dc.rights.license | Atribución-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Umaña Pérez, Yadi Adriana |
dc.contributor.author | Castro Badilla, Juan José |
dc.date.accessioned | 2021-10-25T15:27:11Z |
dc.date.available | 2021-10-25T15:27:11Z |
dc.date.issued | 2021-04-23 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80608 |
dc.description | ilustraciones, fotografías, gráficas |
dc.description.abstract | El factor de crecimiento similar a la insulina tipo 2, IGF2, ejerce acciones a través de los receptores de la familia IGF incluyendo el receptor tipo 1 (IGF1R), el receptor de insulina (IR) y los híbridos IGF1R/IR. Preferentemente, su acción es mediada a través del receptor IGF1R modulando rutas de señalización intracelulares esenciales en procesos como la proliferación, migración o invasión celular, eventos que son de carácter crucial en las manifestaciones patológicas originadas en el trofoblasto, tales como la enfermedad trofoblástica gestacional, molas, preeclampsia o la restricción de crecimiento intrauterino, siendo estas complicaciones un problema actual para la salud pública del país. Se ha descrito que en tejido de mola la expresión de IGF2 se encuentra elevada y, además, que participa activamente en el proceso de la embriogénesis. La regulación de la biodisponibilidad de este ligando se atribuye, entre otros, a la unión con el receptor IGF2R, el cual lo internaliza para su degradación. Sin embargo, hace más de una década existe controversia sobre si esta interacción lGF2/IGF2R puede desencadenar una vía de señalización que participe en los procesos celulares descritos anteriormente. En este orden de ideas, para explorar si existe una vía de señalización dependiente de IGF2R, sin la activación directa de los otros receptores de la familia, se usó como estrategia estimular células derivadas de trofoblasto humano HTR-8/SVneo con Leu27IGF2, péptido análogo de IGF2, que se une exclusivamente al IGF2R. La inducción de las células con el análogo generó una activación temprana de las proteínas ERK1 y 2 mayor a la inducida por el IGF2. Se observó un incremento en los niveles de transcripción de MMP-9 de carácter tiempo-dependiente de Leu27IGF2 y anticipado con respecto al péptido IGF2, concordante con un aumento temprano de la actividad gelatinasa de MMP-9. Se determinó que la interacción de IGF2R con Leu27IGF2 generó un incremento significativo del 20%, 13% y 23% en adhesión, migración y proliferación celular respectivamente. Resultados que nos sugieren que el IGF2 en células de trofoblasto, activa al receptor IGF2R y al menos una ruta de señalización, como la de MAPKs, involucrada en el aumento de la activación de proteínas y transcripción de genes que favorecen la adhesión, migración e invasión celular durante la implantación blastocística. (Texto tomado de la fuente). |
dc.description.abstract | The insulin-like growth fact or type 2, IGF2, exerts actions through receptors in the IGF family including the type 1 receptor (IGF1R), the insulin receptor (IR) and IGF1R/IR hybrids. Preferably, its action is mediated through the IGF1R receptor modulating intracellular signaling pathways essential in processes such as cell proliferation, migration or invasion, events that are crucial in the pathological manifestations originated by the trophoblast, such as gestational trophoblastic diseases, moles, preeclampsia or intrauterine growth restriction, being these complications a current problem for the public health of the country. It has been described that the expression of IGF2 in mole tissue is high and, in addition, that it actively participates in the embryogenesis process. The regulation of the bioavailability of this ligand is attributed, among others, to the binding with the IGF2R receptor which internalizes it for degradation. However, for more than a decade there has been controversy about whether this interaction lGF2/IGF2R can trigger a signaling pathway involved in the cellular processes described above. In this order of ideas to explore if there is an IGF2R-dependent signaling pathway, without the direct activation of the other receptors of the family, a strategy was used to stimulate cells derived from human trophoblast HTR-8/SVneo with Leu27IGF2, an analogous peptide of IGF2, which binds exclusively to IGF2R. The induction of cells with the analogue generated a higher early activation of ERK1 and 2 proteins compared to that induced by IGF2. Similarly, an increase in the transcription levels of Leu27IGF2-dependent and anticipated MMP-9 with respect to IGF2 peptide was observed, consistent with an early increase in MMP-9 gelatinase activity. It was determined that interaction of IGF2R with Leu27IGF2 generated a significant increase of approximately 20%, 13% and 23% in adhesion, migration and cell proliferation respectively with respect to basal condition. These results suggest that IGF2 in trophoblast cells activates the IGF2R receptor and at least one signaling pathway, such as MAPKs, involved in increased protein activation and gene transcription that favor cell adhesion, migration and invasion during blastocyst implantation. |
dc.format.extent | xvii, 74 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/4.0/ |
dc.subject.ddc | 570 - Biología |
dc.title | Caracterización de la vía de señalización intracelular mediada por IGF2R en trofoblasto humano |
dc.type | Trabajo de grado - Doctorado |
dc.type.driver | info:eu-repo/semantics/doctoralThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ciencias - Doctorado en Ciencias - Bioquímica |
dc.contributor.researchgroup | Grupo de Investigación en Hormonas |
dc.description.degreelevel | Doctorado |
dc.description.degreename | Doctor en Ciencias - Bioquímica |
dc.description.researcharea | Factores de crecimiento, diferenciación y cáncer |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Química |
dc.publisher.faculty | Facultad de Ciencias |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | 1. Apps R, Sharkey A, Gardner L, Male V, Trotter M, Miller N, et al. Genome-wide
expression profile of first trimester villous and extravillous human trophoblast cells.
Placenta. 2011;32: 33–43. doi:10.1016/j.placenta.2010.10.010 |
dc.relation.references | 2. Heidari Z, Sheibak N. Trophoblast Giant Cells, the Prime Suspects of Deficient
Placentation Associated With Pregnancy Complications. Gene Cell Tissue. 2016;3:
e38516. doi:10.17795/gct-38516 |
dc.relation.references | 3. Lunghi L, Ferretti ME, Medici S, Biondi C, Vesce F. Control of human trophoblast
function. Reprod Biol Endocrinol RBE. 2007;5: 6. doi:10.1186/1477-7827-5-6 |
dc.relation.references | 4. Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knofler M. Regulation of Placental
Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol. 2018;9:
2597. doi:10.3389/fimmu.2018.02597 |
dc.relation.references | 5. Khan MA, Manna S, Malhotra N, Sengupta J, Ghosh D. Expressional regulation of
genes linked to immunity & programmed development in human early placental villi.
Indian J Med Res. 2014;139: 125–140 |
dc.relation.references | 6. Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvasc Res.
2008;75: 1–8. doi:10.1016/j.mvr.2007.04.009 |
dc.relation.references | 7. Pennington KA, Schlitt JM, Jackson DL, Schulz LC, Schust DJ. Preeclampsia: multiple
approaches for a multifactorial disease. Dis Model Mech. 2012;5: 9–18.
doi:10.1242/dmm.008516 |
dc.relation.references | 8. Monchek R, Wiedaseck S. Gestational trophoblastic disease: an overview. J Midwifery
Womens Health. 2012;57: 255–259. doi:10.1111/j.1542-2011.2012.00177.x |
dc.relation.references | 9. Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol.
2015;213: S115-122. doi:10.1016/j.ajog.2015.08.042 |
dc.relation.references | 10. Alcaldía Mayor de Bogotá DC. Guía de trastornos hipertensivos del embarazo. 2014.
Available: http://www.saludcapital.gov.co/DDS/Publicaciones/Guia%20MaternidadTrastornos_baja.pdf |
dc.relation.references | 11. Cortés C, Ching R, Rodríguez A, León H, Capasso S, Lozano F, et al. La mola
hidatidiforme: un indicador de la situación sociodemográfica en salud sexual y
reproductiva. Inf Quinc Epidemiol Nac. 2003;12: 193–208. |
dc.relation.references | 12. Gratton RJ, Asano H, Han VKM. The regional expression of insulin-like growth factor II
(IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) in the placentae of
women with pre-eclampsia. Placenta. 2002;23: 303–310. doi:10.1053/plac.2001.0780 |
dc.relation.references | 13. Gurel D, Ozer E, Altunyurt S, Guclu S, Demir N. Expression of IGR-IR and VEGF and
trophoblastic proliferative activity in placentas from pregnancies complicated by IUGR.
Pathol Res Pract. 2003;199: 803–809. doi:10.1078/0344-0338-00499 |
dc.relation.references | 14. Livingstone C. IGF2 and cancer. Endocr Relat Cancer. 2013;20: R321-339.
doi:10.1530/ERC-13-0231 |
dc.relation.references | 15. Pollak M. The insulin and insulin-like growth factor receptor family in neoplasia: an
update. Nat Rev Cancer. 2012;12: 159–169. doi:10.1038/nrc3215 |
dc.relation.references | 16. Gary-Bobo M, Nirdé P, Jeanjean A, Morère A, Garcia M. Mannose 6-phosphate
receptor targeting and its applications in human diseases. Curr Med Chem. 2007;14:
2945–2953. doi:10.2174/092986707782794005 |
dc.relation.references | 17. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the
tale. Nat Rev Mol Cell Biol. 2003;4: 202–212. doi:10.1038/nrm1050 |
dc.relation.references | 18. Leksa V, Ilkova A, Vicikova K, Stockinger H. Unravelling novel functions of the
endosomal transporter mannose. Immunol Lett. 2017;190: 194–200.
doi:10.1016/j.imlet.2017.08.011 |
dc.relation.references | 19. Zaina S, Squire S. The soluble type 2 insulin-like growth factor (IGF-II) receptor reduces
organ size by IGF-II-mediated and IGF-II-independent mechanisms. J Biol Chem.
1998;273: 28610–28616. doi:10.1074/jbc.273.44.28610 |
dc.relation.references | 20. Leksa V, Loewe R, Binder B, Schiller HB, Eckerstorfer P, Forster F, et al. Soluble
M6P/IGF2R released by TACE controls angiogenesis via blocking plasminogen
activation. Circ Res. 2011;108: 676–685. doi:10.1161/CIRCRESAHA.110.234732 |
dc.relation.references | 21. Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor
receptor signaling in hematological malignancies. Oncotarget. 2017;8: 1814–1844.
doi:10.18632/oncotarget.12123 |
dc.relation.references | 22. McKinnon T, Chakraborty C, Gleeson LM, Chidiac P, Lala PK. Stimulation of human
extravillous trophoblast migration by IGF-II is mediated by IGF type 2 receptor involving
inhibitory G protein(s) and phosphorylation of MAPK. J Clin Endocrinol Metab. 2001;86:
3665–3674. doi:10.1210/jcem.86.8.7711 |
dc.relation.references | 23. Harris LK, Crocker IP, Baker PN, Aplin JD, Westwood M. IGF2 actions on trophoblast
in human placenta are regulated by the insulin-like growth factor 2 receptor, which can
function as both a signaling and clearance receptor. Biol Reprod. 2011;84: 440–446.
doi:10.1095/biolreprod.110.088195 |
dc.relation.references | 24. Harris LK, Pantham P, Yong HEJ, Pratt A, Borg AJ, Crocker I, et al. The role of insulinlike growth factor 2 receptor-mediated homeobox gene expression in human placental apoptosis, and its implications in idiopathic fetal growth restriction. Mol Hum Reprod. 2019;25: 572–585. doi:10.1093/molehr/gaz047 |
dc.relation.references | 25. Kaku K, Osada H, Seki K, Sekiya S. Insulin-like growth factor 2 (IGF2) and IGF2
receptor gene variants are associated with fetal growth. Acta Paediatr Oslo Nor 1992.
2007;96: 363–367. doi:10.1111/j.1651-2227.2006.00120.x |
dc.relation.references | 26. Holtan SG, Creedon DJ, Haluska P, Markovic SN. Cancer and pregnancy: parallels in
growth, invasion, and immune modulation and implications for cancer therapeutic
agents. Mayo Clin Proc. 2009;84: 985–1000. doi:10.1016/S0025-6196(11)60669-1 |
dc.relation.references | 27. Graham CH, Hawley TS, Hawley RG, MacDougall JR, Kerbel RS, Khoo N, et al.
Establishment and characterization of first trimester human trophoblast cells with
extended lifespan. Exp Cell Res. 1993;206: 204–211. doi:10.1006/excr.1993.1139 |
dc.relation.references | 28. American Type Culture Collection. HTR-8/SVneo (ATCC® CRL-3271TM). [cited 18 Jan
2020]. Available: https://www.atcc.org/Products/All/CRL-3271.aspx# |
dc.relation.references | 29. Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the
placenta through endothelial and vasculogenic mimicry. Dev Biol. 2014;387: 131–141.
doi:10.1016/j.ydbio.2014.01.015 |
dc.relation.references | 30. Sakano K, Enjoh T, Numata F, Fujiwara H, Marumoto Y, Higashihashi N, et al. The
design, expression, and characterization of human insulin-like growth factor II (IGF-II)
mutants specific for either the IGF-II/cation-independent mannose. J Biol Chem.
1991;266: 20626–20635 |
dc.relation.references | 31. GroPep. GroPep Bioreagents IGF Analogues. In: Human [Leu27]IGF-II [Internet]. [cited
6 May 2020]. Available: https://gropep.com/product_families/igfanalogues/products/human-leu27-igf-ii--7 |
dc.relation.references | 32. Forbes BE, Hartfield PJ, McNeil KA, Surinya KH, Milner SJ, Cosgrove LJ, et al.
Characteristics of binding of insulin-like growth factor (IGF)-I and IGF-II analogues to
the type 1 IGF receptor determined by BIAcore analysis. Eur J Biochem. 2002;269:
961–968. doi:10.1046/j.0014-2956.2001.02735.x |
dc.relation.references | 33. Oh Y, Müller HL, Zhang H, Ling N, Rosenfeld RG. Synthesis and characterization of
IGF-II analogs: applications in the evaluation of IGF receptor function and IGFindependent actions of IGFBPs. Adv Exp Med Biol. 1993;343: 41–54. doi:10.1007/978-
1-4615-2988-0_5 |
dc.relation.references | 34. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal
development. Reprod Camb Engl. 2017;153: R97–R108. doi:10.1530/REP-16-0495 |
dc.relation.references | 35. Scott CD, Kiess W. Soluble M6P/IGFIIR in the circulation. Best Pract Res Clin
Endocrinol Metab. 2015;29: 723–733. doi:10.1016/j.beem.2015.08.001 |
dc.relation.references | 36. Jeyaratnaganthan N, Hojlund K, Kroustrup JP, Larsen JF, Bjerre M, Levin K, et al.
Circulating levels of insulin-like growth factor-II/mannose-6-phosphate receptor in obesity and type 2 diabetes. Growth Horm IGF Res Off J Growth Horm Res Soc Int IGF
Res Soc. 2010;20: 185–191. doi:10.1016/j.ghir.2009.12.005 |
dc.relation.references | 37. Molfino A, Amabile MI, Monti M, Arcieri S, Rossi Fanelli F, Muscaritoli M. The Role of
Docosahexaenoic Acid (DHA) in the Control of Obesity and Metabolic Derangements
in Breast Cancer. Int J Mol Sci. 2016;17: 505. doi:10.3390/ijms17040505 |
dc.relation.references | 38. Staun-Ram E, Shalev E. Human trophoblast function during the implantation process.
Reprod Biol Endocrinol RBE. 2005;3: 56. doi:10.1186/1477-7827-3-56 |
dc.relation.references | 39. Bischof P, Irminger-Finger I. The human cytotrophoblastic cell, a mononuclear
chameleon. Int J Biochem Cell Biol. 2005;37: 1–16. doi:10.1016/j.biocel.2004.05.014 |
dc.relation.references | 40. Moffett A, Loke C, McLaren A, editors. Biology and Pathology of Trophoblast.
Cambridge: Cambridge University Press; 2006. doi:10.1017/CBO9780511545207 |
dc.relation.references | 41. Hanssens S, Salzet M, Vinatier D. Aspectos inmunológicos de la gestación. EMC -
Ginecol-Obstet. 2013;49: 1–21. doi:10.1016/S1283-081X(13)64079-5 |
dc.relation.references | 42. American Cancer Society. What Is Gestational Trophoblastic Disease? Available:
https://www.cancer.org/cancer/gestational-trophoblastic-disease/about/what-isgtd.html |
dc.relation.references | 43. Alfredo López Cousillas JME. Enfermedad Trofoblástica Gestacional. Aspectos
Clínicos y Morfológicos. Rev Esp Patol. 2002;35: 187–200. |
dc.relation.references | 44. Shaaban AM, Rezvani M, Haroun RR, Kennedy AM, Elsayes KM, Olpin JD, et al.
Gestational Trophoblastic Disease: Clinical and Imaging Features. RadioGraphics.
2017;37: 681–700. doi:10.1148/rg.2017160140 |
dc.relation.references | 45. Le Bret T, Tranbaloc P, Benbunan J-L, Salet-Lizée D, Villet R. [Endometrial
choriocarcinoma in peri-menopausal women]. J Gynecol Obstet Biol Reprod (Paris).
2005;34: 85–89. doi:10.1016/s0368-2315(05)82674-2 |
dc.relation.references | 46. Sierra-Bergua B, Sánchez-Marteles M, Cabrerizo-García JL, Sanjoaquin-Conde I.
Choriocarcinoma with pulmonary and cerebral metastases. Singapore Med J. 2008;49:
e286-288 |
dc.relation.references | 47. Caniggia I, Winter J, Lye SJ, Post M. Oxygen and placental development during the
first trimester: implications for the pathophysiology of pre-eclampsia. Placenta. 2000;21
Suppl A: S25-30. doi:10.1053/plac.1999.0522 |
dc.relation.references | 48. Nathanielsz PW. Animal models that elucidate basic principles of the developmental
origins of adult diseases. ILAR J. 2006;47: 73–82. doi:10.1093/ilar.47.1.73 |
dc.relation.references | 49. Nardozza LMM, Caetano ACR, Zamarian ACP, Mazzola JB, Silva CP, Marçal VMG, et
al. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295: 1061–
1077. doi:10.1007/s00404-017-4341-9 |
dc.relation.references | 50. Barker DJP. Fetal programming of coronary heart disease. Trends Endocrinol Metab
TEM. 2002;13: 364–368. doi:10.1016/s1043-2760(02)00689-6 |
dc.relation.references | 51. Sánchez-Gómez M. Entendiendo el papel del sistema de factores de crecimiento
similares a la insulin (IGF) en la regulacion funcional del trofoblasto humano. Rev Acad
Colomb Cienc Exactas Fis Nat. 2014;38: 118+ |
dc.relation.references | 52. Diaz LE, Chuan Y-C, Lewitt M, Fernandez-Perez L, Carrasco-Rodriguez S, SanchezGomez M, et al. IGF-II regulates metastatic properties of choriocarcinoma cells through
the activation of the insulin receptor. Mol Hum Reprod. 2007;13: 567–576.
doi:10.1093/molehr/gam039 |
dc.relation.references | 53. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in
embryonic and postnatal growth. Cell. 1993;75: 73–82 |
dc.relation.references | 54. Kumar N, Leverence J, Bick D, Sampath V. Ontogeny of growth-regulating genes in the
placenta. Placenta. 2012;33: 94–99. doi:10.1016/j.placenta.2011.11.018 |
dc.relation.references | 55. Hamilton GS, Lysiak JJ, Han VK, Lala PK. Autocrine-paracrine regulation of human
trophoblast invasiveness by insulin-like growth factor (IGF)-II and IGF-binding protein
(IGFBP)-1. Exp Cell Res. 1998;244: 147–156. doi:10.1006/excr.1998.4195 |
dc.relation.references | 56. Chen H, Li Y, Shi J, Song W. Role and mechanism of insulin-like growth factor 2 on the
proliferation of human trophoblasts in vitro. J Obstet Gynaecol Res. 2016;42: 44–51.
doi:10.1111/jog.12853 |
dc.relation.references | 57. Clemmons DR, Busby WH, Arai T, Nam TJ, Clarke JB, Jones JI, et al. Role of insulinlike growth factor binding proteins in the control of IGF actions. Prog Growth Factor
Res. 1995;6: 357–366. doi:10.1016/0955-2235(95)00013-5 |
dc.relation.references | 58. Baxter RC. Changes in the IGF-IGFBP axis in critical illness. Best Pract Res Clin
Endocrinol Metab. 2001;15: 421–434. doi:10.1053/beem.2001.0161 |
dc.relation.references | 59. Massoner P, Ladurner-Rennau M, Eder IE, Klocker H. Insulin-like growth factors and
insulin control a multifunctional signalling network of significant importance in cancer.
Br J Cancer. 2010;103: 1479–1484. doi:10.1038/sj.bjc.6605932 |
dc.relation.references | 60. Forbes K, Westwood M, Baker PN, Aplin JD. Insulin-like growth factor I and II regulate
the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell
Physiol. 2008;294: C1313-1322. doi:10.1152/ajpcell.00035.2008 |
dc.relation.references | 61. Pombo M, Audí L, Bueno M, Calzada R, Cassorla F, Diéguez C, et al. Tratado de
Endocrinología Pediátrica. 4o edición. España: McGRAW-HILL; 2009. |
dc.relation.references | 62. O’Dell SD, Day INM. Molecules in focus Insulin-like growth factor II (IGF-II). Int J
Biochem Cell Biol. 1998;30: 767–771. doi:10.1016/S1357-2725(98)00048-X |
dc.relation.references | 63. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and
progression. J Natl Cancer Inst. 2000;92: 1472–1489. doi:10.1093/jnci/92.18.1472 |
dc.relation.references | 64. Vu TH, Hoffman AR. Promoter-specific imprinting of the human insulin-like growth
factor-II gene. Nature. 1994;371: 714–717. doi:10.1038/371714a0 |
dc.relation.references | 65. Harrela M, Koistinen H, Kaprio J, Lehtovirta M, Tuomilehto J, Eriksson J, et al. Genetic
and environmental components of interindividual variation in circulating levels of IGFI, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest. 1996;98: 2612–2615.
doi:10.1172/JCI119081 |
dc.relation.references | 66. Bergman D, Bergman D, Halje M, Nordin M, Engström W. Insulin-Like Growth Factor 2
in Development and Disease: A Mini-Review. Gerontology. 2013;59: 240–249.
doi:10.1159/000343995 |
dc.relation.references | 67. Chao W, D’Amore PA. IGF2: epigenetic regulation and role in development and
disease. Cytokine Growth Factor Rev. 2008;19: 111–120.
doi:10.1016/j.cytogfr.2008.01.005 |
dc.relation.references | 68. Krauss G. Biochemistry of Signal Transduction and Regulation. 5th edition. Germany:
Wiley-VHC; 2014. |
dc.relation.references | 69. Iniguez G, Castro JJ, Garcia M, Kakarieka E, Johnson MC, Cassorla F, et al. IGF-IR
signal transduction protein content and its activation by IGF-I in human placentas:
relationship with gestational age and birth weight. PloS One. 2014;9: e102252.
doi:10.1371/journal.pone.0102252 |
dc.relation.references | 70. Iñiguez G, Cassorla F. Expresión y contenido placentario de los componentes del eje
somatotrófico en niños con alteraciones del crecimiento fetal. Rev Esp Endocrinol
Pediatr. 2012;3 Suppl(1): 33–37.
doi:10.3266/RevEspEndocrinolPediatr.pre2012.Apr.96 |
dc.relation.references | 71. Brown J, Delaine C, Zaccheo OJ, Siebold C, Gilbert RJ, van Boxel G, et al. Structure
and functional analysis of the IGF-II/IGF2R interaction. EMBO J. 2008;27: 265–276.
doi:10.1038/sj.emboj.7601938 |
dc.relation.references | 72. El-Shewy HM, Luttrell LM. Insulin-like growth factor-2/mannose-6 phosphate receptors.
Vitam Horm. 2009;80: 667–697. doi:10.1016/S0083-6729(08)00624-9 |
dc.relation.references | 73. Fang J, Furesz TC, Lurent RS, Smith CH, Fant ME. Spatial polarization of insulin-like
growth factor receptors on the human syncytiotrophoblast. Pediatr Res. 1997;41: 258–
265. doi:10.1203/00006450-199702000-00017 |
dc.relation.references | 74. Gary-Bobo M, Nirdé P, Jeanjean A, Morère A, Garcia M. Mannose 6-phosphate
receptor targeting and its applications in human diseases. Curr Med Chem. 2007;14:
2945–2953. doi:10.2174/092986707782794005 |
dc.relation.references | 75. Ou J-M, Lian W-S, Qiu M-K, Dai Y-X, Dong Q, Shen J, et al. Knockdown of IGF2R
suppresses proliferation and induces apoptosis in hemangioma cells in vitro and in
vivo. Int J Oncol. 2014;45: 1241–1249. doi:10.3892/ijo.2014.2512 |
dc.relation.references | 76. Weiner JA, Chen A, Davis BH. E-box-binding repressor is down-regulated in hepatic
stellate cells during up-regulation of mannose 6-phosphate/insulin-like growth factor-II receptor expression in early hepatic fibrogenesis. J Biol Chem. 1998;273: 15913–
15919. doi:10.1074/jbc.273.26.15913 |
dc.relation.references | 77. Chen W-K, Kuo W-W, Hsieh DJ-Y, Chang H-N, Pai P-Y, Lin K-H, et al. CREB
Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit
Hypoxia-Induced H9c2 Cardiomyoblast Cell Death. Int J Mol Sci. 2015;16: 27921–
27930. doi:10.3390/ijms161126067 |
dc.relation.references | 78. Hinrichs S, Heger J, Schreckenberg R, Wenzel S, Euler G, Arens C, et al. Controlling
cardiomyocyte length: the role of renin and PPAR-{gamma}. Cardiovasc Res. 2011;89:
344–352. doi:10.1093/cvr/cvq313 |
dc.relation.references | 79. Bohnsack RN, Warejcka DJ, Wang L, Gillespie SR, Bernstein AM, Twining SS, et al.
Expression of insulin-like growth factor 2 receptor in corneal keratocytes during
differentiation and in response to wound healing. Invest Ophthalmol Vis Sci. 2014;55:
7697–7708. doi:10.1167/iovs.14-15179 |
dc.relation.references | 80. Instituto Weizmann de Ciencias. GeneCards HUMAN GENE DATABASE. [cited 5 Apr
2020]. Available: https://www.genecards.org/cgi-bin/carddisp.pl?gene=IGF2R |
dc.relation.references | 81. El-Shewy HM, Johnson KR, Lee M-H, Jaffa AA, Obeid LM, Luttrell LM. Insulin-like
growth factors mediate heterotrimeric G protein-dependent ERK1/2 activation by
transactivating sphingosine 1-phosphate receptors. J Biol Chem. 2006;281: 31399–
31407. doi:10.1074/jbc.M605339200 |
dc.relation.references | 82. Okamoto T, Katada T, Murayama Y, Ui M, Ogata E, Nishimoto I. A simple structure
encodes G protein-activating function of the IGF-II/mannose. Cell. 1990;62: 709–717.
doi:10.1016/0092-8674(90)90116-v |
dc.relation.references | 83. Okamoto T, Nishimoto I. Analysis of stimulation-G protein subunit coupling by using
active insulin-like growth factor II receptor peptide. Proc Natl Acad Sci U S A. 1991;88:
8020–8023. doi:10.1073/pnas.88.18.8020 |
dc.relation.references | 84. Higashijima T, Uzu S, Nakajima T, Ross EM. Mastoparan, a peptide toxin from wasp
venom, mimics receptors by activating. J Biol Chem. 1988;263: 6491–6494. |
dc.relation.references | 85. Shields S-K, Nicola C, Chakraborty C. Rho Guanosine 5′-Triphosphatases Differentially
Regulate Insulin-Like Growth Factor I (IGF-I) Receptor-Dependent and -Independent
Actions of IGF-II on Human Trophoblast Migration. Endocrinology. 2007;148: 4906–
4917. doi:10.1210/en.2007-0476 |
dc.relation.references | 86. Chu C-H, Tzang B-S, Chen L-M, Liu C-J, Tsai F-J, Tsai C-H, et al. Activation of insulinlike growth factor II receptor induces mitochondrial-dependent apoptosis through
G(alpha)q and downstream calcineurin signaling in myocardial cells. Endocrinology.
2009;150: 2723–2731. doi:10.1210/en.2008-0975 |
dc.relation.references | 87. Anitei M, Chenna R, Czupalla C, Esner M, Christ S, Lenhard S, et al. A high-throughput
siRNA screen identifies genes that regulate mannose 6-phosphate receptor trafficking.
England; 2014. doi:10.1242/jcs.159608 |
dc.relation.references | 88. Amritraj A, Hawkes C, Phinney AL, Mount HT, Scott CD, Westaway D, et al. Altered
levels and distribution of IGF-II/M6P receptor and lysosomal enzymes in mutant APP
and APP + PS1 transgenic mouse brains. Neurobiol Aging. 2009;30: 54–70.
doi:10.1016/j.neurobiolaging.2007.05.004 |
dc.relation.references | 89. Wang Y, Buggia-Prévot V, Zavorka ME, Bleackley RC, MacDonald RG, Thinakaran G,
et al. Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid
Production and Affects Cell Viability. Mol Cell Biol. 2015;35: 2368–2384.
doi:10.1128/MCB.01338-14 |
dc.relation.references | 90. Turner PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein
and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol.
2003;70: 1–32. doi:10.1016/s0301-0082(03)00089-3 |
dc.relation.references | 91. Dahms SO, Hoefgen S, Roeser D, Schlott B, Gührs K-H, Than ME. Structure and
biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein.
Proc Natl Acad Sci U S A. 2010;107: 5381–5386. doi:10.1073/pnas.0911326107 |
dc.relation.references | 92. Zheng H, Koo EH. The amyloid precursor protein: beyond amyloid. Mol Neurodegener.
2006;1: 5. doi:10.1186/1750-1326-1-5 |
dc.relation.references | 93. Selkoe D, Kopan R. Notch and Presenilin: regulated intramembrane proteolysis links
development and degeneration. Annu Rev Neurosci. 2003;26: 565–597.
doi:10.1146/annurev.neuro.26.041002.131334 |
dc.relation.references | 94. Porayette P, Gallego MJ, Kaltcheva MM, Meethal SV, Atwood CS. Amyloid-beta
precursor protein expression and modulation in human embryonic stem cells: a novel
role for human chorionic gonadotropin. Biochem Biophys Res Commun. 2007;364:
522–527. doi:10.1016/j.bbrc.2007.10.021 |
dc.relation.references | 95. Gao H, Sathishkumar KR, Yallampalli U, Balakrishnan M, Li X, Wu G, et al. Maternal
protein restriction regulates IGF2 system in placental labyrinth. Front Biosci Elite Ed.
2012;4: 1434–1450. doi:10.2741/472 |
dc.relation.references | 96. Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and
the insulin-like growth factors: resource allocation to fetal growth. J Physiol. 2017;595:
5057–5093. doi:10.1113/JP273330 |
dc.relation.references | 97. Harris LK, Westwood M. Biology and significance of signalling pathways activated by
IGF-II. Growth Factors Chur Switz. 2012;30: 1–12.
doi:10.3109/08977194.2011.640325 |
dc.relation.references | 98. Charnock JC, Dilworth MR, Aplin JD, Sibley CP, Westwood M, Crocker IP. The impact
of a human IGF-II analog ([Leu27]IGF-II) on fetal growth in a mouse model of fetal
growth restriction. Am J Physiol Endocrinol Metab. 2016;310: E24-31.
doi:10.1152/ajpendo.00379.2015 |
dc.relation.references | 99. Sferruzzi-Perri AN, Owens JA, Standen P, Roberts CT. Maternal insulin-like growth
factor-II promotes placental functional development via the type 2 IGF receptor in the
guinea pig. Placenta. 2008;29: 347–355. doi:10.1016/j.placenta.2008.01.009 |
dc.relation.references | 100. Costello M, Baxter RC, Scott CD. Regulation of soluble insulin-like growth factor
II/mannose 6-phosphate receptor in human serum: measurement by enzyme-linked
immunosorbent assay. J Clin Endocrinol Metab. 1999;84: 611–617.
doi:10.1210/jcem.84.2.5488 |
dc.relation.references | 101. Ong K, Kratzsch J, Kiess W, Costello M, Scott C, Dunger D. Size at birth and cord
blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-1
(IGFBP-1), IGFBP-3, and the soluble. J Clin Endocrinol Metab. 2000;85: 4266–4269.
doi:10.1210/jcem.85.11.6998 |
dc.relation.references | 102. Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de Situación
Nutricional ENSIN. In: Nutrición [Internet]. [cited 17 May 2020]. Available:
https://www.icbf.gov.co/bienestar/nutricion/encuesta-nacional-situacion-nutricional |
dc.relation.references | 103. Blancas-Flores G, Almanza-P JC, López-Roa RI, Alarcón-Aguilar FJ, García-Macedo,
Rebeca, Cruz M. La obesidad como un proceso inflamatorio. Bol Med Hosp Infant Mex.
2010;67: 88–97. |
dc.relation.references | 104. Poston L, Caleyachetty R, Cnattingius S, Corvalan C, Uauy R, Herring S, et al.
Preconceptional and maternal obesity: epidemiology and health consequences. Lancet
Diabetes Endocrinol. 2016;4: 1025–1036. doi:10.1016/S2213-8587(16)30217-0 |
dc.relation.references | 105. Chanprasertyothin S, Jongjaroenprasert W, Ongphiphadhanakul B. The association
of soluble IGF2R and IGF2R gene polymorphism with type 2 diabetes. J Diabetes Res.
2015;2015: 216383. doi:10.1155/2015/216383 |
dc.relation.references | 106. Caviedes L, Iñiguez G, Hidalgo P, Castro JJ, Castaño E, Llanos M, et al. Relationship
between folate transporters expression in human placentas at term and birth weights.
Placenta. 2016;38: 24–28. doi:10.1016/j.placenta.2015.12.007 |
dc.relation.references | 107. Lazar I. Jr., Horvath-Lazar E., Lazar I. GelAnalyzer 19.1. Available:
http://www.gelanalyzer.com/index.html |
dc.relation.references | 108. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time
quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif.
2001;25: 402–408. doi:10.1006/meth.2001.1262 |
dc.relation.references | 109. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE
guidelines: minimum information for publication of quantitative real-time PCR
experiments. Clin Chem. 2009;55: 611–622. doi:10.1373/clinchem.2008.112797 |
dc.relation.references | 110. Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell
viability/cytotoxicity. Nat Protoc. 2008;3: 1125–1131. doi:10.1038/nprot.2008.75 |
dc.relation.references | 111. Armant DR. Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic
developmental program of trophoblast cells. Dev Biol. 2005;280: 260–280.
doi:10.1016/j.ydbio.2005.02.009 |
dc.relation.references | 112. Anette Lindhard, Ursula Bentin-Ley, Vibeke Ravn, Henrik Islin, Thomas Hviid, Sven
Rex, et al. Biochemical evaluation of endometrial function at the time of implantation.
MODERN TRENDS. 2002;78: 221–233. doi:https://doi.org/10.1016/S0015-
0282(02)03240-5 |
dc.relation.references | 113. Carter AM, Enders AC, Pijnenborg R. The role of invasive trophoblast in implantation
and placentation of primates. Philos Trans R Soc Lond B Biol Sci. 2015;370: 20140070.
doi:10.1098/rstb.2014.0070 |
dc.relation.references | 114. Lala PK, Hamilton GS. Growth factors, proteases and protease inhibitors in the
maternal-fetal dialogue. Placenta. 1996;17: 545–555. doi:10.1016/s0143-
4004(96)80071-3 |
dc.relation.references | 115. Umaña Pérez A., Novoa Herrán S., Castro JJ., Correa Sánchez A., Guevara V., López
González D., et al. Role of the Insulin-like growth factor axis and the Transforming
growth factor-β in the regulation of the placenta and the pathogenesis of Gestational
Trophoblastic Diseases. Med Res Arch. En Prensa. |
dc.relation.references | 116. Barolo S, Posakony JW. Three habits of highly effective signaling pathways: principles
of transcriptional control by developmental cell signaling. Genes Dev. 2002;16: 1167–
1181. doi:10.1101/gad.976502 |
dc.relation.references | 117. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase–AKT pathway in human
cancer. Nat Rev Cancer. 2002;2: 489–501. doi:10.1038/nrc839 |
dc.relation.references | 118. Crespo P, Xu N, Simonds WF, Gutkind JS. Ras-dependent activation of MAP kinase
pathway mediated by G-protein beta gamma subunits. Nature. 1994;369: 418–420.
doi:10.1038/369418a0 |
dc.relation.references | 119. Krauss G. Intracellular Messenger Substances: “Second Messengers.” 5th edition.
Biochemistry of Signal Transduction and Regulation. 5th edition. Germany; 2014. pp.
369–416. |
dc.relation.references | 120. Strauss JF 3rd, Kido S, Sayegh R, Sakuragi N, Gafvels ME. The cAMP signalling
system and human trophoblast function. Placenta. 1992;13: 389–403.
doi:10.1016/0143-4004(92)90047-w |
dc.relation.references | 121. Biondi C, Ferretti ME, Lunghi L, Medici S, Cervellati F, Pavan B, et al. cAMP efflux
from human trophoblast cell lines: a role for multidrug resistance protein (MRP)1
transporter. Mol Hum Reprod. 2010;16: 481–491. doi:10.1093/molehr/gaq023 |
dc.relation.references | 122. Darashchonak N, Koepsell B, Bogdanova N, von Versen-Hoynck F. Adenosine A2B
receptors induce proliferation, invasion and activation of cAMP response element
binding protein (CREB) in trophoblast cells. BMC Pregnancy Childbirth. 2014;14: 2.
doi:10.1186/1471-2393-14-2 |
dc.relation.references | 123. Harris LK, Jones CJP, Aplin JD. Adhesion molecules in human trophoblast - a review.
II. extravillous trophoblast. Placenta. 2009;30: 299–304.
doi:10.1016/j.placenta.2008.12.003 |
dc.relation.references | 124. Jackson EK, Dubey RK. Role of the extracellular cAMP-adenosine pathway in renal
physiology. Am J Physiol Renal Physiol. 2001;281: F597-612.
doi:10.1152/ajprenal.2001.281.4.F597 |
dc.relation.references | 125. Miyamoto S, Teramoto H, Gutkind JS, Yamada KM. Integrins can collaborate with
growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase
activation: roles of integrin aggregation and occupancy of receptors. J Cell Biol.
1996;135: 1633–1642. doi:10.1083/jcb.135.6.1633 |
dc.relation.references | 126. Kabir-Salmani M, Shiokawa S, Akimoto Y, Hasan-Nejad H, Sakai K, Nagamatsu S, et
al. Characterization of morphological and cytoskeletal changes in trophoblast cells
induced by insulin-like growth factor-I. J Clin Endocrinol Metab. 2002;87: 5751–5759.
doi:10.1210/jc.2002-020550 |
dc.relation.references | 127. Irving JA, Lala PK. Functional role of cell surface integrins on human trophoblast cell
migration: regulation by TGF-beta, IGF-II, and IGFBP-1. Exp Cell Res. 1995;217: 419–
427. doi:10.1006/excr.1995.1105 |
dc.relation.references | 128. Hills FA, Elder MG, Chard T, Sullivan MHF. Regulation of human villous trophoblast
by insulin-like growth factors and insulin-like growth factor-binding protein-1. J
Endocrinol. 2004;183: 487–496. doi:10.1677/joe.1.05867 |
dc.relation.references | 129. Burrows TD, King A, Loke YW. Trophoblast migration during human placental
implantation. Hum Reprod Update. 1996;2: 307–321. doi:10.1093/humupd/2.4.307 |
dc.relation.references | 130. Gleeson LM, Chakraborty C, McKinnon T, Lala PK. Insulin-like growth factor-binding
protein 1 stimulates human trophoblast migration by signaling through alpha 5 beta 1
integrin via mitogen-activated protein Kinase pathway. J Clin Endocrinol Metab.
2001;86: 2484–2493. doi:10.1210/jcem.86.6.7532 |
dc.relation.references | 131. Li T, Wei S, Fan C, Tang D, Luo D. Nesfatin-1 Promotes Proliferation, Migration and
Invasion of HTR-8/SVneo Trophoblast Cells and Inhibits Oxidative Stress via Activation
of PI3K/AKT/mTOR and AKT/GSK3β Pathway. Reprod Sci Thousand Oaks Calif.
2021;28: 550–561. doi:10.1007/s43032-020-00324-1 |
dc.relation.references | 132. Staun-Ram E, Goldman S, Gabarin D, Shalev E. Expression and importance of matrix
metalloproteinase 2 and 9 (MMP-2 and -9) in human trophoblast invasion. Reprod Biol
Endocrinol RBE. 2004;2: 59. doi:10.1186/1477-7827-2-59 |
dc.relation.references | 133. Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA
for insulin-like growth factors and their binding proteins in the placenta of man and
laboratory animals. Placenta. 2000;21: 289–305. doi:10.1053/plac.1999.0498 |
dc.relation.references | 134. Sánchez-Gómez M, Novoa-Herran SS. EL IGF-II ESTIMULA LA ACTIVIDAD DE
MMP-9 Y MMP-2 EN UN MODELO DE TROFOBLASTO HUMANO. Acta Biológica
Colomb. 2011;16: 121–132 |
dc.relation.references | 135. Espino Y Sosa S, Flores-Pliego A, Espejel-Nuñez A, Medina-Bastidas D, VadilloOrtega F, Zaga-Clavellina V, et al. New Insights into the Role of Matrix
Metalloproteinases in Preeclampsia. Int J Mol Sci. 2017;18. doi:10.3390/ijms18071448 |
dc.relation.references | 136. Chang M-H, Kuo W-W, Chen R-J, Lu M-C, Tsai F-J, Kuo W-H, et al. IGF-II/mannose
6-phosphate receptor activation induces metalloproteinase-9 matrix activity and
increases plasminogen activator expression in H9c2 cardiomyoblast cells. J Mol
Endocrinol. 2008;41: 65–74. doi:10.1677/JME-08-0051 |
dc.relation.references | 137. Pinzón M, Diaz L, Ortiz B, Umaña A, De Rodriguez S, Sanchez de Gomez M. LA
ACTIVACIÓN DE LA VÍA DE SEÑALIZACIÓN PI3K/AKT POR EL FACTOR DE
CRECIMIENTO SIMILAR A LA INSULINA TIPO II ESTIMULA LA EXPRESIÓN DEL
mARN DE LA METALOPROTEINASA 9 EN CÉLULAS DE CORIOCARCINOMA. Rev
Colomb Quím Vol 38 Núm 3 2009. 2009. Available:
https://revistas.unal.edu.co/index.php/rcolquim/article/view/13490 |
dc.relation.references | 138. de Alboran IM, O’Hagan RC, Gartner F, Malynn B, Davidson L, Rickert R, et al.
Analysis of C-MYC function in normal cells via conditional gene-targeted mutation.
Immunity. 2001;14: 45–55. |
dc.relation.references | 139. Rivera VM, Greenberg ME. Growth factor-induced gene expression: the ups and
downs of c-fos regulation. New Biol. 1990;2: 751–758 |
dc.relation.references | 140. Kalisch-Smith JI, Simmons DG, Dickinson H, Moritz KM. Review: Sexual dimorphism
in the formation, function and adaptation of the placenta. Placenta. 2017;54: 10–16.
doi:10.1016/j.placenta.2016.12.008 |
dc.relation.references | 141. Calder PC. Omega-3 fatty acids and inflammatory processes: from molecules to man.
Biochem Soc Trans. 2017;45: 1105–1115. doi:10.1042/BST20160474 |
dc.relation.references | 142. Dennis PA, Rifkin DB. Cellular activation of latent transforming growth factor beta
requires binding to the cation-independent mannose 6-phosphate/insulin-like growth
factor type II receptor. Proc Natl Acad Sci U S A. 1991;88: 580–584.
doi:10.1073/pnas.88.2.580 |
dc.relation.references | 143. Saben J, Lindsey F, Zhong Y, Thakali K, Badger TM, Andres A, et al. Maternal obesity
is associated with a lipotoxic placental environment. Placenta. 2014;35: 171–177.
doi:10.1016/j.placenta.2014.01.003 |
dc.relation.references | 144. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM, et al. Obesity in
pregnancy stimulates macrophage accumulation and inflammation in the placenta.
Placenta. 2008;29: 274–281. doi:10.1016/j.placenta.2007.12.010 |
dc.relation.references | 145. Howell KR, Powell TL. Effects of maternal obesity on placental function and fetal
development. Reprod Camb Engl. 2017;153: R97–R108. doi:10.1530/REP-16-0495 |
dc.relation.references | 146. Zhu MJ, Du M, Nathanielsz PW, Ford SP. Maternal obesity up-regulates inflammatory
signaling pathways and enhances cytokine expression in the mid-gestation sheep
placenta. Placenta. 2010;31: 387–391. doi:10.1016/j.placenta.2010.02.002 |
dc.relation.references | 147. Zulet MA, Puchau B, Navarro C, Martí A, Martínez JA. Biomarcadores del estado
inflamatorio: nexo de unión con la obesidad y complicaciones asociadas. Nutr Hosp.
2007;22: 511–527. |
dc.relation.references | 148. Samad F, Yamamoto K, Pandey M, Loskutoff DJ. Elevated expression of transforming
growth factor-beta in adipose tissue from obese mice. Mol Med Camb Mass. 1997;3:
37–48. |
dc.relation.references | 149. Yadav H, Quijano C, Kamaraju AK, Gavrilova O, Malek R, Chen W, et al. Protection
from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 2011;14:
67–79. doi:10.1016/j.cmet.2011.04.013 |
dc.relation.references | 150. Zunke F, Rose-John S. The shedding protease ADAM17: Physiology and
pathophysiology. Biochim Biophys Acta Mol Cell Res. 2017;1864: 2059–2070.
doi:10.1016/j.bbamcr.2017.07.001 |
dc.relation.references | 151. Liu C, Xu P, Lamouille S, Xu J, Derynck R. TACE-mediated ectodomain shedding of
the type I TGF-beta receptor downregulates TGF-beta signaling. Mol Cell. 2009;35:
26–36. doi:10.1016/j.molcel.2009.06.018 |
dc.relation.references | 152. Vicikova K, Petrovcikova E, Manka P, Drach J, Stockinger H, Leksa V. Serum and
urinary levels of CD222 in cancer: origin and diagnostic value. Neoplasma. 2018;65:
762–768. doi:10.4149/neo_2018_171203N792 |
dc.relation.references | 153. Liping Xuan, Jun Ma, Mei Yu, Zhenxing Yang, Yongmin Huang, Caiyun Guo, et al.
Insulin-like growth factor 2 promotes adipocyte proliferation, differentiation and lipid
deposition in obese type 2 diabetes. J Transl Sci. 2019;6. doi:10.15761/JTS.1000362 |
dc.relation.references | 154. Alfares MN, Perks CM, Hamilton-Shield JP, Holly JMP. Insulin-like growth factor-II in
adipocyte regulation: depot-specific actions suggest a potential role limiting excess
visceral adiposity. Am J Physiol Endocrinol Metab. 2018;315: E1098–E1107.
doi:10.1152/ajpendo.00409.2017 |
dc.relation.references | 155. Grimm MOW, Kuchenbecker J, Grösgen S, Burg VK, Hundsdörfer B, Rothhaar TL, et
al. Docosahexaenoic acid reduces amyloid beta production via multiple pleiotropic
mechanisms. J Biol Chem. 2011;286: 14028–14039. doi:10.1074/jbc.M110.182329 |
dc.relation.references | 156. Fowden AL. The insulin-like growth factors and feto-placental growth. Placenta.
2003;24: 803–812. doi:10.1016/s0143-4004(03)00080-8 |
dc.relation.references | 157. Morrison JL, Duffield JA, Muhlhausler BS, Gentili S, McMillen IC. Fetal growth
restriction, catch-up growth and the early origins of insulin resistance and visceral
obesity. Pediatr Nephrol Berl Ger. 2010;25: 669–677. doi:10.1007/s00467-009-1407-3 |
dc.relation.references | 158. Catalano PM. Obesity and pregnancy--the propagation of a viscous cycle? J Clin
Endocrinol Metab. 2003;88: 3505–3506. doi:10.1210/jc.2003-031046 |
dc.relation.references | 159. O’Reilly JR, Reynolds RM. The risk of maternal obesity to the long-term health of the
offspring. Clin Endocrinol (Oxf). 2013;78: 9–16. doi:10.1111/cen.12055 |
dc.relation.references | 160. Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci.
2004;117: 4619–4628. doi:10.1242/jcs.01481 |
dc.relation.references | 161. Sevetson BR, Kong X, Lawrence JC. Increasing cAMP attenuates activation of
mitogen-activated protein kinase. Proc Natl Acad Sci. 1993;90: 10305.
doi:10.1073/pnas.90.21.10305 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.decs | Receptor IGF Tipo 2 |
dc.subject.decs | Receptor, IGF Type 2 |
dc.subject.decs | Receptor, IGF Type 1 |
dc.subject.decs | Receptor IGF Tipo 1 |
dc.subject.decs | Proteínas Tirosina Quinasas Receptoras |
dc.subject.decs | Receptor Protein-Tyrosine Kinases |
dc.subject.proposal | IGF receptor |
dc.subject.proposal | HTR-8/SVneo |
dc.subject.proposal | Factor de crecimiento similar a insulina tipo 2 |
dc.subject.proposal | Implantación |
dc.subject.proposal | Placenta |
dc.subject.proposal | Obesidad |
dc.subject.proposal | IGF receptor |
dc.subject.proposal | Insulin-like growth factor type 2 |
dc.subject.proposal | Implantation |
dc.subject.proposal | Obesity |
dc.title.translated | Characterization of the intracellular signaling mediated by IGF2R in human trophoblast |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TD |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
oaire.awardtitle | “Caracterización de la vía de señalización intracelular mediada por IGF-IIR en trofoblasto humano”, código Hermes 39172 |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Público general |
dc.description.curriculararea | Departamento de Química |