Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorPinzón Velasco, Andrés Mauricion
dc.contributor.authorBeltrán, Óscar Gabriel
dc.date.accessioned2021-10-15T14:19:04Z
dc.date.available2021-10-15T14:19:04Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80560
dc.descriptionilustraciones, imágenes, tablas
dc.description.abstractEl aislamiento de Leptospira spp. es considerado como la prueba de laboratorio de mayor fiabilidad para el diagnostico de leptospirosis. Sin embargo, las limitaciones del cultivo impiden su implementación para el diagnostico de rutina y han retrasado el desarrollo de nuevas alternativas diagnósticas y terapéuticas. El objetivo de este trabajo fue identificar y caracterizar de las rutas metabólicas del género Leptospira a partir de su contenido genómico y con ello explorar las capacidades metabólicas de este microorganismo. De acuerdo con lo anterior, se encontraron cinco grupos monofiléticos que concuerdan con su estado de patogenicidad pero que difieren en parte de su contenido genómico. Del mismo modo, se realizaron reconstrucciones de modelos metabólicos a escala genómica que demostraron la presencia de distintas rutas metabólicas en los clados, así como respuestas diferenciales durante análisis basados en restricciones. Lo anterior sugiere que las diferencias en los contenidos genómicos provienen de procesos adaptativos y se asocian a los diversos fenotipos observados durante el cultivo. Estos resultados proponen que los miembros de los distintos clados tienen diferentes requisitos nutricionales y que estos metabolitos tienen el potencial de ser utilizados para la diferenciación de especies, como blancos farmacológicos y/o suplementos para la formulación de nuevos medios de cultivo o para ajustar los existentes. (Texto tomado de la fuente)
dc.description.abstractThe Leptospira isolation is considered the most reliable laboratory test for leptospirosis diagnosis. However, the culture limitations has hampered its implementation for routine diagnosis and has delayed the development of new diagnostic and therapeutic alternatives. The objective of this work was to identify and characterize the metabolic pathways of the genus Leptospira based on its genomic content and thereby to explore the metabolic capacities of this microorganism. In accordance with the above, five monophyletic groups were found that agree with their pathogenicity status but differ in part in their genomic content. In the same way, genome-scale metabolic models demonstrated the presence of different metabolic pathways in the clades, as well as differential responses during constraint-based analyses. This suggests that the genomic content differences stem from adaptive processes and they are associated with the several phenotypes observed during cultivation. These results propose that the different clades members have variations in nutritional requirements and that these metabolites have the potential to be used for the species differentiation, as drug targets and/or supplements for the formulation of new culture media or to adjust existing ones.
dc.format.extentxii, 70 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algas
dc.titleIdentificación y clasificación de las rutas metabólicas de las especies de Leptospira spp
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Bioinformática
dc.contributor.researchgroupGrupo de Investigación en Bioinformática y Biologı́a de Sistemas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bioinformática
dc.description.methodsIn silico
dc.description.researchareaModelado computacional
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesVincent A, Schiettekatte O, Goarant C, Neela V, Bernet E, Thibeaux R, et al. Revisiting the taxonomy and evolution of pathogenicity of the genus Leptospira through the prism of genomics. PLoS Negl Trop Dise. 2019 May;13(5):e0007270. Available from:https://doi.org/10.1371/journal.pntd.0007270. Ko A, Goarant C, Picardeau M. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nature. 2009 Oct;7(10):736–747. Available from:http://DOI:10.1038/nrmicro2208. Thibeaux R, Girault D, Bierque E, Soupé M, Rettinger A, Douyère A, et al. Biodiversity of environmental Leptospira: improving identification and revisiting the diagnosis. Fron Micr. 2018 May;9(816). Available from: https://doi:10.3389/fmicb.2018.00816. Adler B. Current Topics in Microbiology and Immunology: Leptospira and Leptospirosis. Springer Berlin Heidelberg; 2015. Available from: https://doi.org/10.1007/978-3-662-45059-8. Thibeaux R, Geroult S, Benezech C, Chabaud S, Soupé-Gilbert M, Girault D, et al. Seeking the environmental source of Leptospirosis reveals durable bacterial viability in river soils. PLoS neglected tropical diseases. 2017 Feb;11(2):e0005414. Available from:https://doi.org/10.1371/journal.pntd.0005414. Narkkul U, Thaipadungpanit J, Srilohasin P, Singkhaimuk P, Thongdee M, Chaiwattanarungruengpaisan S, et al. Optimization of Culture Protocols to Isolate Leptospira spp. from Environmental Water, Field Investigation, and Identification of Factors Associated with the Presence of Leptospira spp. in the Environment. Tropical medicine and infectious disease. 