Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorMolina Ochoa, Alejandro
dc.contributor.authorCelis Cataño, Cristian Yesit
dc.date.accessioned2021-10-13T20:17:58Z
dc.date.available2021-10-13T20:17:58Z
dc.date.issued2020-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80545
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractA sensitivity analysis was performed on the petroleum aging sub-models considered in the COW simulator designed by Ramirez et al. 2017. The sensitivity analysis determined the experimental parameters with the greatest impact on COW predictions, determining that the parameters associated with evaporation b = U(2), emulsion U(5) = 𝑌��!"#, and dispersion U(7) = b, showed greater sensitivity in predicting the aging model. In this way, the review and design of experimental setups was carried out to improve the predictions of Evaporation and emulsion. In this research, the dispersion model was not addressed by the scope of the project. Finally, a small-scale wind tunnel of 0.485 cm x 0.485 cm of cross-sectional areas and 87 cm long was designed to carry out oil evaporation experiments. The tunnel has the capacity to operate at speeds of 0.22ms-1 - 7ms-1 and temperatures of 27oC - 32oC. The tunnel will evaluate the effect of wind speed on the evaporated fraction of 4 types of Colombian crude. Regarding the emulsion, a linear shaker was used, which allowed to have an adjusted control of the temperature and the energy printed on the crude emulsion in water, in such a way that it simulated methoceanic conditions of the Colombian Caribbean Sea, to finally obtain parameters experimental tests for the emulsion model.
dc.description.abstractSe realizó un análisis de sensibilidad sobre los sub modelos de envejecimiento de petróleo considerados en el simulador COW diseñado por Ramírez et al. 2017. El análisis de sensibilidad determinó los parámetros experimentales de mayor impacto en las predicciones de COW, determinando que los parámetros asociados con la evaporación, b = U(2), emulsión U(5) = Y_max, y dispersión U(7) = b, presentaban una mayor sensibilidad en la predicción del modelo de envejecimiento. De esta forma se procedió a realizar la revisión y diseño de montajes experimentales para mejorar las predicciones de Evaporación y emulsión. En esta investigación el modelo de dispersión no fue abordado por los alcances del proyecto. Finalmente se diseñó un túnel de viento de pequeña escala de 0.485 cm x 0.485 cm de área transversal y 87 cm de largo para realizar experimentos de evaporación de crudo. El túnel posee la capacidad de operar a velocidades de 0.22ms-1 – 7ms-1 y temperaturas de 27ºC – 32ºC. El túnel permitió evaluar el efecto de la velocidad del viento sobre la fracción evaporada de cuatro tipos de crudos Colombianos. Para evaluar el proceso de emulificación, se utilizó un agitador lineal, el cual permitía tener un control ajustado de la temperatura y de la energía impresa sobre la emulsión crudo en agua, de forma que simulara condiciones de metoceanicas del mar Caribe Colombiano, para finalmente se obtener parámetros experimentales para el modelo de emulsión. (Texto tomado de la fuente)
dc.format.extentxii, 41 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleUpgrading the colombian oil weathering (COW) model-Experimental approach.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupBioprocesos y Flujos Reactivos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaHidrocarburos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Procesos y Energía
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.references[1] M. Ruiz-Ochoa, E. Beier, G. Bernal, and E. D. Barton, “Sea surface temperature variability in the Colombian Basin, Caribbean Sea,” Deep. Res. Part I Oceanogr. Res. Pap., vol. 64, pp. 43–53, Jun. 2012, doi: 10.1016/j.dsr.2012.01.013.
dc.relation.references[2] A. K. Mishra and G. S. Kumar, “ScienceDirect Weathering of Oil Spill : Modeling and Analysis,” Aquat. Procedia, vol. 4, no. Icwrcoe, pp. 435–442, 2015, doi: 10.1016/j.aqpro.2015.02.058.
dc.relation.references[3] M. L. Spaulding, “State of the art review and future directions in oil spill modeling,” Mar. Pollut. Bull., vol. 115, no. 1–2, pp. 7–19, 2017, doi: 10.1016/j.marpolbul.2017.01.001.
dc.relation.references[4] M. Afenyo, F. Khan, B. Veitch, and M. Yang, “Modeling oil weathering and transport in sea ice,” MPB, vol. 107, no. 1, pp. 206–215, 2016, doi: 10.1016/j.marpolbul.2016.03.070.
dc.relation.references[5] Y. Cohen, D. Mackay, and W. Y. Shiu, “Mass transfer rates between oil slicks and water,” Can. J. Chem. Eng., vol. 58, no. 5, pp. 569–575, 1980, doi: 10.1002/cjce.5450580504.
dc.relation.references[6] M. Li and C. Garrett, “The relationship between oil droplet size and upper ocean turbulence,” Mar. Pollut. Bull., vol. 36, no. 12, pp. 961–970, 1998, doi: 10.1016/S0025-326X(98)00096-4.
dc.relation.references[7] P. Tkalich and E. S. Chan, “Vertical mixing of oil droplets by breaking waves,” Mar. Pollut. Bull., vol. 44, no. 11, pp. 1219–1229, 2002, doi: 10.1016/S0025-326X(02)00178-9.
dc.relation.references[8] H. Xie, P. D. Yapa, and K. Nakata, “Modeling emulsification after an oil spill in the sea,” J. Mar. Syst., vol. 68, no. 3–4, pp. 489–506, Dec. 2007, doi: 10.1016/J.JMARSYS.2007.02.016.
dc.relation.references[9] M. Reed et al., “Oil spill modeling towards the close of the 20th century: Overview of the state of the art,” Spill Sci. Technol. Bull., vol. 5, no. 1, pp. 3–16, 1999, doi: 10.1016/S1353-2561(98)00029-2.
dc.relation.references[10] A. K. Mishra and G. S. Kumar, “Weathering of Oil Spill: Modeling and Analysis,” Aquat. Procedia, vol. 4, no. Icwrcoe, pp. 435–442, 2015, doi: 10.1016/j.aqpro.2015.02.058.
dc.relation.references[11] F. Betancourt, A. Palacio, and A. Rodriguez, “Effects of the Mass Transfer Process in Oil Spill,” Americal Journal of Applied Sciences, vol. 2, no. 5. pp. 939–946, 2005, [Online]. Available: http://thescipub.com/html/10.3844/ajassp.2005.939.946.
dc.relation.references12] C. Stevens, L. J. Thibodeaux, E. B. Overton, K. T. Valsaraj, and N. D. Walker, “Dissolution and Heavy Residue Sinking of Subsurface Oil Droplets: Binary Component Mixture Dissolution Theory and Model-Oil Experiments,” J. Environ. Eng., vol. 143, no. 10, p. 04017067, 2017, doi: 10.1061/(ASCE)EE.1943-7870.0001242.
dc.relation.references[13] J. Koyama et al., “Simulated distribution and ecotoxicity-based assessment of chemically-dispersed oil in Tokyo Bay,” Mar. Pollut. Bull., vol. 85, no. 2, pp. 487–493, 2014, doi: 10.1016/j.marpolbul.2014.04.001.
dc.relation.references[14] J. M. Shaw, “A microscopic view of oil slick break-up and emulsion formation in breaking waves,” Spill Sci. Technol. Bull., vol. 8, no. 5–6, pp. 491–501, 2003, doi: 10.1016/S1353-2561(03)00061-6.
dc.relation.references[15] M. Spaulding, A. Odulo, and V. Kolluru, “A hybrid model to predict the entrainment and subsurface transport of oil,” Fifteenth Arct. Mar. Oilspill Progr. Tech. Semin., pp. 67–92, 1992, Accessed: Oct. 18, 2017. [Online]. Available: https://inis.iaea.org/search/search.aspx?orig_q=RN:25009592.
dc.relation.references[16] M. Fingas, B. Fieldhouse, and J. Mullin, “Water-in-oil emulsions results of formation studies and applicability to oil spill modelling,” Spill Sci. Technol. Bull., vol. 5, no. 1, pp. 81–91, 1999, doi: 10.1016/S1353-2561(98)00016-4.
dc.relation.references[17] G. Delvigne, “EXPERIMENTS ON NATURAL AND CHEMICAL DISPERSION OF OIL IN LABORATORY AND FIELD CIRCUMSTANCES,” 1984.
dc.relation.references[18] M. Fingas and C. Brown, “Review of oil spill remote sensing,” Mar. Pollut. Bull., 2014, doi: 10.1016/j.marpolbul.2014.03.059.
dc.relation.references[19] W. C. Yang and H. Wang, “MODELING OF OIL EVAPORATION IN AQUEOUS ENVIRONMENT,” vol. I, 1977.
dc.relation.references[20] G. T. Drozd et al., “Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways,” J. Geophys. Res. Ocean., vol. 120, no. 11, pp. 7300–7315, 2015, doi: 10.1002/2015JC011093.
dc.relation.references[21] K. Kotzakoulakis and S. C. George, “Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model,” Chemosphere, vol. 190, pp. 442–453, Jan. 2018, doi: 10.1016/j.chemosphere.2017.09.142.
dc.relation.references[22] C. K. Saha, W. Wu, G. Zhang, and B. Bjerg, “Assessing effect of wind tunnel sizes on air velocity and concentration boundary layers and on ammonia emission estimation using computational fluid dynamics (CFD),” Comput. Electron. Agric., vol. 78, no. 1, pp. 49–60, Aug. 2011, doi: 10.1016/j.compag.2011.05.011.
dc.relation.references[23] A. P. Wandel, G. N. Brink, N. H. Hancock, and S. Pather, “Spreading rate and dispersion behavior of evaporation-suppressant monolayer on open water surfaces: Part 2 – Under wind stress,” Exp. Therm. Fluid Sci., vol. 87, pp. 171–181, Oct. 2017, doi: 10.1016/J.EXPTHERMFLUSCI.2017.05.006.
dc.relation.references[24] M. T. Pauken, “An experimental investigation of combined turbulent free and forced evaporation,” Exp. Therm. Fluid Sci., vol. 18, no. 4, pp. 334–340, 1998, doi: 10.1016/S0894-1777(98)10038-9.
dc.relation.references[25] D. Mackay and F. Szeto, “the Laboratory Determination of Dispersant Effectiveness: Method Development and Results,” Int. Oil Spill Conf. Proc., vol. 1981, no. 1, pp. 11–17, 1981, doi: 10.7901/2169-3358-1981-1-11.
dc.relation.references[26] A. D. Venosa and E. L. Holder, “Determining the dispersibility of South Louisiana crude oil by eight oil dispersant products listed on the NCP Product Schedule q,” Mar. Pollut. Bull., vol. 66, no. 1–2, pp. 73–77, 2013, doi: 10.1016/j.marpolbul.2012.11.009.
dc.relation.references[27] Z. Li, K. Lee, T. King, M. C. Boufadel, and A. D. Venosa, “Evaluating Chemical Dispersant Efficacy in an Experimental Wave Tank: 2-Significant Factors Determining In Situ Oil Droplet Size Distribution,” Environ. Eng. Sci., vol. 26, no. 9, pp. 1407–1418, 2009, doi: 10.1089/ees.2008.0408.
dc.relation.references[28] J. Bonner, C. Page, and C. Fuller, “Meso-scale testing and development of test procedures to maintain mass balance,” vol. 47, pp. 406–414, 2003, doi: 10.1016/S0025-326X(03)00201-7.
dc.relation.references[29] Ø. Johansen, M. Reed, and N. R. Bodsberg, “Natural dispersion revisited,” Mar. Pollut. Bull., vol. 93, no. 1–2, pp. 20–26, 2015, doi: 10.1016/j.marpolbul.2015.02.026.
dc.relation.references[30] P. S. Daling et al., “Surface weathering and dispersibility of MC252 crude oil,” Mar. Pollut. Bull., vol. 87, no. 1–2, pp. 300–310, 2014, doi: 10.1016/j.marpolbul.2014.07.005.
dc.relation.references[31] P. S. Daling, D. Mackay, N. Mackay, and P. J. Brandvik, “Droplet size distributions in chemical dispersion of oil spills: Towards a mathematical model,” Oil Chem. Pollut., vol. 7, no. 3, pp. 173–198, 1990, doi: 10.1016/S0269-8579(05)80026-7.
dc.relation.references[32] G. J. Blondina, M. L. Sowby, M. T. Ouano, M. M. Singer, and R. S. Tjeerdema, “A modified swirling flask efficacy test for oil spill dispersants,” Spill Sci. Technol. Bull., vol. 4, no. 3, pp. 177–185, 1997, doi: 10.1016/S1353-2561(98)00014-0.
dc.relation.references[33] C. Bocard, G. Castaing, and C. Gatellier, “Chemical Oil Dispersion in Trials at Sea and in Laboratory Tests: The Key Role of Dilution Processes,” in Oil Spill Chemical Dispersants: Research, Experience, and Recommendations, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1984, pp. 125-125–18.
dc.relation.references[34] D. Sullivan, J. Farlow, and K. A. Sahatjian, “Evaluation of three oil spill laboratory dispersant effectiveness tests,” in 2005 International Oil Spill Conference, IOSC 2005, May 15, 2005 - May 19, 2005, 2005, p. 2795, doi: 10.7901/2169-3358-1993-1-515.
dc.relation.references[35] National Research Council, Oil Spill Dispersants. Washington, D.C.: National Academies Press, 2005.
dc.relation.references[36] Centre of Documentation Research and Experimentation on Accidental Water Pollution, “Flume tank - Cedre.” https://wwz.cedre.fr/en/Our-services/Our-facilities/Flume-tank (accessed Oct. 18, 2017).
dc.relation.references[37] Z. Li, P. Kepkay, K. Lee, T. King, M. C. Boufadel, and A. D. Venosa, “Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves,” Mar. Pollut. Bull., vol. 54, no. 7, pp. 983–993, 2007, doi: 10.1016/j.marpolbul.2007.02.012.
dc.relation.references[38] T. L. King, J. A. C. Clyburne, K. Lee, and B. J. Robinson, “Interfacial film formation : Influence on oil spreading rates in lab basin tests and dispersant effectiveness testing in a wave tank,” Mar. Pollut. Bull., vol. 71, no. 1–2, pp. 83–91, 2013, doi: 10.1016/j.marpolbul.2013.03.031.
dc.relation.references[39] N. Afshar-Mohajer, C. Li, A. M. Rule, J. Katz, and K. Koehler, “A laboratory study of particulate and gaseous emissions from crude oil and crude oil-dispersant contaminated seawater due to breaking waves,” Atmos. Environ., vol. 179, pp. 177–186, Apr. 2018, doi: 10.1016/J.ATMOSENV.2018.02.017.
dc.relation.references[40] O. G. Brakstad, P. S. Daling, L. Faksness, I. K. Almås, S. Vang, and L. Syslak, “Depletion and biodegradation of hydrocarbons in dispersions and emulsions of the Macondo 252 oil generated in an oil-on-seawater mesocosm flume basin,” Mar. Pollut. Bull., 2014, doi: 10.1016/j.marpolbul.2014.05.027.
dc.relation.references[41] P. S. Daling, M. Ø. Moldestad, Ø. Johansen, A. Lewis, and J. Rødal, “Norwegian testing of emulsion properties at sea--the importance of oil type and release conditions,” Spill Sci. Technol. Bull., vol. 8, no. 2, pp. 123–136, 2003, doi: 10.1016/S1353-2561(03)00016-1.
dc.relation.references[42] M. Fingas, “A Survey of Tank Facilities for Testing Oil Spill Dispersants prepared,” Alaska, 2005. Accessed: Oct. 24, 2017. [Online]. Available: http://www.pwsrcac.org/wp-content/uploads/filebase/programs/environmental_monitoring/dispersants/osd_testing_survey.pdf.
dc.relation.references[43] P. S. Daling, M. Ø. Moldestad, Ø. Johansen, A. Lewis, and J. Rødal, “Norwegian testing of emulsion properties at sea: the importance of oil type and release conditions,” Spill Sci. Technol. Bull., vol. 8, no. 2, pp. 123–136, 2003, doi: 10.1016/S1353-2561(03)00016-1.
dc.relation.references[44] G. A. L. Delvigne, “EXPERIMENTS ON NATURAL AND CHEMICAL DISPERSION OF OIL IN LABORATORY AND FIELD CIRCUMSTANCES,” Int. Oil Spill Conf. Proc., vol. 1985, no. 1, pp. 507–514, Feb. 1985, doi: 10.7901/2169-3358-1985-1-507.
dc.relation.references[45] A. D. Venosa, V. J. Kaku, and K. Lee, “Measuring Energy Dissipation Rates in a Wave Tank,” in Oil Spill Conference, 2005, pp. 1–4, doi: 10.7901/2169-3358-2005-1-183.
dc.relation.references[46] M. L. Spaulding, “State of the art review and future directions in oil spill modeling,” Mar. Pollut. Bull., vol. 115, no. 1–2, pp. 7–19, 2017, doi: 10.1016/j.marpolbul.2017.01.001.
dc.relation.references[47] Z. Zhong and F. You, “Oil spill response planning with consideration of physicochemical evolution of the oil slick: A multiobjective optimization approach,” Comput. Chem. Eng., vol. 35, no. 8, pp. 1614–1630, 2011, doi: 10.1016/j.compchemeng.2011.01.009.
dc.relation.references[48] A. M. Araujo, L. M. Santos, M. Fortuny, R. L. F. V Melo, R. C. C. Coutinho, and A. F. Santos, “Evaluation of water content and average droplet size in water-in-crude oil emulsions by means of near-infrared spectroscopy,” Energy and Fuels, vol. 22, no. 5, pp. 3450–3458, 2008, doi: 10.1021/ef800262s.
dc.relation.references[49] J. Ramírez, A. Merlano, J. Lacayo, A. F. Osorio, and A. Molina, “A model for the weathering of Colombian crude oils in the Colombian Caribbean Sea,” Mar. Pollut. Bull., vol. 125, no. 1–2, pp. 367–377, Dec. 2017, doi: 10.1016/j.marpolbul.2017.09.028.
dc.relation.references[50] M. K. Mcnutt, J. Lasheras, F. Shaffer, T. Steven, and W. J. Lehr, “Review of modeling procedures for oil spill weathering behavior.”
dc.relation.references[51] M. Reed et al., “Oil Spill Modeling towards the Close of the 20th Century : Overview of the State of the Art,” vol. 5, no. 1, pp. 3–16, 1999.
dc.relation.references[52] Ecopetrol, “Exportaciones de Crudo,” 2014. https://www.ecopetrol.com.co/wps/portal/es/ecopetrol-web/productos-y-servicios/comercio-internacional/exportaciones/exportaciones-de-crudo (accessed Apr. 30, 2018).
dc.relation.references[53] C. K. Saha, G. Zhang, and J. Q. Ni, “Airflow and concentration characterisation and ammonia mass transfer modelling in wind tunnel studies,” Biosyst. Eng., vol. 107, no. 4, pp. 328–340, 2010, doi: 10.1016/j.biosystemseng.2010.09.007.
dc.relation.references[54] J. R. Payne et al., “Multivariate analysis of petroleum hydrocarbon weathering in the subarctic marine environment,” Int. Oil Spill Conf. Proc., pp. 423–434, 1983, doi: http://dx.doi.org/10.7901/2169-3358-1983-1-423.
dc.relation.references[55] D. Mackay and R. S. Matsugu, “Evaporation rates of liquid hydrocarbon spills on land and water,” Can. J. Chem. Eng., vol. 51, no. 4, pp. 434–439, 1973, doi: 10.1002/cjce.5450510407.
dc.relation.references[56] M. Reed et al., “Revision of the OCS Oil-Weathering Model: Phases II and III,” 2005. Accessed: Nov. 30, 2018. [Online]. Available: https://www.boem.gov/BOEM-Newsroom/Library/Publications/2005/2005_020.aspx.
dc.relation.references[57] R. Chebbi, S. E. M. Hamam, M. K. M. Al-Kubaisi, K. M. Al-Jaja, and S. A. M. Al-Shamaa, “Evaporation of complex and pure components liquid hydrocarbon mixtures,” J. Chem. Eng. Japan, vol. 36, no. 12, pp. 1510–1515, 2003, doi: 10.1252/jcej.36.1510.
dc.relation.references[58] W. Stiver and D. MacKay, “Evaporation rate of spills of hydrocarbons and petroleum mixtures,” Environ. Sci. Technol., vol. 18, no. 11, pp. 834–840, 1984, doi: 10.1021/es00129a006.
dc.relation.references[59] H. Jung, D. Kah, K. C. Lim, and J. Y. Lee, “Fate of sulfur mustard on soil : Evaporation , degradation , and vapor,” Environ. Pollut., pp. 1–9, 2016, doi: 10.1016/j.envpol.2016.09.090.
dc.relation.references[60] R. H. Stewart, “Introduction To Physical Oceanography,” Phys. Oceanogr., p. 354, 2008, doi: 10.1119/1.18716.
dc.relation.references[61] D. J. Weber, M. K. Scudder, C. S. Moury, W. J. Shuely, and J. W. Molnar, Development of the 5-cm Agent Fate Wind Tunnel. Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD. Research and Technology Directorate, 2006.
dc.relation.references[62] S. A. Hsu, “On the log-linear wind profile and the relationship between shear stress and stability characteristics over the sea,” Boundary-Layer Meteorol., vol. 6, no. 3–4, pp. 509–514, May 1974, doi: 10.1007/BF02137683.
dc.relation.references[63] B. O. Bauer, R. G. D. Davidson-Arnott, J. Ollerhead, K. F. Nordstrom, and N. L. Jackson, “Indeterminacy in Aeolian sediment transport across beaches,” J. Coast. Res., vol. 12, no. 3, pp. 641–653, 1996.
dc.relation.references[64] S. HAMAM, M. F. HAMODA, H. I. SHABAN, and A. S. KILANI, “Crude oil dissolution in saline water,” vol. 37, pp. 55–64, 1988.
dc.relation.references[65] L. Nasser, “the Dissolution and Photodegradation of Kuwait Crude Oil in Seawater,” 1994.
dc.relation.references[66] Z. Pan et al., “Chemosphere Impact of mixing time and energy on the dispersion effectiveness and droplets size of oil,” Chemosphere, vol. 166, pp. 246–254, 2017, doi: 10.1016/j.chemosphere.2016.09.052.
dc.relation.references[67] V. B. Rewatkar, R. Rao, and J. B. Joshi, “Power Consumption in Mechanically Agitated Contactors Using Pitched Bladed Turbine Impellers,” Chem. Eng. Commun., vol. 88, no. 1, pp. 69–90, 1990, doi: 10.1080/00986449008940548.
dc.relation.references[68] W. A. Maher, “Preparation of water soluble fractions of crude oils for toxicity studies,” Bull. Environ. Contam. Toxicol., vol. 36, no. 1, pp. 226–229, Dec. 1986, doi: 10.1007/BF01623499.
dc.relation.references[69] INVERMAR, “Manual de técnicas analíticas para la determinación de parámetros fisicoquímicos y contaminantes marinos (aguas, sedimentos y organismos),” Man. Técnicas Analíticas para la Determ. Parámetros Fis. y Contam. Mar., p. 148, 2003, doi: 10.1017/CBO9781107415324.004.
dc.relation.references[70] M. F. Fingas, “A literature review of the physics and predictive modelling of oil spill evaporation,” vol. 42, pp. 157–175, 1995.
dc.relation.references[71] I. D. Nissanka and P. D. Yapa, “Oil slicks on water surface: Breakup, coalescence, and droplet formation under breaking waves,” Mar. Pollut. Bull., vol. 114, no. 1, pp. 480–493, 2017, doi: 10.1016/j.marpolbul.2016.10.006.
dc.relation.references[72] G. A. L. Delvigne and C. E. Sweeney, “Natural dispersion of oil,” Oil Chem. Pollut., vol. 4, no. 4, pp. 281–310, Jan. 1988, doi: 10.1016/S0269-8579(88)80003-0.
dc.relation.references[73] W. Stlver, W. Y. Shlu, and D. Mackay, “Evaporation Times and Rates of Specific Hydrocarbons in Oil Spills,” vol. 105, no. 27, pp. 101–105, 1989.
dc.relation.references[74] M. Fingas and B. Fieldhouse, “Formation of water-in-oil emulsions and application to oil spill modelling,” J. Hazard. Mater., vol. 107, no. 1–2, pp. 37–50, 2004, doi: 10.1016/j.jhazmat.2003.11.008.
dc.relation.references[75] A. Chaala, B. Benallal, and S. Hachelef, “Investigation on the flocculation of asphaltenes and the colloidal stability of the crude oil fraction (> 210°C),” Can. J. Chem. Eng., vol. 72, no. 6, pp. 1036–1041, 1994, doi: 10.1002/cjce.5450720614.
dc.relation.references[76] M. Fingas, B. Fieldhouse, and J. Mullin, “Studies of water-in-oil emulsions and techniques to measure emulsion treating agents,” in Arctic and Marine Oil Spill Program Technical Seminar, 1994, pp. 213–242, Accessed: Jan. 29, 2020. [Online]. Available: https://www.bsee.gov/sites/bsee.gov/files/osrr-oil-spill-response-research/120bi.pdf.
dc.relation.references[77] W. Klöckner and J. Büchs, “Advances in shaking technologies,” Trends in Biotechnology, vol. 30, no. 6. pp. 307–314, Jun. 2012, doi: 10.1016/j.tibtech.2012.03.001.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPetróleo - Colombia
dc.subject.lembPetroleum - Colombia
dc.subject.proposalWeathering
dc.subject.proposalWind tunnel
dc.subject.proposalEmulsion
dc.subject.proposalColombian oil
dc.subject.proposalTúnel de viento
dc.subject.proposalShaker
dc.subject.proposalCrudo colombiano
dc.subject.proposalEnvejecimiento
dc.title.translatedActualización del modelo de envejecimiento de crudo Colombiano (COW)-Enfoque experimental.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameColciencias – ANH convocatoria 01 para formacion de capital humano 721
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit