dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Beltran Calvo, Gloria Ines |
dc.contributor.author | Lema Zambrano, Juan Camilo |
dc.date.accessioned | 2021-10-05T15:13:46Z |
dc.date.available | 2021-10-05T15:13:46Z |
dc.date.issued | 2021-09-30 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80384 |
dc.description | ilustraciones, fotografías a color, gráficas, tablas |
dc.description.abstract | En la actualidad, el alto consumo de arena en el concreto hidráulico constituye un problema
de sostenibilidad y de desempeño para la construcción, pues las fuentes de agregado de
buena calidad se hacen más escasas con el transcurrir de los años, considerando que es
el material más explotado por el hombre después del agua. Con el fin de abordar opciones
de aprovechamiento de arenas con presencia de minerales nocivos, en esta investigación
se ha propuesto el mejoramiento mediante el uso de dos moléculas basadas en tecnología
de polímeros polieléctricos denominados experimentales 1931-1 y 1831-5. Para dichos
polímeros se evaluó la retención de flujo en presencia de arenas de mala calidad y se ha
comparado su desempeño con un policarboxilato convencional (EXP 3457), en dosis que
van de 0,35% a 0,60% respecto del peso del cementante. Se empleó un modelo factorial
de diseño de experimentos para mezclas de concreto con un contenido de arena del 25%
al 40% y se utilizaron dos fuentes de agregado (Cordobita y Cogua) con diferentes tipos
de minerales nocivos como cuarzos ondulantes, arcillolitas, micas y óxidos que se
caracterizaron mediante petrografía, absorción TOC y FRX. Los resultados del diseño
experimental se modelaron bajo la metodología de mortero equivalente de concreto,
obteniendo un mejoramiento del 15% al 25% en términos de la capacidad de reducción de
agua en las mezclas, de un 25% al 90% en términos de capacidad de retención de flujo a
los 90 minutos, y una mitigación del incremento del esfuerzo de fluencia de 2 a 3 veces
comparando el desempeño de los polímeros polieléctricos, versus el policarboxilato
convencional evaluado. La investigación demuestra que no se generan efectos
significativos sobre el fraguado inicial y final de las mezclas, y tampoco en su desarrollo
de resistencia a compresión a todas las edades. Finalmente, se evidenció que el
desempeño de esta alternativa de mitigación química depende ampliamente tanto de la composición química y morfología del agregado como de la capacidad de bloqueo
catiónico que tiene cada tipo de polímero. (Texto tomado de la fuente). |
dc.description.abstract | Nowadays, the use of sand in the concrete generates a sustainability and performance
problem for the construction, since the good quality aggregates resources become scarce
over the years, considering that this material is the most demanded by man after water. In
order to address options for the use of sands with harmful minerals, in this research, it was
proposed their improvement by using two molecules based on polyelectric polymer
technology named experimental 1931-1 and 1831-5. For these polymers, flow retention
was evaluated in the presence of poor-quality sands and then performance was compared
to a conventional slump retainer polycarboxylate (EXP 3457) at dosage from 0,35% to
0,60% over the total cementitious weight. It was used a factorial experimental design for
concrete mixes with sand content varying from 25% to 40% and two sand sources were
used (Cordobita and Cogua) with different harmful minerals such as wavy quartz, clays,
micas, and oxides which were characterized by petrography, TOC absorption and XRF.
The experimental design results were modeled using the equivalent mortar of concrete
methodology, obtaining an improvement of 15% to 25% in terms of water reduction in the
mixes, 25% to 90% in term of flow retention capability after 90 minutes, and a mitigation of
the yield stress increasing of 2 to 3 times, comparing the proposed polyelectric polymers
performance vs the conventional polycarboxylate. This research demonstrates that there
are not significant effects, neither on the initial and final setting of the mixtures, nor on the
development of compressive strength at all ages. Finally, it was evidenced that the
performance of this chemical mitigation alternative depends widely not only on the chemical
composition and morphology of the aggregates but also on the cationic blocking capacity
of each type of polymer. |
dc.format.extent | xxvi, 206 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject.ddc | 690 - Construcción de edificios::691 - Materiales de construcción |
dc.title | Mejoramiento del comportamiento físico y químico de las arcillas y materiales micáceos presentes en agregados finos de mala calidad para su uso en la producción de concreto hidráulico |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Estructuras |
dc.description.notes | Material de investigación alrededor del uso de materiales de mala calidad en el concreto de manera sostenible. |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ingeniería - Estructuras |
dc.description.methods | Para el desarrollo de la presente investigación, se han planteado cinco fases conceptuales y experimentales, en las cuales se contempla la selección de materiales, las técnicas de caracterización, la evaluación de desempeño y el modelamiento de las mezclas de concreto a través del mortero empleando los diferentes aditivos químicos a estudiar. |
dc.description.researcharea | Materiales para estructuras |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Ingeniería Civil y Agrícola |
dc.publisher.faculty | Facultad de Ingeniería |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Abbas, Z. H., & Majdi, H. S. (2017). Study of heat of hydration of Portland cement used in Iraq. Case Studies in Construction Materials, 7(April), 154–162. https://doi.org/10.1016/j.cscm.2017.07.003 |
dc.relation.references | Abo-El-Enein, S. A., El-Sayed, H. A., Ali, A. H., Mohammed, Y. T., Khater, H. M., & Ouda, A. S. (2014). Physico-mechanical properties of high performance concrete using different aggregates in presence of silica fume. HBRC Journal, 10(1), 43–48. https://doi.org/10.1016/j.hbrcj.2013.06.002 |
dc.relation.references | Al-Neshawy, F. (2003). Building Materials Technology. In Building Materials Technology (pp. 1–41). |
dc.relation.references | Amann-Hildenbrand, A., Bertier, P., Busch, A., & Krooss, B. M. (2013). Experimental investigation of the sealing capacity of generic clay-rich caprocks. International Journal of Greenhouse Gas Control, 19(October 2017), 620–641. https://doi.org/10.1016/j.ijggc.2013.01.040 |
dc.relation.references | Ara Jeknavorian, & Koehler, E. (2010). Use of Chemical Admixtures to Modify the Rheological Behavior of Cementitious Systems Containing Manufactured Aggregates. Concrete Sustainability Conference, 1–14. |
dc.relation.references | ASOGRAVAS. (2016). Colombia duplicará su consumo de agregados pétreos en los próximos diez años - Grandes Realidades | ArgosGrandes Realidades | Argos. Retrieved October 24, 2017, from http://grandesrealidades.argos.co/colombia-duplicara-consumo-agregados-petreos-los-proximos-diez-anos/ |
dc.relation.references | Banfill, P. F. G. (1991). Rheology of Fresh Cement and Concrete. 2006, 61–130. https://doi.org/10.4324/9780203473290 |
dc.relation.references | Barton, C. D., & Karathanasis, A. D. (2002). CLAY MINERALS, United States Department of Agriculture Forest Service, Aiken, South Carolina, U.S.A & University of Kentucky, Lexington, Kentucky, U.S.A. https://doi.org/10.1081/E-ESS-120001688 |
dc.relation.references | BASF. (2019). Master Builders Solutions BASF. Retrieved February 24, 2019, from https://www.master-builders-solutions.basf.com.co/es-co |
dc.relation.references | Brindley, G. W. (1952). Structural Mineralogy of Clays. Clays and Clay Minerals, 1(1), 33–43. https://doi.org/10.1346/CCMN.1952.0010105 |
dc.relation.references | Cardoso, F. A., John, V. M., Pileggi, R. G., & Banfill, P. F. G. (2014). Characterisation of rendering mortars by squeeze-flow and rotational rheometry. Cement and Concrete Research, 57, 79–87. https://doi.org/10.1016/j.cemconres.2013.12.009 |
dc.relation.references | Cavazzuti, M. (2013). Optimization Methods: From Theory to Design Scientific and Technological Aspects in Mechanics. Heidelberg: Springer. |
dc.relation.references | Chen, G., Lei, J., Du, Y., Du, X., & Chen, X. (2018). A polycarboxylate as a superplasticizer for montmorillonite clay in cement: Adsorption and tolerance studies. Arabian Journal of Chemistry, 11(6), 747–755. https://doi.org/10.1016/j.arabjc.2017.12.027 |
dc.relation.references | DANE. (2021). Boletín Técnico Indicadores Económicos Alrededor de la Boletín Técnico. Retrieved from https://www.dane.gov.co/files/investigaciones/boletines/pib_const/Bol_ieac_IVtrim20.pdf |
dc.relation.references | Dean, A. (2017). Design and Analysis of Experiments (Second). Dayton: Springer. Del Vecchio, R. J. (2007). Design of Experiments. Handbook of Vinyl Formulating: Second Edition, 515–527. https://doi.org/10.1002/9780470253595.ch22 |
dc.relation.references | El país. (2014). El 2015 será otro buen año para el sector de la construcción, dicen expertos. Retrieved October 25, 2017, from http://www.elpais.com.co/economia/el-2015-sera-otro-buen-ano-para-el-sector-de-la-construccion-dicen-expertos.html |
dc.relation.references | Environmental Justice Organizations. Liabilities and Trade. (2014). Building an economy on quicksand. Retrieved from http://www.ejolt.org/2014/08/building-an-economy-on-quicksand/ |
dc.relation.references | Erdem, T. K., Khayat, K. H., & Yahia, A. (2009). Correlating rheology of self-consolidating concrete to corresponding concrete-equivalent mortar. ACI Materials Journal, 106(2), 154–160. |
dc.relation.references | Ermut, A. H. R. M. (2001). BASELINE STUDIES OF THE CLAY MINERALS SOCIETY SOURCE CLAYS : LAYER-CHARGE DETERMINATION AND CHARACTERISTICS OF THOSE MINERALS CONTAINING 2 : 1 LAYERS. 49(5), 393–397. |
dc.relation.references | Feys, D., Cepuritis, R., Jacobsen, S., Lesage, K., Secrieru, E., & Yahia, A. (2017). Measuring Rheological Properties of Cement Pastes: Most common Techniques, Procedures and Challenges. RILEM Technical Letters, 2, 129–135. https://doi.org/10.21809/rilemtechlett.2017.43 |
dc.relation.references | Germann Instruments A/S. (2010). Rheology using the ICAR Plus – An Introduction. Copenhagen. |
dc.relation.references | Gillespie, M., & Styles, M. (1999). Rock classification, igneous rocks. In BGS Rock Classification Scheme (2nd ed., Vol. 1). Nottingham. |
dc.relation.references | Gillespie, M., & Styles, M. (1999). Rock classification, igneous rocks. In BGS Rock Classification Scheme (2nd ed., Vol. 1). Nottingham. |
dc.relation.references | Gök, S. G., & Kılınç, K. (2016). Effect of Clay-Mitigating Chemical Admixtures on Compressive Strength of Concrete. (April), 518–521 |
dc.relation.references | Gómez-Zamorano, L. Y., García-Guillén, G., & Acevedo-Dávila, J. L. (2015). Estudio de la hidratación de pastas de cemento portland reemplazadas con escoria granulada de alto horno, ceniza volante y metacaolín: efecto del empleo de dos aditivos superplastificantes. Revista ALCONPAT, 5(3), 193–208. https://doi.org/10.21041/ra.v5i3.89 |
dc.relation.references | Goven, N. (2001). MICA STRUCTURE AND FIBROUS GROWTH OF ILLITE. Clays and Clay Minerals, 49(3), 189–196. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.8483&rep=rep1&type=pdf |
dc.relation.references | Guerra, N. (2014). 1 Las Arcillas: Propiedades Y Usos. 1–28. https://doi.org/10.1007/s10551-010-0632-9 |
dc.relation.references | Gutierrez, L. (2003). EL CONCRETO Y OTROS MATERIALES PARA LA CONSTRUCCIÓN. Manizalez. |
dc.relation.references | Hasdemir, S., Tuʇrul, A., & Yilmaz, M. (2016). The effect of natural sand composition on concrete strength. Construction and Building Materials, 112, 940–948. https://doi.org/10.1016/j.conbuildmat.2016.02.188 |
dc.relation.references | Hill, T., Werner, M., & Horton, J. (1997). Chemical composition of sedimentary rocks in Colorado, Kansas, Montana, Nebraska, North Dakota, South Dakota and Wyoming. Washington. |
dc.relation.references | Hu, J., Ge, Z., & Wang, K. (2014). Influence of cement fineness and water-to-cement ratio on mortar early-age heat of hydration and set times. Construction and Building Materials, 50(January), 657–663. https://doi.org/10.1016/j.conbuildmat.2013.10.011 |
dc.relation.references | Hydration Products of Cement | Chemical Reaction | Significance. (n.d.). Retrieved November 5, 2018, from https://learnandearnd5.blogspot.com/2017/08/hydration-products-of-cement-chemical.html |
dc.relation.references | Iffat, S. (2015). Relation Between Density and Compressive Strength of Hardened Concrete. Concrete Research Letters, 6(4), 182–189. |
dc.relation.references | Kondelchuk, D., & Miskovsky, K. (2009). Determination of the test methods sensitive to free mica content in aggregate fine fractions. Journal of Materials Engineering and Performance, 18(3), 282–286. https://doi.org/10.1007/s11665-008-9293-6 |
dc.relation.references | Kosmatka, S. H., & Wilson, M. (2013). Design and Control of Concrete Mixtures. In Universidad Carlos III de Madrid (15 th). https://doi.org/10.1080/08920753.2011.566117 |
dc.relation.references | Liu, X., Jianan, G., & Lai, G. (2017). Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete. Journal of Industrial and Engineering Chemistry, 55, 80–90. https://doi.org/10.1016/J.JIEC.2017.06.031 |
dc.relation.references | Lxxi, R. O. K., Przelaskowska, A., Łykowska, G., Klaja, J., Kowalska, S., & Gąsior, I. (2015). Application of the cation exchange capacity parameter ( CEC ) to the characterisation of the swelling capacity of lower Paleozoic , Carpathian Flysch and Miocene Carpathian Foredeep clay rocks. (6), 384–389. |
dc.relation.references | MacÍas-Quiroga, I. F., Giraldo-Gómez, G. I., & Sanabria-González, N. R. (2018). Characterization of Colombian Clay and Its Potential Use as Adsorbent. Scientific World Journal, 2018, 15–17. https://doi.org/10.1155/2018/5969178 |
dc.relation.references | Madero, N., Madero, F., Paola, S., Ortíz, M., Alberto, C., Reyes, R., & Alarcón, M. C. (2014). Characterization and testing of rock aggregates of the Santa Marta Batholith , ( Colombia ) Caracterización y ensayo de agregados de rocas del Batolito de Santa Marta , ( Colombia ) Caracterização e testes de agregados de rochas do Batólito de Santa Marta. 27(2), 87–104. |
dc.relation.references | Master Builders Solutions. (2020). Aditivo para hormigón de Master Builders Solutions, consigue una mención en los Premios Construmat 2019. Retrieved from https://www.master-builders-solutions.com/es-es/quienes-somos/noticias-y-comunicacion/construmat-awards-2019 |
dc.relation.references | Melo, O. O., López, L. A., & Melo, S. E. (2007). Diseño de Experimentos: Métodos y Aplicaciones. |
dc.relation.references | MINVIVIENDA. (2015). Reglamentacion de construccion sostenible. Retrieved October 24, 2017, from http://www.minvivienda.gov.co/sala-de-prensa/noticias/2015/julio/colombia-puso-en-marcha-su-nueva-reglamentacion-de-construccion-sostenible |
dc.relation.references | Montoya, D. M., & Reyes, G. A. (2003). Geología de la Plancha 209 Zipaquirá. Servicio Geológico Colombiano, 156. |
dc.relation.references | Moreno, R. (2005). Reología de suspensiones cerámicas. Madrid. |
dc.relation.references | Ngugi, H. N., Mutuku, R. N., & Gariy, Z. A. (2014). Effects of Sand Quality on Compressive Strength of Concrete: A Case of Nairobi County and Its Environs, Kenya. Open Journal of Civil Engineering, 4(September), 255–273. https://doi.org/10.4236/ojce.2014.43022 |
dc.relation.references | Nikolaides, A., Manthos, E., Sarafidou, M. (2007). Sand equivalent and methylene blue value of aggregates for highway engineering. Foundations of Civil and Environmental Engineering, 10(06), 111–121 |
dc.relation.references | NIST. (2021). National Institut of Standards and Technology. Retrieved from https://webbook.nist.gov/cgi/cbook.cgi?ID=61-73-4 |
dc.relation.references | NRMCA. (2017). Concrete in practice. Retrieved November 5, 2018, from https://www.concreteanswers.org/CIPs/CIP26.htm |
dc.relation.references | Ochieng, O. (2016). Characterization and classification of clay minerals for potential applications in Rugi Ward, Kenya. African Journal of Environmental Science and Technology, 10(11), 415–431. https://doi.org/10.5897/ajest2016.2184 |
dc.relation.references | Olanitori, L. (2006). Mitigating the effect of clay content of sand on concrete strength. 31st Conference on Our World in Concrete & Structures, 16–17. |
dc.relation.references | Olanitori, L. M., & Olotuah, A. O. (2005). the Effect of Clayey Impurities in Sand on the Crushing Strength of Concrete ( a Case Study of Sand in Akure Metropolis , Ondo State , Nigeria ) the Effect of Clayey Impurities in Sand on the Crushing Strength of Concrete ( a Case Study of Sand in Akure M. |
dc.relation.references | Padilla, C. R. (2011). Efecto de la temperatura y tiempo de tratamiento térmico de las almendras trituradas de Sacha Inchi (Plukenetia volubilis L.) sobre el rendimiento y las características físico-químicas del aceite obtenido por prensado mecánico en frío. 2. |
dc.relation.references | Pal, D. K., Bhattacharyya, T., Sinha, R., Srivastava, P., Dasgupta, A. S., Chandran, P., … Nimje, A. (2012). Clay minerals record from Late Quaternary drill cores of the Ganga Plains and their implications for provenance and climate change in the Himalayan foreland. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 27–37. https://doi.org/10.1016/j.palaeo.2011.05.009 |
dc.relation.references | Poole, A., & Sims, I. (2016). Concrete petrography. A Handbook of investigative Techniques. CRC Press. |
dc.relation.references | Rajadell, F., Planelles, J., & Climente, I. (2014). Cálculo del tensor de deformaciones en puntos cuánticos enterrados en matrices semiconductoras. Departament de Ciències Experimentals, Universitat Jaume I, 1–29. |
dc.relation.references | Ramachandran, V. (1997). Alkali-aggregate expansion inhibiting admixtures. Cement and Concrete Composites, 20, 149–161. |
dc.relation.references | Rivera L, G. A. (2011). Concreto Simple. Popayan: Universidad del Cauca. |
dc.relation.references | Rouseel, N. (2012). Understanding the rheology of concrete. Cambridge: Woodhead Publishing Limited. |
dc.relation.references | Rudy, A., & Olek, J. (2012). Optimization of Mixture Proportions for Concrete Pavements—Influence of Supplementary Cementitious Materials, Paste Content and Aggregate Gradation. 69p. https://doi.org/10.5703/1288284315038 |
dc.relation.references | Schulze, D. G., & Lafayette, W. (2005). Clay minerals. 246–254. |
dc.relation.references | Servicio Geológico Colombiano. (2003). Geología de las planchas 11 Santa Marta y 18 Ciénaga. Memoria Explicativa. |
dc.relation.references | Servicio Geológico Colombiano. (2008). PLANCHA 209 - Zipaquira |
dc.relation.references | Servicio Geológico Colombiano. (2019). geoportal @ www2.sgc.gov.co. Retrieved from https://www2.sgc.gov.co/sgc/mapas/Paginas/geoportal.aspx |
dc.relation.references | Servicio Geológico Colombino. (2009). Plancha 18 - Ciénaga. 720. |
dc.relation.references | Shetty, M. S. (2000). Concrete Technology Theory and practice (Vol. 055). https://doi.org/10.1007/s13398-014-0173-7.2 |
dc.relation.references | Thermo Fisher Scientific. (2020). HAAKETM RheoWinTM Measuring and Evaluation Software. Retrieved from Measuring and Evaluation Software website: https://www.thermofisher.com/order/catalog/product/098-5062#/098-5062 |
dc.relation.references | Tobón, G. B., & Sánchez, C. B. (2014). Comportamiento mecánico de concreto con agregado reciclado tratado con lechadas pobres. Repository.Javeriana.Edu.Co. Retrieved from http://repository.javeriana.edu.co/handle/10554/15052 |
dc.relation.references | Universidad Autónoma de Madrid. (2021). Variedades de Cuarzo Microcristalino Microcris Información de caracter general. 1–16. |
dc.relation.references | Universidad Autónoma de Madrid. (2021). Variedades de Cuarzo Microcristalino Microcris Información de caracter general. 1–16.
Uriel, D. (2012). Procesos de dispersión de arcillas en agregados finos para mejorar su comportamiento físico y químico. Universidad Autónoma de Querétano.
Woolf, G. (2019). World of Cities. BASF. Retrieved from http://www.worldcat.org/oclc/1050133187 TS - WorldCat T4 - The rise and fall of the ancient city M4 - Citavi |
dc.relation.references | Yang, W. (2015). The Issues and Discussion of Modern Concrete Science. https://doi.org/10.1007/978-3-662-47247-7 |
dc.relation.references | Yoon, M., Kim, G., Choel, G., Lee, Y., & Lee, T. (2015). Effect of coarse aggregate type and loading level on the high temperature properties of concrete. Construction and Building Materials, 78, 26–33. https://doi.org/10.1016/j.conbuildmat.2014.12.096 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Concrete products |
dc.subject.lemb | Productos de hormigón |
dc.subject.lemb | Mica |
dc.subject.lemb | Mica |
dc.subject.proposal | Arena |
dc.subject.proposal | Arcillas |
dc.subject.proposal | Concreto hidráulico |
dc.subject.proposal | Sustainability |
dc.subject.proposal | Sand |
dc.subject.proposal | Sostenibilidad |
dc.subject.proposal | Polímero polieléctrico |
dc.subject.proposal | Clays |
dc.subject.proposal | Polyelectric polymer |
dc.subject.proposal | Hydraulic concrete |
dc.subject.unesco | Materiales de construcción |
dc.subject.unesco | Building materials |
dc.title.translated | Improvement of the physical and chemical behavior of clays and micaceous materials present in poor quality fine aggregates for use in the production of hydraulic concrete |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Público general |