2020 Jun;5(2):94. Available from: https://doi.org/10.3390/tropicalmed5020094. Koizumi N, Picardeau M. Leptospira spp. Springer US; 2020. Available from: https://doi:10.1007/978-1-0716-0459-5. Thibeaux R, Iraola G, Ferres I, Bierque E, Girault D, Soupe M, et al. Deciphering the unexplored Leptospira diversity from soils uncovers genomic evolution to virulence. Micr Geno. 2018;8(14). Available from: https://DOI:10.1099/mgen.0.000144. Guglielmini J, Bourhy P, Schiettekatte O, Zinini F, Brisse S, Picardeau M. Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Negl Trop Dise. 2019 Abr;13(4):e0007374. Available from:https://doi.org/10.1371/journal.pntd.0007374. OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. World Organisation for Animal Health; 2018. Available from: https://www.oie.int/en/standard-setting/terrestrial-manual/access-online/. Gupta R, Verma R, Pradhan D, Jain A, Umamaheswari A, Rai C. An in silico approach towards identification of novel drug targets in pathogenic species of Leptospira. PLoS ONE. 2019 Aug;14(8):e0221446. Available from: https://doi.org/10.1371/journal.pone.0221446. Wang H, Lee M, Chen Y, Hsueh P, Chang S. Factors associated with severity and mortality in patients with confirmed leptospirosis at a regional hospital in northern Taiwan. Journal of Microbiology, Immunology and Infection. 2018 May. Available from: https://doi.org/10.1016/j.jmii.2018.05.005. WHO. Human leptospirosis: guidance for diagnosis, surveillance and control. World Health Organization; 2003. Available from: https://www.who.int/publications/i/item/human-leptospirosis-guidance-for-diagnosis-surveillance-and-control. Liegeon G, Delory T, Picardeau M. Antibiotic susceptibilities of livestock isolates of Leptospira. International Journal of Antimicrobial Agents. 2018 Jan;51(5):693–699. Available from: https://doi.org/10.1016/j.ijantimicag.2017.12.024. Chakraborty A, Miyahara S, Villanueva S, N G, Yoshida S. In vitro sensitivity and resistance of 46 Leptospira strains isolated from rats in the Philippines to 14 antimicrobial agents. Antimicrobial Agents and Chemotherapy. 2010 Dec;54(12):5403–5405. Available from: https:/DOI:10.1128/aac.00973-10. Benacer D, Zain S, Ooi P, Thong K. Antimicrobial susceptibility of Leptospira spp. isolated from environmental, human and animal sources in Malaysia. Indian journal of medical microbiology. 2017 Mar;35(124–128):1. Available from: https://doi.org/10.4103/ijmm.IJMM_15_458. Suepaul S, Carrington C, Campbell M, Borde G, Adesiyun A. Antimicrobial susceptibility of Leptospira isolates from dogs and rats to 12 antimicrobial agents. Tropical biomedicine. 2015 Mar;32(1):1–10. Available from: https://pubmed.ncbi.nlm.nih.gov/25801249/. Correia L, Loureiro A, Lilenbaum W. Reduced susceptibility in leptospiral strains of bovine origin might impair antibiotic therapy. Epidemiology and Infection. 2019 Aug;147(e5):1–6. Available from: https://doi.org/10.1017/S0950268818002510. Shruthi G, Balamurugan V, Prasad S, Swamy N, Chandan S. Fatty Acid Metabolism in Leptospira a Key to its Pathogenicity and Evasion from Host Immune Response Leading to Prolonged Survival of the Organism. Indian Journal of Natural Sciences. 2017 Feb;7(40):0976 – 0997. Available from: http://www.tnsroindia.org.in/journals.html. Budihal S, Perwez K. Leptospirosis Diagnosis: Competancy of Various Laboratory Tests. Journal of Clinical and Diagnostic Research. 2014 Jan;8(1):199–202. Available from:https://DOI:10.7860/JCDR/2014/6593.3950. Chirathaworn C, Inwattana R, Poovorawan Y, Suwancharoen D. Interpretation of microscopic agglutination test for leptospirosis diagnosis and seroprevalence. Asian Pacific Journal of Tropical Biomedicine. 2014 Apr;4(Suppl 1):S162–S164. Available from: https://doi:10.12980/APJTB.4.2014C580. Limmathurotsakul D, Turner E, Wuthiekanun V, Thaipadungpanit J, Suputtamongkol Y, Chierakul W, et al. Fool’s Gold: Why Imperfect Reference Tests Are Undermining the Evaluation of Novel Diagnostics: A Reevaluation of 5 Diagnostic Tests for Leptospirosis. Clinical Infectious Diseases. 2012 Aug;55(3):322–331. Available from:https://doi.org/10.1093/cid/cis403. Marquez A, Djelouadji Z, Lattard V, Kodjo A. Overview of laboratory methods to diagnose Leptospirosis and to identify and to type leptospires. International Microbiology. 2017;20(4):184–193. Available from: https://doi:10.2436/20.1501.01.302. Gupta N, Chaudhry R, Mirdha B, Das B, Dar L, Kabra S, et al. Scrub Typhus and Leptospirosis: The fallacy of Diagnosing with IgM Enzyme Linked Immunosorbant Assay. Journal of Microbial Biochemical Technology Journal of Microbial Biochemical T. 2016 Feb;8(2):071–075. Available from: https://doi:10.4172/1948-5948.1000265. Metz M, Ding T, Baumler D. Using genome-scale metabolic models to compare serovars of the foodborne pathogen Listeria monocytogenes. PLoS One. 2018 Jun;13(6):e0198584. Available from: https://doi.org/10.1371/journal.pone.0198584. Rienksma R, Schaap P, Martins V, Suarez M. Modeling the Metabolic State of Mycobacterium tuberculosis Upon Infection. Frontiers in Cellular and Infection Microbiology. 2018 Aug;8(264). Available from: https://doi:10.3389/fcimb.2018.00264. Bartell J, Blazier A, Yen P, Thøgersen J, Jelsbak L, Goldberg J, et al. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nature. 2017 Mar;8(14631). Available from: https://DOI:10.1038/ncomms14631. Seif Y, Kavvas E, Lachance J, Yurkovich J, Nuccio S, Fang X, et al. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nature. 2018;9(3771). Available from: https://DOI:10.1038/s41467-018-06112-5. Monk J, Charusanti P, Aziz R, Lerman J, Premyodhin N, Orth J, et al. Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. PNAS. 2013;110(50):20338–20343. Available from: https://doi.org/10.1073/pnas.1307797110. Bosi E, Monk J, Aziz R, Fondi M, Nizet, Palsson B. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. PNAS. 2016;113(26):E3801–E3809. Available from:https://doi.org/10.1073/pnas.1523199113. Pinzon W, Vega H, Gonzalez J, Pinzon A. Mathematical Framework Behind the Reconstruction and Analysis of Genome Scale Metabolic Models. Arch Computat Methods Eng. 2018 Sep;26:1593–1606. Available from: https://doi.org/10.1007/s11831-018-9290-3. Dunphy L, Papin J. Biomedical applications of genome-scale metabolic network reconstructions of human pathogens. Current Opinion in Biotechnology. 2018;51:70–79. Available from: https://doi.org/10.1016/j.copbio.2017.11.014. Lieven C, Beber M, Olivier B, Bergmann F, Ataman A, Babaei P, et al. MEMOTE for standardized genome-scale metabolic model testing. Nature. 2020 Mar;38:271–278. Available from: https://doi.org/10.1038/s41587-020-0446-y. Zimmermann J, Kaleta C, Waschina S. gapseq: Informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome biology. 2021 Mar;22(1). Available from: https://doi.org/10.1186/s13059-021-02295-1. Ponce M, Cancela H, Acerenza L. A Strategy to Calculate the Patterns of Nutrient Consumption by Microorganisms Applying a Two-Level Optimisation Principle to Reconstructed Metabolic Networks. Journal of Biological Physics. 2008 May;34(1-2):73–90. Available from: http://doi:10.1007/s10867-008-9067-2. Xu Y, Wang J, Zhu Y, Wang Y, Chang Y, Zhang Y, et al. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira. Natu Scie Repo. 2016 Feb;6(20020). Available from: https://DOI:10.1038/srep20020. Caimi K, Ruybal P. Leptospira spp., a genus in the stage of diversity and genomic data expansion. Infe Gene Evol. 2020 Feb;81. Available from: https://doi.org/10.1016/j.meegid.2020.104241. Jorge S, Kremer F, de Oliveira N, Sanches G, Guimarães A, Domingues C, et al. Whole-genome sequencing of Leptospira interrogans from southern Brazil: genetic features of a highly virulent strain. Mem Inst Oswaldo Cruz, Rio de Janeiro. 2018 Feb;113(2):80–86. Available from: https://doi:10.1590/0074-02760170130. Fouts D, Matthias M, Adhikarla H, Adler B, Santos L, Berg D, et al. What makes a bacterial species pathogenic?: comparative genomic analysis of the genus Leptospira. PLoS Negl Trop Dise. 2016 Feb;10(2):e0004403. Available from: https://doi:10.1371/journal.pntd.0004403. Bulach D, Zuerner R, Wilson P, Seemann T, McGrath A, Cullen P, et al. Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. PNAS. 2006 Sep;103(39):14560–14565. Available from: https://doi:10.1073/pnas.0603979103. Nascimento A, Ko A, Martins E, Monteiro C, Ho L, Haake D, et al. Comparative Genomics of Two Leptospira interrogans Serovars Reveals Novel Insights into Physiology and Pathogenesis. Jour Bact. 2004 Apr;186(7):2164–2172. Available from:https://DOI:10.1128/JB.186.7.2164\OT1\textendash2172.2004. Bourhy P, Louvel H, Saint-Girons I, Picardeau M. Random Insertional Mutagenesis of Leptospira interrogans, the Agent of Leptospirosis, Using a mariner Transposon. Jour Bact. 2005 May;187(9):3255–3258. Available from: https://doi:10.1128/JB.187.9.3255\OT1\textendash3258.2005. Wang Y, Zhuang X, Zhong Y, Zhang C, Zhang Y, Zeng L, et al. Distribution of Plasmids in Distinct Leptospira Pathogenic Species. PLoS Negl Trop Dis. 2015 Nov;9(11):e0004220. Available from: https://DOI:10.1371/journal.pntd.0004220. Ricaldi J, Fouts D, Selengut J, Harkins D, Patra K, Moreno A, et al. Whole Genome Analysis of Leptospira licerasiae Provides Insight into Leptospiral Evolution and Pathogenicity. PLoS Negl Trop Dis. 2012 Oct;6(10):e1853. Available from: https://doi:10.1371/journal.pntd.0001853. Picardeau M, Adler B, Bulach D, Bouchier C, Zuerner R, Zidane N, et al. Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One. 2008 Feb;3(2):e1607. Available from: https://doi:10.1371/journal.pone.0001607. Harrison P, Lower R, Kim N, Peter J. Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Tren Micr. 2010 Apr;18(4):141–148. Available from: https://doi.org/10.1016/j.tim.2009.12.010. Cooper V, Vohr S, Wrocklage S, Hatcher P. Why Genes Evolve Faster on Secondary Chromosomes in Bacteria. PLoS Comp Biol. 2010 Apr;4(4):e1000732. Available from: https://doi:10.1371/journal.pcbi.1000732. Bourhy P, Salaun L, Lajus A, Medigue C, Boursaux C, Picardeau M. A genomic island of the pathogen Leptospira interrogans serovar Lai can excise from its chromosome. Infe Immu. 2007 Feb;75(2):677–683. Available from: https://doi:10.1128/IAI.01067-06. Huang L, Zhu W, He P, Zhang Y, Zhuang X, Zhao G, et al. Re-characterization of an extrachromosomal circular plasmid in the pathogenic Leptospira interrogans serovar Lai strain 56601. Acta Bioc Biop Sini. 2014 May;46(7):605–611. Available from: https://DOI:10.1093/abbs/gmu033. Lehmann J, Matthias M, Vinetz J, Fouts D. Leptospiral pathogenomics. Pathogens. 2014 Abr;3:280–308. Available from: https://doi:10.3390/pathogens3020280. Shintani M, Sanchez Z, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Fron Micr. 2015 Mar;6(242). Available from: https://doi:10.3389/fmicb.2015.00242. Carattoli A, Zankari E, Garcı́a A, Voldby M, Lund O, Villa L, et al. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Anti Agen Chem. 2014 Jul;58(7):3895–3903. Available from:http://dx.doi.org/10.1128/AAC.02412-14. Zhu W, Wang J, Zhu Y, Tang B, Zhang Y, He P, et al. Identification of three extra-chromosomal replicons in Leptospira pathogenic strain and development of new shuttle vectors. BMC Genomics. 2015;6(90). Available from: http://DOI10.1186/s12864-015-1321-y. Zhu W, Guo X, Huang L, Zeng L, Zhuang X, Chen C, et al. Isolation and characterization of two novel plasmids from pathogenic Leptospira interrogans serogroup canicola serovar canicola strain Gui44. PLoS Negl Trop Dise. 2014 Ago;8(8):e3103. Available from: https://doi:10.1371/journal.pntd.0003103. Moreno L, Miraglia F, Kremer F, Eslabao E, Dellagostin O, Lilenbaum W, et al. Comparative genomics of pathogenic Leptospira interrogans serovar Canicola isolated from swine and human in Brazil. Mem Inst Oswaldo Cruz. 2018 Feb;113(2):126–129. Available from: https://DOI:10.1590/0074-02760170119. Satou K, Shimoji M, Tamotsu H, Juan A, Ashimine N, Shinzato M, et al. Complete Genome Sequences of Low-Passage Virulent and High-Passage Avirulent Variants of Pathogenic Leptospira interrogans Serovar Manilae Strain UP-MMC-NIID, Originally Isolated from a Patient with Severe Leptospirosis, Determined Using PacBio Single-Molecule Real-Time Technology. Genome Announcements. 2015 Aug;3(4):e00882–15. Available from: https://DOI:10.1128/genomeA.00882-15. Schiettekatte O, Vincent A, Malosse C, Lechat P, Chamot J, Veyrier F, et al. Characterization of LE3 and LE4, the only lytic phages known to infect the spirochete Leptospira. Sci Rep. 2018 Aug;8(1):11781. Available from: https://doi: 10.1038/s41598-018-29983-6. Gal-Mor O, Finlay B. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Micr. 2006 Ago;8(11):1707–1719. Available from: https://doi:10.1111/j.1462-5822.2006.00794.x. Qin J, Zhang Q, Zhang Z, Zhong Y, Yang Y, Hu B, et al. Identification of a Novel Prophage-Like Gene Cluster Actively Expressed in Both Virulent and Avirulent Strains of Leptospira interrogans Serovar Lai. Infect Immun. 2008 Jun;76(6):2411–2419. Available from: https://doi:10.1128/IAI.01730-07. Saint-Girons I, Bourhy P, Ottone C, Picardeau M, Yelton D, Hendrix R, et al. The LE1 Bacteriophage Replicates as a Plasmid within Leptospira biflexa: Construction of an L. biflexa-Escherichia coli Shuttle Vector. Journal of Bacteriology. 2000 Oct;182(20):5700–5705. Available from: https://DOI:10.1128/JB.182.20.5700-5705.2000. Bourhy P, Frangeul L, Couvé E, Glaser P, Saint I, Picardeau M. Complete nucleotide sequence of the LE1 prophage from the spirochete Leptospira biflexa and characterization of its replication and partition functions. J Bacteriol. 2005 Jun;187(12):3931–3940. Available from: https://doi:10.1128/JB.187.12.3931-3940.2005. Moreno L, Miraglia F, Loureiro A, Kremer F, Eslabao E, Dellagostin O, et al. Genomic characterisation of Leptospira inadai serogroup Lyme isolated from captured rat in Brazil and comparative analysis with human reference strain. Mem Inst Oswaldo Cruz. 2018 Mar;113(5):e170444. Available from: https://doi:10.1590/0074-02760170444. He P, Sheng Y, Shi Y, Jiang X, Qin J, Zhang Z, et al. Genetic diversity among major endemic strains of Leptospira interrogans in China. BMC Genomics. 2007 Jul;8(204). Available from: https://doi:10.1186/1471-2164-8-204. Zuerner R, Trueba G. Characterization of IS1501 mutants of Leptospira interrogans serovar pomona. FEMS Microbiology Letters. 2005 Jun;248(2):199–205. Available from: https://doi.org/10.1016/j.femsle.2005.05.039. Zuerner R, Huang W. Analysis of a Leptospira interrogans locus containing DNA replication genes and a new IS, IS1502. FEMS Microbiology Letters. 2002 Oct;215(2):175–182. Available from: https://doi.org/10.1016/S0378-1097(02)00935-7. Zhong Y, Guo X, Chang X, Cao X, Zhang Y, Zheng H, et al. Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Rese. 2011 Mar;21:1210–1229. Available from: http://doi:10.1038/cr.2011.46. Cosate M, Sakamoto T, Oliveira T, Moreira E, Silva C, Brasil B, et al. Molecular typing of Leptospira interrogans serovar Hardjo isolates from leptospirosis outbreaks in Brazilian livestock. BMC Veterinary Research. 2017 Jun;13(177). Available from: https://DOI10.1186/s12917-017-1081-9. Parkhill J, Wren B, Thomson N, Titball R, Holden M, Prentice M, et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature. 2001 Oct;413(6855):523–7. Available from: https://doi:10.1038/35097083. Gurevich A, Tesler G, Saveliev V, Vyahhi1 N. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013 Feb;29(8):1072–1075. Available from: https://doi:10.1093/bioinformatics/btt086. Parks D, Imelfort M, Skennerton C, Hugenholtz P, Tyson G. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research. 2015 Jul;25:1043–1055. Available from: https://doi:10.1101/gr.186072.114. Vernikos G, Tettelin H, Medini D, Riley D. Ten years of pan-genome analyses. Curr Opin Micr. 2015;23:148–154. Available from: http://dx.doi.org/10.1016/j.mib.2014.11.016. Santos L, Adhikarla H, Yan X, Wang Z, Fouts D, Vinetz J, et al. Genomic comparison among global isolates of L. interrogans serovars Copenhageni and Icterohaemorrhagiae identified natural genetic variation caused by an indel. Fron Cell Infe Micr. 2018 Jun;8(193). Available from: https://doi:10.3389/fcimb.2018.00193. Jain C, Aluru S, Rodriguez L, Phillippy A, Konstantinidis K. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Natu Comm. 2018;9(5114). Available from: http://DOI:10.1038/s41467-018-07641-9. Konstantinidis K, Tiedje J. Genomic insights that advance the species definition for prokaryotes. PNAS. 2004 Feb;12(7):2567–2572. Available from: https://doi.org/10.1073/pnas.0409727102. Konstantinidis K, Tiedje J, Ramette A. The bacterial species definition in the genomicera. Phil Tran Roya Soci B. 2006 Oct;361:1929–1940. Available from: https://doi:10.1098/rstb.2006.1920. Richter M, Rossello R. Shifting the genomic gold standard for the prokaryotic species definition. PNAS. 2009 Nov;106(45):19126–19131. Available from: https://doi.org/10.1073/pnas.0906412106. Eren A, Delmont T, Esen O, Quince C, Vineis J, Morrison H, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015 Oct;3:e1319. Available from: https://DOI10.7717/peerj.1319. Edgar R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acid Rese. 2004 Mar;32(5):1792–1797. Available from: https://DOI:10.1093/nar/gkh340. Price M, Dehal P, Arkin A. FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS One. 2010 Mar;5(3):e9490. Available from: https://doi.org/10.1371/journal.pone.0009490. Chan J, Halachev M, Loman N, Constantinidou C, Pallen M. Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC microbiology. 2012 Dec;12(302). Available from: https://doi.org/10.1186/1471-2180-12-302. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014 Mar;30(14):2068–2069. Available from: https://doi:10.1093/bioinformatics/btu153. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis––10 years on. Nucl Acid Rese. 2016 Nov;44:D694–D697. Available from: https://doi:10.1093/nar/gkv1239. Lehmann J, Fouts D, Haft D, Cannella A, Ricaldi J, Brinkac L, et al. Pathogenomic inference of virulence-associated genes in Leptospira interrogans. Plos Neglected Tropical Diseases. 2013 Oct;7(10):e2468. Available from: https://DOI:10.1371/journal.pntd.0002468. Touchon M, Rocha E. Coevolution of the Organization and Structure of Prokaryotic Genomes. Cold Spring Harb Perspect Biol. 2016 Jan;8(1):a018168. Available from: https://doi:10.1101/cshperspect.a018168. Rouli L, Merhej V, Fournier P, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes and new Infections. 2015 Sep;7:72–85. Available from: https://DOI:10.1016/j.nmni.2015.06.005. Konstantinos K, Tiedje J. Trends between gene content and genome size in prokaryotic species with larger genomes. PNAS. 2004 Mar;101(9):3160–3165. Available from: https://DOI:10.1073/pnas.0308653100. Puche R, Ferres I, Caraballo L, Rangel Y, Picardeau H M ans Takiff, Iraola G. Leptospira venezuelensis sp. nov., a new member of the intermediate group isolated from rodents, cattle and humans. Inte J Syst Evol Microbiol. 2018 Feb;68(2):513–517. Available from: https://DOI10.1099/ijsem.0.002528. Slack A, Kalambaheti T, Symonds M, Dohnt M, Galloway R, Steigerwalt A, et al. Leptospira wolffii sp. nov., isolated from a human with suspected leptospirosis in Thailand. Int J Syst Evol Microbiol. 2008 Oct;58(Pt 10):2305–8. Available from: https://doi:10.1099/ijs.0.64947-0. Nair S, Alokam S, Kothapalli S, Porwollik S, Proctor E, Choy C, et al. Salmonella enterica serovar Typhi strains from which SPI7, a 134-kilobase island with genes for Vi exopolysaccharide and other functions, has been deleted. Journal of bacteriology. 2004 May;186(10):3214–3223. Available from: https://doi.org/10.1128/jb.186.10.3214-3223.2004. Hiyoshi H, Wangdi T, Lock G, Saechao, Raffatellu M, Cobb B, et al. Mechanisms to Evade the Phagocyte Respiratory Burst Arose by Convergent Evolution in Typhoidal Salmonella Serovars. Cell reports. 2018 Feb;22(7):1787–1797. Available from: https: //doi.org/10.1016/j.celrep.2018.01.016. Kenyon J, Cunneen M, Reeves P. Genetics and evolution of Yersinia pseudotuberculosis O-specific polysaccharides: a novel pattern of O-antigen diversity. FEMS microbiology reviews. 2017 Mar;41(2):200–217. Available from: https://doi.org/10.1093/femsre/fux002. Ramli S, Moreira G, Zantow J, Goris M, Nguyen V, Novoselova N, et al. Discovery of Leptospira spp. seroreactive peptides using ORFeome phage display. PLoS neglected tropical diseases. 2019 Jan;13(1):e0007131. Available from: https://doi.org/10.1371/journal.pntd.0007131. Miyafusa T, Caaveiro J, Tanaka Y, Tanner M, Tsumoto K. Crystal structure of the capsular polysaccharide synthesizing protein CapE of Staphylococcus aureus. Bioscience reports. 2013 Jun;33(3):e00043. Available from: https://doi.org/10.1042/BSR20130017. Walters K, Olsufka R, Kuestner R, Cho J, Li H, Zornetzer G, et al. Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses. PLoS One. 2013 May;8(5):e62412. Available from: https://DOI:10.1371/journal.pone.0062412. Garduño R, Chong A, Nasrallah G, Allan D. The Legionella pneumophila Chaperonin - An Unusual Multifunctional Protein in Unusual Locations. Front Microbiol. 2011 Jun;2(122). Available from: https://doi.org/10.3389/fmicb.2011.00122. Bai L, Zhang S, Deng Y, Song C, Kang G, Dong Y, et al. Comparative genomics analysis of Acinetobacter haemolyticus isolates from sputum samples of respiratory patients. Genomics. 2020 Jul;112(4):2784–2793. Available from: https://doi.org/10.1016/j.ygeno.2020.03.016. Asea A, Kaur P. Heat Shock Proteins in Veterinary Medicine and Sciences. Springer, Cham; 2017. Available from: https://doi.org/10.1007/978-3-319-73377-7. Sharma J, Mishra B, Li Q, Teale J. TLR4-dependent activation of inflammatory cytokine response in macrophages by Francisella elongation factor Tu. Cellular Immunology. 2011;269(2):69–73. Available from: https://DOI:10.1016/j.cellimm.2011.03.023. Eshghi A, Pappalardo E, Hester S, Thomas B, Pretre G, Picardeau M. Pathogenic Leptospira interrogans Exoproteins Are Primarily Involved in Heterotrophic Processes. Infection and Immunity. 2015 Jul;83(8):3061–3073. Available from: https://DOI:10.1128/IAI.00427-15. Reuter S, Connor T, Barquist L, Walker D, Feltwell T, Harris S, et al. Parallel independent evolution of pathogenicity within the genus Yersinia. PNAS. 2014 May;111(18):6768–6773. Available from: https://doi.org/10.1073/pnas.1317161111. Qin T, Zhang W, Liu W, Zhou H, Ren H, Shao Z, et al. Population structure and minimum core genome typing of Legionella pneumophila. Scientific reports. 2016 Feb;6(21356). Available from: https://doi.org/10.1038/srep21356. Loza M, Sahr T, Rolando M, Daniels C, Petit P, Skarina T, et al. The Legionella pneumophila kai operon is implicated in stress response and confers fitness in competitive environments. Environmental Microbiology. 2014 Feb;16(2):359–381. Available from:https://DOI:10.1111/1462-2920.12223. Yılmaz, Apak A, Özcengiz E, Özcengiz G. Immunogenicity and protective efficacy of recombinant iron superoxide dismutase protein from Bordetella pertussis in mice models. Microbiology and immunology. 2016;60(11). Available from: https://doi.org/10.1111/1348-0421.12445. Bakshi C, Malik M, Regan K, Melendez J, Metzger D, Pavlov V, et al. Superoxide dismutase B gene (sodB)-deficient mutants of Francisella tularensis demonstrate hypersensitivity to oxidative stress and attenuated virulence. Journal of bacteriology. 2006 Sep;188(17):6443–6448. Available from: https://doi.org/10.1128/JB.00266-06. Picardeau M. Virulence of the zoonotic agent of leptospirosis: still terra incognita? Nature. 2017 Mar;15(5):297–307. Available from: https://doi:10.1038/nrmicro.2017.5. Page A, Cummins C, Hunt M, Wong V, Reuter S, Holden M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015 Jul;31(22):3691–3693. Available from: https://doi:10.1093/bioinformatics/btv421. Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Current opinion in microbiology. 2008 Oct;11(5):472–477. Available from: https://doi.org/10.1016/j.mib.2008.09.006. Park S, Lee K, Kim Y, Won S, Chun J. Large-Scale Genomics Reveals the Genetic Characteristics of Seven Species and Importance of Phylogenetic Distance for Estimating Pan-Genome Size. Frontiers in microbiology. 2019 Apr;10(834). Available from: https://doi.org/10.3389/fmicb.2019.00834. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC bioinformatics. 2009;10(421). Available from: https://doi.org/10.1186/1471-2105-10-421. Rodriguez-R L, Konstantinidis K. Bypassing Cultivation To Identify Bacterial Species. Microbe Magazine. 2014;9(3). Available from: https://DOI:10.1128/MICROBE.9.111.1. Konstantinidis K, Tiedje J. Towards a genome-based taxonomy for prokaryotes. Journal of bacteriology. 2005 Sep;187(18):6258–6264. Available from: https://doi.org/10.1128/JB.187.18.6258-6264.2005. Duarte J, Srebniak A, Schärer M, G C. Protein interface classification by evolutionary analysis. BMC Bioinformatics. 2012 Dec;13(334). Available from: https://DOI:10.1186/1471-2105-13-334. Schärer M, Grütter M, Capitani G. CRK: an evolutionary approach for distinguishing biologically relevant interfaces from crystal contacts. Proteins. 2010 Sep;78(12):2707–2713. Available from: https://doi.org/10.1002/prot.22787. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific reports. 2017 Sep;7(1):10480. Available from: https://doi.org/10.1038/s41598-017-09654-8. Subedi D, Vijay A, Kohli G, Rice S, Willcox M. Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Scientific reports. 2018 Oct;8(1):15668. Available from: https://doi.org/10.1038/s41598-018-34020-7. van Leijenhorst D, van der Weide T. A formal derivation of Heaps’ Law. Information Sciences. 2005 Feb;170(2-4):263–272. Available from: https://doi.org/10.1016/j.ins.2004.03.006. Caro A, Ritalahti K, Cusick K, Löffler F, Konstantinidis K. The chimeric genome of Sphaerochaeta: nonspiral spirochetes that break with the prevalent dogma in spirochete biology. MBio. 2012 May;3(3):e00025–12. Available from: https://doi.org/10.1128/mBio.00025-12. Chou L, Chen Y, Lu C, Ko Y, Tang C, Pan M, et al. Sequence of Leptospira santarosai serovar Shermani genome and prediction of virulence-associated genes. Gene. 2012 Dec;511(2):364–370. Available from: https://doi.org/10.1016/j.gene.2012.09.074. Caro A, Konstantinidis K. Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria. The ISME journal. 2015 Mar;9(4):958–967. Available from: https://doi.org/10.1038/ismej.2014.193. Ibrahim G, Morin P. Salmonella Serotyping Using Whole Genome Sequencing. Frontiers in microbiology. 2018 Dec;9(2993). Available from: https://doi.org/10.3389/fmicb.2018.02993. Langridge G, Fookes M, Connor T, Feltwell T, Feasey N, Parsons B, et al. Patterns of genome evolution that have accompanied host adaptation in Salmonella. PNAS. 2015 Jan;112(3):863–868. Available from: https://doi.org/10.1073/pnas.1416707112. Haake D, Suchard M, Kelley M, Dundoo M, Alt D, Zuerner R. Molecular evolution and mosaicism of leptospiral outer membrane proteins involves horizontal DNA transfer. Journal of bacteriology. 2004 May;186(9):2818–2828. Available from: https://doi.org/10.1128/jb.186.9.2818-2828.2004. Vedhagiri K, Natarajaseenivasan K, Chellapandi P, Prabhakaran S, Selvin J, Sharma S, et al. Evolutionary implication of outer membrane lipoprotein-encoding genes ompL1, lipL32 and lipL41 of pathogenic Leptospira species. Genomics, proteomics bioinformatics. 2009 Sep;7(3):96–106. Available from: https://doi.org/10.1016/S1672-0229(08)60038-8. Dhayabaran V, Chidambaram D, Krishnaswamy P. Identification of compounds for improved growth of Leptospira in culture and isolation. Diagnostic microbiology and infectious disease. 2020 Jan;96(1):114923. Available from: https://doi.org/10.1016/j.diagmicrobio.2019.114923. Philip N, Garba B, Neela V. Long-term preservation of Leptospira spp.: challenges and prospects. Applied microbiology and biotechnology. 2018 May;102(13):5427–5435. Available from: https://doi.org/10.1007/s00253-018-9047-9. Balamurugan V, Gangadhar N, Mohandoss N, Thirumalesh S, Balamurugan V, Gangadhar N, et al. Characterization of leptospira isolates from animals and humans: phylogenetic analysis identifies the prevalence of intermediate species in India. Springer-Plus. 2013 Jul;2(362). Available from: https://doi.org/10.1186/2193-1801-2-362. Zuerner R. Laboratory Maintenance of Pathogenic Leptospira. Current Protocols in Microbiology. 2006;00(1):12E.1.1–12E.1.13. Available from: https://doi.org/10.1002/9780471729259.mc12e01s00. Vanaja R, Ratnam S, Vijayalakshmi K. Lipid metabolic changes in experimentally induced leptospiral infection with serovars australis, canicola and icterohaemorrhagiae. Indian journal of experimental biology. 2001 Jan;39(1):75–77. Available from: https: //pubmed.ncbi.nlm.nih.gov/11349531/. Ozuru R, Saito M, Kanemaru T, Miyahara S, Villanueva S, Murray G, et al. Adipose tissue is the first colonization site of Leptospira interrogans in subcutaneously infected hamsters. PloS One. 2017 Feb;12(2):e0172973. Available from: https://doi.org/10.1371/journal.pone.0172973. Peng N, Zhong Y, Zhang Q, Zheng M, Zhao W, Jiang H, et al. Characterization of acetyl-CoA and propionyl-CoA carboxylases encoded by Leptospira interrogans serovar Lai: an initial biochemical study for leptospiral gluconeogenesis via anaplerotic CO2 assimilation. Acta Biochimica et Biophysica Sinica. 2012 Jun;44(8):692–702. Available from: https://doi.org/10.1093/abbs/gms047. Zhang Q, Zhang Y, Zhong Y, Ma J, Peng N, Cao X, et al. Leptospira interrogans encodes an ROK family glucokinase involved in a cryptic glucose utilization pathway. Acta Biochimica et Biophysica Sinica. 2011 Jun;43(8):618–629. Available from: https: //doi.org/10.1093/abbs/gmr049. Ren S, Fu G, Jiangk X, Zeng R, Miao Y, Xu H, et al. Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature. 2003 Apr;422:888–893. Available from: https://doi.org/10.1038/nature01597. Bauby H, Saint-Girons I, Picardeau M. Construction and complementation of the first auxotrophic mutant in the spirochaete Leptospira meyeri. Microbiology. 2003 Mar;149(Pt 3):689–693. Available from: https://doi.org/10.1099/mic.0.26065-0. Buyuktimkin B, Saier M. Comparative genomic analyses of transport proteins encoded within the genomes of Leptospira species. Microbial Pathogenesis. 2015 Nov;88:52–64. Available from: https://DOI:10.1016/j.micpath.2015.07.019. Cock P, Antao A, Chang J, Chapman B, Cox C, Dalke A, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009 Jun;25(1):1422–1423. Available from: https://doi.org/10.1093/bioinformatics/btp163. Van Rossum G, Drake FL. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace; 2009. Available from: https://docs.python.org/3/index.html. Assefa S, Keane T, Otto T, Newbold C, Berriman M. ABACAS: algorithmbased automatic contiguation of assembled sequences. Bioinformatics. 2009 Jun;25(15):1968–1969. Available from: http://doi:10.1093/bioinformatics/btp347. Wall L, Christiansen T, Orwant J. Programming perl. .O’Reilly Media, Inc.”; 2000. Available from: http://www.perl.org/. Huerta J, Forslund K, Coelho L, Szklarczyk D, Jensen L, von Mering C, et al. Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Molecular Biology and Evolution. 2017 Aug;34(8):2115–2122. Available from: https://doi.org/10.1093/molbev/msx148. Huerta J, Szklarczyk D, Heller D, Hernández A, Forslund S, Cook H, et al. egg-NOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research. 2019 Jan;47(D1):D309–D314. Available from: https://doi.org/10.1093/nar/gky1085. Tatusov R, Galperin M, Natale D, Koonin E. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research. 2000 Jan;28(1):33–36. Available from: https://doi.org/10.1093/nar/28.1.33. Saier M, Reddy V, Tsu B, Ahmed M, Li C, Moreno G. The Transporter Classification Database (TCDB): recent advances. Nucleic acids research. 2016 Jan;44(D1):D372–D379. Available from: https://doi.org/10.1093/nar/gkv1103. Buchfink B, Xie C, Huson D. Fast and sensitive protein alignment using DIAMOND. Nature methods. 2015 Nov;12(1):59–60. Available from: https://doi.org/10.1038/nmeth.3176. Consortium U. UniProt: the universal protein knowledgebase in 2021. Nucleic acids research. 2021 Jan;49(D1):D480–D489. Available from: https://doi.org/10.1093/nar/gkaa1100. Amineni U, Pradhan D, Marisetty H. In silico identification of common putative drug targets in Leptospira interrogans. Journal of chemical biology. 2010 May;3(4):165–173. Available from: https://doi.org/10.1007/s12154-010-0039-1. Orth J, Conrad T, Na J, Lerman J, Nam H, Feist A, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism–2011. Molecular systems biology. 2011 Oct;7(535). Available from: https://doi.org/10.1038/msb.2011.65. Psychogios N, Hau D, Peng J, Guo A, Mandal R, Bouatra S, et al. The human serum metabolome. PLoS One. 2011 Feb;6(2):e16957. Available from: https://doi.org/10.1371/journal.pone.0016957. Hess J, Hill H, Oliver C, Lippert L, Greenwalt T. Alkaline CPD and the preservation of RBC 2,3-DPG. Transfusion. 2002 Jun;42(6):747–752. Available from: https://doi.org/10.1046/j.15372995.2002.00115.x. Wishart D, Feunang Y, Marcu A, Guo A, Liang K, Vázquez R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic acids research. 2018 Jan;46(D1):D608–D617. Available from: https://doi.org/10.1093/nar/gkx1089. Seaver S, Liu F, Zhang Q, Jeffryes J, Faria J, Edirisinghe J, et al. The Model-SEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic acids research. 2021 Jan;49(D1):D575–D588. Available from: https://doi.org/10.1093/nar/gkaa746. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic acids research. 2019 Jan;47(D1):D590–D595. Available from: https://doi.org/10.1093/nar/gky962. Kim S, Thiessen P, Bolton E, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic acids research. 2016 Jan;44(D1):D1202–D1213. Available from: https://doi.org/10.1093/nar/gkv951. Caspi R, Billington R, Fulcher C, Keseler I, Kothari A, Krummenacker M, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic acids research. 2018 Jan;46(D1):D633–D639. Available from: https://doi.org/10.1093/nar/gkx935. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of molecular biology. 2016 Feb;428(4):726–731. Available from: https://doi.org/10.1016/j.jmb.2015.11.006. Xu H, Zhang Y, Guo X, Ren S, Staempfli A, Chiao J, et al. Isoleucine Biosynthesis in Leptospira interrogans Serotype lai Strain 56601 Proceeds via a Threonine-Independent Pathway. Journal of bacteriology. 2004;186(16):5400–5409. Available from: https://doi.org/10.1128/JB.186.16.5400-5409.2004. Gelius G, Amer A, Fritzemeier C, Lercher M. sybil – Efficient constraint-based modelling in R. BMC Systems Biology. 2013 Apr;7(125). Available from: https: //doi.org/10.1186/1752-0509-7-125. Ebrahim A, Lerman J, Palsson B, Hyduke D. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Systems Biology. 2013 Aug;7(74). Available from: https://doi.org/10.1186/1752-0509-7-74. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2021. Available from: https://www.R-project.org/. David N, Cox M. Lehninger Principles of Biochemistry. 7th ed. W. H. Freeman; 2017. Available from: https://www.macmillanlearning.com/college/us/product/Lehninger-Principles-of-Biochemistry/p/1464126119?selected_tab=About.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMetabolitos microbiano
dc.subject.lembMicrobial metabolites
dc.subject.proposalAnálisis basado restricciones
dc.subject.proposalClado
dc.subject.proposalCultivo
dc.subject.proposalGenoma
dc.subject.proposalLeptospira
dc.subject.proposalMetabolismo
dc.subject.proposalModelos metabólicos a escala genómica
dc.subject.proposalClade
dc.subject.proposalCulture
dc.subject.proposalConstraint-based analyses
dc.subject.proposalGenome
dc.subject.proposalGenome-scale metabolic models
dc.subject.proposalLeptospira
dc.subject.proposalMetabolism
dc.title.translatedIdentification and classification of the metabolic pathways of Leptospira spp species
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit