desenvolvimento embrionário. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 65, 1616–1624. |
dc.relation.references | Guérin, P., El Mouatassim, S., & Ménézo, Y. (2001). Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Human Reproduction Update, 7(2), 175–189. https://doi.org/10.1093/humupd/7.2.175 |
dc.relation.references | Guimarães, A. C. G., Leivas, F. G., Santos, F. W., Schwengber, E. B., Giotto, A. B., Machado, C. I. U., … Brum, D. S. (2014). Reduction of centrifugation force in discontinuous percoll gradients increases in vitro fertilization rates without reducing bovine sperm recovery. Animal Reproduction Science, 146, 103–110. https://doi.org/10.1016/j.anireprosci.2014.02.016 |
dc.relation.references | Gutnisky, C., Morado, S., Gadze, T., Donato, A., Alvarez, G., Dalvit, G., & Cetica, P. (2020). Morphological, biochemical and functional studies to evaluate bovine oocyte vitrification. Theriogenology, 143, 18–26. https://doi.org/10.1016/j.theriogenology.2019.11.037 |
dc.relation.references | Hamed, Y. S., Abdin, M., Akhtar, H. M. S., Chen, D., Wan, P., Chen, G., & Zeng, X.(2019). Extraction, purification by macrospores resin and in vitro antioxidant activity of flavonoids from Moringa oliefera leaves. South African Journal of Botany, 124, 270–279. https://doi.org/10.1016/j.sajb.2019.05.006 |
dc.relation.references | Hansen, J. M., & Harris, C. (2015). Glutathione during embryonic development. Biochimica et Biophysica Acta - General Subjects, 1850(8), 1527–1542. https://doi.org/10.1016/j.bbagen.2014.12.001 |
dc.relation.references | Holguín, V., García, I., & Mora, J. (2018). Arboles y arbustos para silvopasturas: uso, calidad y alometría (Colors Edi). Retrieved from https://www.researchgate.net/profile/Jairo_Mora-Delgado/publication/326720362_Arboles_y_arbustos_para_silvopasturas/links/5b6090f6458515c4b256c0f3/Arboles-y-arbustos-para-silvopasturas.pdf#page=44 |
dc.relation.references | Hong, G., Wang, J., Zhang, Y., Hochstetter, D., Zhang, S., Pan, Y., … Wang, Y. (2014). Biosynthesis of catechin components is differentially regulated indark-treated tea (Camellia sinensis L.). Plant Physiology and Biochemistry, 78, 49–52. https://doi.org/10.1016/j.plaphy.2014.02.017 |
dc.relation.references | Huang, Z., Pang, Y., Hao, H., Du, W., Zhao, X., & Zhu, H. (2018). Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro. Asian-Australasian Journal of Animal Sciences, 31(9), 1420–1430. https://doi.org/10.5713/ajas.17.0880 |
dc.relation.references | Idoga, E. S., Ambali, S. F., Ayo, J. O., & Mohammed, A. (2018). Assessment of antioxidant and neuroprotective activities of methanol extract of Moringa oleifera Lam. leaves in subchronic chlorpyrifos-intoxicated rats. Comparative Clinical Pathology, 27(4), 917–925. https://doi.org/10.1007/s00580-018-2682-9 |
dc.relation.references | Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001 |
dc.relation.references | Jaiswal, D., Rai, P. K., Mehta, S., Chatterji, S., Shukla, S., Rai, D. K., … Watal, G. (2013). Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pacific Journal of Tropical Medicine, 6(6), 426–432. https://doi.org/10.1016/S1995-7645(13)60068-1 |
dc.relation.references | Kang, J.-T., Kwon, D.-K., Park, S.-J., Kim, S.-J., Moon, J.-H., Kim, T., … Lee, B.-C. (2013). Quercetin improves the in vitro development of porcine oocytes by decreasing reactive oxygen species levels. Biology of Reproduction, 12(1), 15–20. https://doi.org/10.1093/biolreprod/87.s1.217 |
dc.relation.references | Kang, J. T., Moon, J. H., Choi, J. Y., Park, S. J., Kim, S. J., Saadeldin, I. M., & Lee, B. C. (2016). Effect of antioxidant flavonoids (Quercetin and Taxifolin) on in vitro maturation of porcine oocytes. Asian-Australasian Journal of Animal Sciences, 29(3), 352–358. https://doi.org/10.5713/ajas.15.0341 |
dc.relation.references | Karthivashan, G., Arulselvan, P., Tan, S. W., & Fakurazi, S. (2015). The molecular mechanism underlying the hepatoprotective potential of Moringa oleifera leaves extract against acetaminophen induced hepatotoxicity in mice. Journal of Functional Foods, 17, 115–126. https://doi.org/10.1016/j.jff.2015.05.007 |
dc.relation.references | Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. (2017). Kaempferol – A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal of Functional Foods, 30, 203–219. https://doi.org/10.1016/j.jff.2017.01.022 |
dc.relation.references | Kelley, R. L., & Gardner, D. K. (2019). Individual culture and atmospheric oxygen during culture affect mouse preimplantation embryo metabolism and postimplantation development. Reproductive BioMedicine Online, 1–16. https://doi.org/10.1016/j.rbmo.2019.03.102 |
dc.relation.references | Kere, M., Siriboon, C., Lo, N.-W., Nguyen, N. T., & Ju, J.-C. (2013). Ascorbic Acid Improves the Developmental Competence of Porcine Oocytes after Parthenogenetic Activation and Somatic Cell Nuclear Transplantation. Journal of Reproduction and Development, 59(1). https://doi.org/10.1262/jrd.2012-114 |
dc.relation.references | Khalafalla, M. M., Abdellatef, E., Dafalla, H. M., Nassrallah, A. A., Aboul-Enein, K. M., Lightfoot, D. A., … El-Shemy, H. A. (2010). Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. African Journal of Biotechnology, 9(49), 8467–8471. https://doi.org/10.4314/ajb.v9i49 |
dc.relation.references | Khalil, S. R., El Bohi, K. M., Khater, S., Abd El-fattah, A. H., Mahmoud, F. A., & Farag, M. R. (2020). Moringa oleifera leaves ethanolic extract influences DNA damage signaling pathways to protect liver tissue from cobalt -triggered apoptosis in rats. Ecotoxicology and Environmental Safety, 200(May), 110716. https://doi.org/10.1016/j.ecoenv.2020.110716 |
dc.relation.references | Kwak, S.-S., Cheong, S.-A. A., Jeon, Y., Lee, E., Choi, K.-C. C., Jeung, E.-B. B., & Hyun, S.-H. H. (2012). The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization. Theriogenology, 78(1), 86–101. https://doi.org/10.1016/j.theriogenology.2012.01.024 |
dc.relation.references | Lee, S., Jin, J. X., Taweechaipaisankul, A., Kim, G. A., & Lee, B. C. (2018). Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology, 114, 191–198. https://doi.org/10.1016/j.theriogenology.2018.03.040 |
dc.relation.references | Li, H. J., Sutton-Mcdowall, M. L., Wang, X., Sugimura, S., Thompson, J. G., & Gilchrist, R. B. (2016). Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions. Human Reproduction, 31(4), 810–821. https://doi.org/10.1093/humrep/dew020 |
dc.relation.references | Li, W., Goossens, K., Van Poucke, M., Forier, K., Braeckmans, K., Van Soom, A., & Peelman, L. J. (2014). High oxygen tension increases global methylation in bovine 4-cell embryos and blastocysts but does not affect general retrotransposon expression. Reproduction, Fertility and Development, 28(7), 948–959. https://doi.org/10.1071/RD14133 |
dc.relation.references | Lim, T. K. (2011). Edible Medicinal and Non-Medicinal Plants. In D. Springer (Ed.), Edible Medicinal and Non-Medicinal Plants (Vol. 3, pp. 453–485). https://doi.org/10.1007/978-94-017-7276-1 |
dc.relation.references | Lin, M., Zhang, J., & Chen, X. (2018). Bioactive flavonoids in Moringa oleifera and their health-promoting properties. Journal of Functional Foods, 47(May), 469–479. https://doi.org/10.1016/j.jff.2018.06.011 |
dc.relation.references | Liu, M. J., Sun, A. G., Zhao, S. G., Liu, H., Ma, S. Y., Li, M., … Liu, H. Bin. (2018). Resveratrol improves in vitro maturation of oocytes in aged mice and humans. Fertility and Sterility, 109(5), 900–907. https://doi.org/10.1016/j.fertnstert.2018.01.020 |
dc.relation.references | Liu, Y., Wang, X., Wei, X., Gao, Z., & Han, J. (2018). Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herbal Medicines, 1–8. https://doi.org/https://doi.org/10.1016/j.chmed.2018.09.002 |
dc.relation.references | Lonergan, P., Rizos, D., Ward, F., & Boland, M. P. (2001). Factors influencing oocyte and embryo quality in cattle. Reproduction Nutrition Development, 41(5), 427–437. https://doi.org/10.1051/rnd:2001142 |
dc.relation.references | Loren, P., Sánchez, R., Arias, M. E., Felmer, R., Risopatrón, J., & Cheuquemán, C. (2017). Melatonin scavenger properties against oxidative and nitrosative stress:Impact on gamete handling and in vitro embryo production in humans and other mammals. International Journal of Molecular Sciences, 18(6), 1–18. https://doi.org/10.3390/ijms18061119 |
dc.relation.references | Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175. https://doi.org/10.1016/j.cbi.2014.10.016 |
dc.relation.references | Lv, L., Yue, W., Liu, W., Ren, Y., Li, F., Lee, K. B., & Smith, G. W. (2010). Effect of oocyte selection, estradiol and antioxidant treatment on in vitro maturation of oocytes collected from prepubertal Boer goats. Italian Journal of Animal Science, 9(1), 50–54. https://doi.org/10.4081/ijas.2010.e11 |
dc.relation.references | Madrid Gaviria, S., López Herrera, A., Restrepo Betancur, G., Urrego, R., & Echeverri Zuluaga, J. J. (2019). Supplementation with resveratrol during culture improves the quality of in vitro produced bovine embryos. Livestock Science, 221(September 2018), 139–143. https://doi.org/10.1016/j.livsci.2019.01.025 |
dc.relation.references | Madrid Gaviria, S., López Herrera, A., Urrego, R., Restrepo Betancur, G., & Echeverri Zuluaga, J. J. (2019). Effect of resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology, 89(63), 42–50. https://doi.org/10.1016/j.cryobiol.2019.05.008 |
dc.relation.references | Magata, F., Ideta, A., Okubo, H., Matsuda, F., Urakawa, M., & Oono, Y. (2019). Growth potential of bovine embryos presenting abnormal cleavage observed through time lapse cinematography. Theriogenology, 133, 119–124. https://doi.org/10.1016/j.theriogenology.2019.04.031 |
dc.relation.references | Mahmoud, K. G. M., El-Sokary, M. M. M., Kandiel, M. M. M., Abou El-Roos, M. E. A., & Sosa, G. M. S. (2016). Effects of cysteamine during in vitro maturation on viability and meiotic competence of vitrified buffalo oocytes. Iranian Journal of Veterinary Research, 17(3), 165–170. https://doi.org/10.22099/ijvr.2016.3810 |
dc.relation.references | Maillo, V., Lopera-Vasquez, R., Hamdi, M., Gutierrez-Adan, A., Lonergan, P., & Rizos, D. (2016). Maternal-embryo interaction in the bovine oviduct: Evidence from in vivo and in vitro studies. Theriogenology, 86(1), 443–450. https://doi.org/10.1016/j.theriogenology.2016.04.060 |
dc.relation.references | Mandawala, A. A., Harvey, S. C., Roy, T. K., & Fowler, K. E. (2016). Cryopreservation of animal oocytes and embryos: Current progress and future prospects. Theriogenology, 86(7), 1637–1644.https://doi.org/10.1016/j.theriogenology.2016.07.018 |
dc.relation.references | Marí, M., Morales, A., Colell, A., García-Ruiz, C., Kaplowitz, N., & Fernández-Checa, J. C. (2013). Mitochondrial glutathione: Features, regulation and role in disease. Biochimica et Biophysica Acta - General Subjects, 1830(5), 3317–3328. https://doi.org/10.1016/j.bbagen.2012.10.018 |
dc.relation.references | Martinez, C. A., Nohalez, A., Ceron, J. J., Rubio, C. P., Roca, J., Cuello, C., … Gil, M. A. (2017). Peroxidized mineral oil increases the oxidant status of culture media and inhibits in vitro porcine embryo development. Theriogenology, 103, 17–23. https://doi.org/10.1016/j.theriogenology.2017.07.028 |
dc.relation.references | Mateo-Otero, Y., Yeste, M., Damato, A., & Giaretta, E. (2021). Cryopreservation and oxidative stress in porcine oocytes. Research in Veterinary Science, 135(January), 20–26. https://doi.org/10.1016/j.rvsc.2020.12.024 |
dc.relation.references | Mbemya, G. T., Vieira, L. A., Canafistula, F. G., Pessoa, O. D. L., & Rodrigues, A. P. R. (2017). Reports on in vivo and in vitro contribution of medicinal plants to improve the female reproductive function. Reproducao e Climaterio, 32(2), 109–119. https://doi.org/10.1016/j.recli.2016.11.002 |
dc.relation.references | Mckee, T., & Mckee, J. R. (2014). Bioquímica: Las bases moleculares de la vida. (McGRAW-HI). México D. F. |
dc.relation.references | Menezo, Y. J. R., Silvestris, E., Dale, B., & Elder, K. (2016). Oxidative stress and alterations in DNA methylation: two sides of the same coin in reproduction. Reproductive BioMedicine Online, 33(6), 668–683. https://doi.org/10.1016/j.rbmo.2016.09.006 |
dc.relation.references | Morado, S. A., Cetica, P. D., Beconi, M. T., & Dalvit, G. C. (2009). Reactive oxygen species in bovine oocyte maturation in vitro. Reproduction, Fertility and Development, 21(4), 608–614. https://doi.org/10.1071/RD08198 |
dc.relation.references | Morin, S. J. (2017). Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system? Journal of Assisted Reproduction and Genetics, 34, 309–314. https://doi.org/10.1007/s10815-017-0880-z |
dc.relation.references | Moyo, B., Oyedemi, S., Masika, P. J., & Muchenje, V. (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Science, 91, 441–447. https://doi.org/10.1016/j.meatsci.2012.02.029 |
dc.relation.references | Mukherjee, A., Malik, H., Saha, A. P., Dubey, A., Singhal, D. K., Boateng, S., … Malakar, D. (2014). Resveratrol treatment during goat oocytes maturation enhances developmental competence of parthenogenetic and hand-made cloned blastocysts by modulating intracellular glutathione level and embryonic gene expression. Journal of Assisted Reproduction and Genetics, 31(2), 229–239. https://doi.org/10.1007/s10815-013-0116-9 |
dc.relation.references | Muratori, M., Tarozzi, N., Carpentiero, F., Danti, S., Perrone, F. M., Cambi, M., … Baldi, E. (2019). Sperm selection with density gradient centrifugation and swim up: effect on DNA fragmentation in viable spermatozoa. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-43981-2 |
dc.relation.references | Mwamatope, B., Tembo, D., Chikowe, I., Kampira, E., & Nyirenda, C. (2020). Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 9. https://doi.org/10.1016/j.sciaf.2020.e00481 |
dc.relation.references | Nascimento, J. A., Araújo, K. L. G. V., Epaminondas, P. S., Souza, A. S., Magnani, M., Souza, A. L., … Souza, A. G. (2013). Ethanolic extracts of Moringa oleifera Lam.: Evaluation of its potential as an antioxidant additive for fish oil. Journal of Thermal Analysis and Calorimetry, 114(2), 833–838. https://doi.org/10.1007/s10973-013-3045-z |
dc.relation.references | Nohalez, A., Martinez, C. A., Parrilla, I., Roca, J., Gil, M. A., Rodriguez-Martinez, H., … Cuello, C. (2018). Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology, 113, 113–119. https://doi.org/10.1016/j.theriogenology.2018.02.014 |
dc.relation.references | Nolfi Donegan, D., Braganza, A., & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology, 37, 101674. https://doi.org/10.1016/j.redox.2020.101674 |
dc.relation.references | Nouman, W., Anwar, F., Gull, T., Newton, A., Rosa, E., & Domínguez-Perles, R. (2016). Profiling of polyphenolics, nutrients and antioxidant potential of germplasm’s leaves from seven cultivars of Moringa oleifera Lam. Industrial Crops and Products, 83, 166–176. https://doi.org/10.1016/j.indcrop.2015.12.032 |
dc.relation.references | Oguntibeju, O. O., Aboua, G. Y., & Omodanisi, E. I. (2020). Effects of Moringa oleifera on oxidative stress, apoptotic and inflammatory biomarkers in streptozotocin-induced diabetic animal model. South African Journal of Botany, 129, 354–365. https://doi.org/10.1016/j.sajb.2019.08.039 |
dc.relation.references | Oladeji, O. S., Odelade, K. A., & Oloke, J. K. (2019). Phytochemical screening and antimicrobial investigation of Moringa oleifera leaf extracts. African Journal of Science, Technology, Innovation and Development, 1–6. https://doi.org/10.1080/20421338.2019.1589082 |
dc.relation.references | Olson, M. E., & Fahey, J. W. (2011). Moringa oleifera : un árbol multiusos para las zonas tropicales secas. Revista Mexicana De Biodiversidad, 82, 1071–1082. https://doi.org/http://dx.doi.org/10.7550/rmb.28737 |
dc.relation.references | Oseikria, M., Elis, S., Maillard, V., Corbin, E., & Uzbekova, S. (2016). N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle. Theriogenology, 85(9), 1625–1634. https://doi.org/10.1016/j.theriogenology.2016.01.019 |
dc.relation.references | Pachuau, L., Laldinchhana, Roy, P. K., Zothantluanga, J. H., Supratim, R., & Sanjib, D. (2021). Encapsulation of Bioactive Compound and Its Therapeutic Potential. https://doi.org/https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-030-54027-2_20 |
dc.relation.references | Poprac, P., Jomova, K., Simunkova, M., Kollar, V., Rhodes, C. J., & Valko, M. (2017). Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends in Pharmacological Sciences, 38(7), 592–607. https://doi.org/10.1016/j.tips.2017.04.005 |
dc.relation.references | Prabakaran, M., Kim, S. H., Sasireka, A., Chandrasekaran, M., & Chung, I. M. (2018). Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Bioscience, 26(February), 23–29. https://doi.org/10.1016/j.fbio.2018.09.003 |
dc.relation.references | Remião, M. H., Lucas, C. G., Domingues, W. B., Silveira, T., Barther, N. N., Komninou, E. R., … Collares, T. (2016). Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reproductive Toxicology, 63, 70–81. https://doi.org/10.1016/j.reprotox.2016.05.016 |
dc.relation.references | Rizos, D., Clemente, M., Bermejo-Alvarez, P., De La Fuente, J., Lonergan, P., & Gutiérrez-Adán, A. (2008). Consequences of in vitro culture conditions on embryo development and quality. Reproduction in Domestic Animals, 43(SUPPL.4), 44–50. https://doi.org/10.1111/j.1439-0531.2008.01230.x |
dc.relation.references | Rocha-Frigoni, N. A. S., Leão, B. C. S., Dall’Acqua, P. C., & Mingoti, G. Z. (2016). Improving the cytoplasmic maturation of bovine oocytes matured in vitro with intracellular and/or extracellular antioxidants is not associated with increased rates of embryo development. Theriogenology, 86(8), 1897–1905. https://doi.org/10.1016/j.theriogenology.2016.06.009 |
dc.relation.references | Rodrigues-Cunha, M. C., Mesquita, L. G., Bressan, F., Collado, M. del, Balieiro, J. C. C., Schwarz, K. R. L., … Leal, C. L. V. (2016). Effects of melatonin during IVM in defined medium on oocyte meiosis, oxidative stress, and subsequent embryo development. Theriogenology, 86(7), 1685–1694. https://doi.org/10.1016/j.theriogenology.2016.05.026 |
dc.relation.references | Rodrigues, B. A., Rodrigues, C. A., Salviano, M. B., Willhelm, B. R., Collares, F. J. F., & Rodrigues, J. L. (2013). Similar patterns of embryo development in canine oocytes cultured in vitro at oxygen tensions of 5 and 20%. Theriogenology, 79, 1224–1228. https://doi.org/10.1016/j.theriogenology.2013.02.022 |
dc.relation.references | Rodríguez Pérez, C., Quirantes Piné, R., Fernández Gutiérrez, A., & Segura Carretero, A. (2015). Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products, 66, 246–254. https://doi.org/10.1016/j.indcrop.2015.01.002 |
dc.relation.references | Roleira, F. M. F., Tavares-Da-Silva, E. J., Varela, C. L., Costa, S. C., Silva, T., Garrido, J., & Borges, F. (2015). Plant derived and dietary phenolic antioxidants: Anticancer properties. Food Chemistry, 183, 235–258. https://doi.org/10.1016/j.foodchem.2015.03.039 |
dc.relation.references | Romek, M., Gajda, B., Krzysztofowicz, E., Kucia, M., Uzarowska, A., & Smorag, Z. (2017). Improved quality of porcine embryos cultured with hyaluronan due to the modification of the mitochondrial membrane potential and reactive oxygen species level. Theriogenology, 102, 1–9. https://doi.org/10.1016/j.theriogenology.2017.06.026 |
dc.relation.references | Roychoudhury, S., Agarwal, A., Virk, G., & Cho, C. L. (2017). Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reproductive BioMedicine Online, 34(5), 487–498. https://doi.org/10.1016/j.rbmo.2017.02.006 |
dc.relation.references | Salzano, A., Albero, G., Zullo, G., Neglia, G., Abdel-Wahab, A., Bifulco, G., … Gasparrini, B. (2014). Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Animal Reproduction Science, 151, 91–96. https://doi.org/10.1016/j.anireprosci.2014.09.018 |
dc.relation.references | Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R., & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: Current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91–100. |
dc.relation.references | Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, 18, 820–897. https://doi.org/10.1016/j.jff.2015.06.018 |
dc.relation.references | Soto-Heras, S., & Paramio, M. T. (2020). Impact of oxidative stress on oocyte competence for in vitro embryo production programs. Research in Veterinary Science, 132, 342–350. https://doi.org/10.1016/j.rvsc.2020.07.013 |
dc.relation.references | Souza, N. C., de Oliveira Nascimento, E. N., de Oliveira, I. B., Oliveira, H. M. L., Santos, E. G. P., Moreira Cavalcanti Mata, M. E. R., … de Bittencourt Pasquali, M. A. (2020). Anti-inflammatory and antixidant properties of blend formulated with compounds of Malpighia emarginata D.C (acerola) and Camellia sinensis L. (green tea) in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biomedicine and Pharmacotherapy, 128(May), 110–277. https://doi.org/10.1016/j.biopha.2020.110277 |
dc.relation.references | Sovernigo, T. C., Adona, P. R., Monzani, P. S., Guemra, S., Barros, F. D. A., Lopes, F. G., & Leal, C. L. V. (2017). Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reproduction in Domestic Animals, 52(4), 561–569. https://doi.org/10.1111/rda.12946 |
dc.relation.references | Spinaci, M., Bucci, D., Muccilli, V., Cardullo, N., Nerozzi, C., & Galeati, G. (2019). A polyphenol-rich extract from an oenological oak-derived tannin influences in vitro maturation of porcine oocytes. Theriogenology, 129, 82–89. https://doi.org/10.1016/j.theriogenology.2019.02.017 |
dc.relation.references | Sreelatha, S., & Padma, P. R. (2009). Antioxidant Activity and Total Phenolic Content of Moringa oleifera Leaves in Two Stages of Maturity. Plant Foods for Human Nutrition, 64(303). |
dc.relation.references | Sun, B., Ricardo-da-Silva, J. M., & Spranger, I. (1998). Critical Factors of Vanillin Assay for Catechins and Proanthocyanidins. Journal of Agricultural and Food Chemistry, 46(10), 4267–4274. https://doi.org/10.1021/jf980366j |
dc.relation.references | Tarazona, M., Olivera, M., & Lenis, Y. (2010). Mitochondrial rol and oxidative stress in the developmental blockade of in vitro produced bovine embryos. Archivos de Medicina Veterinaria, 133(3), 125–133. https://doi.org/10.4067/S0301-732X2010000300003 |
dc.relation.references | Tiloke, C., Anand, K., Gengan, R. M., & Chuturgoon, A. A. (2018). Moringa oleifera and their phytonanoparticles: Potential antiproliferative agents against cancer. Biomedicine and PharmTiloke, 108(April), 457–466. https://doi.org/10.1016/j.biopha.2018.09.060 |
dc.relation.references | Timme, A. R., Hahn, M. E., Hansen, J. M., Rastogi, A., & Roy, M. A. (2018). Redox stress and signaling during vertebrate embryonic development: Regulation and responses. Seminars in Cell and Developmental Biology, 80, 17–28. https://doi.org/10.1016/j.semcdb.2017.09.019 |
dc.relation.references | Toit, E. S. d., Sithole, J., & Vorster, J. (2020). Leaf harvesting severity affects total phenolic and tannin content of fresh and dry leaves of Moringa oleifera Lam. trees growing in Gauteng, South Africa. South African Journal of Botany, 129, 336–340. https://doi.org/10.1016/j.sajb.2019.08.035 |
dc.relation.references | Torres C., H., Colmenares D., A. J., & Isaza M., J. H. (2013). Total Phenolics Antioxidant Activity and Phytochemical Profile of Some Plants From the Yotoco National Protected Forest. Revista de Ciencias, 17, 35–44. |
dc.relation.references | Torres, V., Muñoz B, L., Urrego B, R., Echeverry, J. J., & Lopez, A. (2016). 81 RESVERATROL DURING IN VITRO MATURATION IMPROVES THE QUALITY OF BOVINE OOCYTE AND ENHANCES EMBRYONIC DEVELOPMENT IN VITRO. Reproduction, Fertility and Development, 29(1), 199–199. https://doi.org/10.1071/RDv29n1Ab181 |
dc.relation.references | Varghese, A., Ly, K., Corbin, C., Mendiola, J., & Agarwal, A. (2011). Oocyte developmental competence and embryo development: impact of lifestyle and enviromental risk factors. Reproductive BioMedicine, 22, 410–420. |
dc.relation.references | Vásquez, N., Torres, V., & Rojano, B. (2014). Efecto del Ácido Ascórbico durante Maduración In Vitro de Oocitos Bovinos en la Producción de Especies Reactivas de Oxígeno (ERO) y Competencia para el Desarrollo Embrionario. Información Tecnológica, 25(2), 141–150. https://doi.org/10.4067/S0718-07642014000200016 |
dc.relation.references | Vats, S., & Gupta, T. (2017). Evaluation of bioactive compounds and antioxidant potential of hydroethanolic extract of Moringa oleifera Lam. from Rajasthan, India. Physiology and Molecular Biology of Plants, 23(1), 239–248. https://doi.org/10.1007/s12298-016-0407-6 |
dc.relation.references | Vázquez-León, L. A., Páramo-Calderón, D. E., Robles-Olvera, V. J., Valdés-Rodríguez, O. A., Pérez-Vázquez, A., García-Alvarado, M. A., & Rodríguez-Jimenes, G. C. (2017). Variation in bioactive compounds and antiradical activity of Moringa oleifera leaves: influence of climatic factors, tree age, and soil parameters. European Food Research and Technology, 243(9), 1593–1608. https://doi.org/10.1007/s00217-017-2868-4 |
dc.relation.references | Velez, I. C., Chica, A., Urrego, R., Torres, V., Jimenez-Escobar, C., & Zambrano-Varon, J. (2017). Producción in vitro de embriones a partir de complejos cúmulos oocitos tipo II en bovinos Bos indicus. CES Medicina Veterinaria y Zootecnia, 12(2), 76–87. https://doi.org/10.21615/cesmvz.12.2.1 |
dc.relation.references | Verma, A. R., Vijayakumar, M., Mathela, C. S., & Rao, C. V. (2009). In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food and Chemical Toxicology, 47(9), 2196–2201. https://doi.org/10.1016/j.fct.2009.06.005 |
dc.relation.references | Viana, J. (2020). 2019 Statistics of Embryo Collection and Transfer in Domestic Farm Animals. Embryo Transfer Newletter, 38(4), 14–26. |
dc.relation.references | Vyas, S., Kachhwaha, S., & Kothari, S. L. (2015). Comparative analysis of phenolic contents and total antioxidant capacity of Moringa oleifera Lam. Pharmacognosy Journal, 7(1), 44–51. https://doi.org/10.5530/pj.2015.7.5 |
dc.relation.references | Wang, Fang, Long, S., Zhang, J., Yu, J., Xiong, Y., Zhou, W., … Jiang, H. (2020). Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer. Food Bioscience, 37(July), 100691. https://doi.org/10.1016/j.fbio.2020.100691 |
dc.relation.references | Wang, Feng, Tan, D., He, C., Tian, X., Liu, GuoShiLi, Y., Ji, P., & Zhang, L. (2013). Beneficial effect of resveratrol on bovine oocyte maturation and subsequent embryonic development after in vitro fertilization. Fertility and Sterility, 101(2), 577-586.e1. https://doi.org/10.1016/j.fertnstert.2013.10.041 |
dc.relation.references | Will, M. A., Clark, N. A., & Swain, J. E. (2011). Biological pH buffers in IVF: Help or hindrance to success. Journal of Assisted Reproduction and Genetics, 28(8), 711–724. https://doi.org/10.1007/s10815-011-9582-0 |
dc.relation.references | Wrenzycki, C. (2016). In vitro culture systems: How far are we from optimal conditions? Animal Reproduction, 13(3), 279–282. https://doi.org/10.21451/1984-3143-AR869 |
dc.relation.references | Wu, L., Li, L., Chen, S., Wang, L., & Lin, X. (2020). Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247. https://doi.org/10.1016/j.seppur.2020.117014 |
dc.relation.references | Wulandari, L. R., Umiati, S., & Sujuti, H. (2019). Protective effect of methanol extract of kelor (Moringa oleifera) leaves on glutathione peroxidase (gpx) levels in trabecular meshwork cell culture of primary congenital glaucoma patients. EurAsian Journal of BioSciences, 13(2), 839–844. |
dc.relation.references | Yang, J., & Liu, R. H. (2013). The phenolic profiles and antioxidant activity in different types of tea. International Journal of Food Science and Technology, 48(1), 163–171. https://doi.org/10.1111/j.1365-2621.2012.03173.x |
dc.relation.references | Zabihi, A., Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2019). Resveratrol addition to in vitro maturation and in vitro culture media enhances developmental competence of sheep embryos. Domestic Animal Endocrinology, 68, 25–31. https://doi.org/10.1016/j.domaniend.2018.12.010 |
dc.relation.references | Zabihi, Adeleh, Shabankareh, H. K., Hajarian, H., & Foroutanifar, S. (2021). In vitro maturation medium supplementation with resveratrol improves cumulus cell expansion and developmental competence of Sanjabi sheep oocytes. Livestock Science, 243(December 2020), 104378. https://doi.org/10.1016/j.livsci.2020.104378 |
dc.relation.references | Zhang, Y., Lin, H., Liu, C., Huang, J., & Liu, Z. (2020). A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomedicine and Pharmacotherapy, 127(April), 110186. https://doi.org/10.1016/j.biopha.2020.110186 |
dc.relation.references | Zhao, X. ‐ M., Wang, N., Hao, H. ‐ S., Li, C.-Y., Zhao, Y. ‐ H., Yan, C. ‐ L., … Hua-Bin. (2018). Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. Journal of Pineal, 64(1), 42–49. https://doi.org/10.1111/ijlh.12426 |
dc.relation.references | Zhong, R. zhen, & Zhou, D. wei. (2013). Oxidative stress and role of natural plant derived antioxidants in animal reproduction. Journal of Integrative Agriculture, 12(10), 1826–1838. https://doi.org/10.1016/S2095-3119(13)60412-8 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.agrovoc | Extractos de hoja |
dc.subject.agrovoc | Extractos vegetales |
dc.subject.agrovoc | Antioxidantes |
dc.subject.agrovoc | Moringa |
dc.subject.proposal | blastocisto |
dc.subject.proposal | Biotecnología |
dc.subject.proposal | Estrés oxidativo |
dc.subject.proposal | Planta medicinal |
dc.subject.proposal | Ganado vacuno |
dc.subject.proposal | blastocyst |
dc.subject.proposal | biotechnology |
dc.subject.proposal | oxidative stress |
dc.subject.proposal | medicinal plant |
dc.subject.proposal | cattle |
dc.title.translated | Antioxidant effect of Moringa oleifera extract in the in vitro maturation of bovine oocytes |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_e19f295774971610 |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
oaire.fundername | Universidad Nacional de Colombia |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit