Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorAgamez Pertuz, Yazmin Yaneth
dc.contributor.advisorOdriozola Gordon, Jose Antonio
dc.contributor.advisorCenteno Gallego, Miguel Angel
dc.contributor.authorRodríguez Riaño, Nicolás
dc.date.accessioned2021-10-27T17:11:45Z
dc.date.available2021-10-27T17:11:45Z
dc.date.issued2021-04-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80626
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractLa presente tesis desarrolla una nueva metodología de preparación de monolitos de carbono a partir de diversos materiales carbonosos abarcando desde carbones minerales hasta materiales diseñados con características específicas preparados a nivel laboratorio, empleando una solución de resorcinol - formaldehído con adición de almidón soluble como medio de suspensión de las materias primas carbonosas y asistiendo la formación de las múltiples geometrías logradas con moldes diseñados y elaborados mediante impresión 3D. En la exploración de materias primas que constituyeran los monolitos se prepararon y caracterizaron un coque derivado de un carbón mineral colombiano, diferentes carbones activados obtenidos a partir de un residuo agrícola denominado cuesco generado por la obtención de biodiesel a partir de aceite de palma africana, aerogeles de carbono y xerogeles de carbono en los que se incluyó de manera sistemática la adición de aglomerantes como glicerina y almidón como aditivos, los cuales mantuvieron la estructura microporosa que suele colapsar en el secado convectivo. Una vez estudiadas las posibles materias primas se presenta un sondeo para determinar los diferentes efectos de la variación de algunos parámetros en la novedosa metodología para la preparación de monolitos. Con el xerogel de carbono obtenido y estudiado en la exploración de materias primas que se empleó como medio de suspensión en la metodología de preparación de monolitos, se prepararon catalizadores para la reacción de desplazamiento de vapor de agua (WGSR) y se prepara un catalizador en polvo y uno estructurado para la cetonización de ácido acético, esto con le fin de aplicar el conocimiento desarrollado en este trabajo en como posibles soportes catalíticos de reacciones de interés medio ambiental. (Texto tomado de la fuente).
dc.description.abstractThis thesis develops a new methodology for the preparation of carbon monoliths from various carbonaceous materials, ranging from mineral coals to materials designed with specific characteristics prepared at the laboratory level, using a resorcinol-formaldehyde solution with the addition of soluble starch as a suspension medium of carbonaceous raw materials and assisting the formation of the multiple geometries achieved with molds designed and manufactured by 3D printing. In the exploration of raw materials that constituted the monoliths, a coke derived from a Colombian mineral coal was prepared and characterized, different activated carbons obtained from an agricultural residue called shell generated by obtaining biodiesel from African palm oil, aerogels of carbon and carbon xerogels in which the addition of binders such as glycerin and starch as additives was systematically included, which maintained the microporous structure that usually collapses in convective drying. Once the possible raw materials have been studied, a survey is presented to determine the different effects of the variation of some parameters in the novel methodology for the preparation of monoliths. With the carbon xerogel obtained and studied in the exploration of raw materials that was used as a suspension medium in the monolith preparation methodology, catalysts were prepared for the water gas shift reaction (WGSR) and a catalyst is prepared in powder and a structured one for acetic acid ketonization, this in order to apply the knowledge developed in this work as possible catalytic supports for reactions of environmental interest.
dc.description.sponsorshipConvocatoria 617 Doctorados Nacionales
dc.format.extentxxii, 197 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.titleDiseño y preparación de catalizadores soportados en materiales carbonosos estructurados
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.description.notesTesis de doctorado en cotutela con la Universidad de Sevilla
dc.contributor.researchgroupLaboratorio de Investigación en Combustibles y Energía
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.description.methodsDesarrollo de tesis doctoral
dc.description.researchareaMateriales y Energía
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Química
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[1] H. Kayser, Ueber die Verdichtung von Gasen an Oberflächen in ihrer Abhängigkeit von Druck und Temperatur, Annalen der Physik, 248 (1881) 526-537
dc.relation.references[2] R.K. Brandt, M.R. Hughes, L.P. Bourget, K. Truszkowska, R.G. Greenler, The interpretation of CO adsorbed on Pt/SiO2 of two different particle-size distributions, Surface Science, 286 (1993) 15-25
dc.relation.references[3] D.A. J. Rouquerol, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing and K. K. Unger, Recommendations for the characterization of porous solids, Pure Appl. Chem., 66 (1994) 1739-1758
dc.relation.references[4] M. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76 (1998) 137-152.
dc.relation.references[5] S. Brunauer, P.H. Emmett, E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc., 60 (1938) 309-319
dc.relation.references[6] I. Langmuir, THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM, J. Am. Chem. Soc., 40 (1918) 1361-1403.
dc.relation.referencesM. Faraldos, C. Goberna, Técnicas de analisis y caracterización de materiales, 2003.
dc.relation.references[8] Sir William Thomson F.R.S., On the equilibrium of vapor at a curved surface of liquid, Phil. Mag., 42 (1871) 448.
dc.relation.references9] W. Barlow, Probable Nature of the Internal Symmetry of Crystals, Nature, 29 (1883) 186- 188
dc.relation.references[10] A.H. Compton, A Quantum Theory of the Scattering of X-rays by Light Elements, Physical Review, 21 (1923) 483-502
dc.relation.references[11] G.E.M. Jauncey, The Scattering of X-Rays and Bragg's Law, Proceedings of the National Academy of Sciences, 10 (1924) 57-60
dc.relation.references12] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56 (1939) 978-982
dc.relation.references[13] Y. Liu, J.S. Xue, T. Zheng, J.R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 34 (1996) 193-200.
dc.relation.references[14] D. Qu, Investigation of oxygen reduction on activated carbon electrodes in alkaline solution, Carbon, 45 (2007) 1296-1301
dc.relation.references[15] G.N. Okolo, H.W.J.P. Neomagus, R.C. Everson, M.J. Roberts, J.R. Bunt, R. Sakurovs, J.P. Mathews, Chemical–structural properties of South African bituminous coals: Insights from wide angle XRD–carbon fraction analysis, ATR–FTIR, solid state 13C NMR, and HRTEM techniques, Fuel, 158 (2015) 779-792.
dc.relation.references[16] J. Collins, D. Zheng, T. Ngo, D. Qu, M. Foster, Partial graphitization of activated carbon by surface acidification, Carbon, 79 (2014) 500-517.
dc.relation.references[17] C.V. Raman, K.S. Krishnan, The Negative Absorption of Radiation, Nature, 122 (1928) 12-13
dc.relation.references[18] J.W. Brault, New approach to high-precision Fourier transform spectrometer design, Appl. Opt., 35 (1996) 2891-2896
dc.relation.references[19] P.Y. Hou, J. Ager, J. Mougin, A. Galerie, Limitations and Advantages of Ram Spectroscopy for the Determination of Oxidation Stresses, Oxid. Met., 75 (2011) 229-245
dc.relation.references[20] Y. Kouketsu, T. Mizukami, H. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis, A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width, Island Arc, 23 (2014) 33-50.
dc.relation.references[21] R.M. Badger, A Relation Between Internuclear Distances and Bond Force Constants, The Journal of Chemical Physics, 2 (1934) 128-131
dc.relation.references[22] M.B. Mitchell, Fundamentals and Applications of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy, Structure-Property Relations in Polymers, American Chemical Society1993, pp. 351-375
dc.relation.references[23] M.P. Fuller, P.R. Griffiths, Diffuse reflectance measurements by infrared Fourier transform spectrometry, Anal. Chem., 50 (1978) 1906-1910.
dc.relation.references[24] K. Akhtar, S. Khan, S. Khan, A.M. Asiri, Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization, 2019.
dc.relation.references[25] O.P. Choudhary, P. Choudhary, Scanning Electron Microscope: Advantages and Disadvantages in Imaging Components, International Journal of Current Microbiology and Applied Sciences, 6 (2017) 1877-1882.
dc.relation.references[26] M. Abd Mutalib, M.A. Rahman, M.H.D. Othman, A.F. Ismail, J. Jaafar, Chapter 9 - Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy, in: N. Hilal, A.F. Ismail, T. Matsuura, D. Oatley-Radcliffe (Eds.) Membrane Characterization, Elsevier2017, pp. 161-179.
dc.relation.references[27] X. Ke, C. Bittencourt, G. Van Tendeloo, Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials, Beilstein J Nanotechnol, 6 (2015) 1541-1557.
dc.relation.references[1] F. Rodríguez-reinoso, The role of carbon materials in heterogeneous catalysis, Carbon, 36 (1998) 159-175.
dc.relation.references[2] E. Antolini, Nitrogen-doped carbons by sustainable N- and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells, Renewable and Sustainable Energy Reviews, 58 (2016) 34-51.
dc.relation.references[3] J.L. Figueiredo, M.F.R. Pereira, Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts, Journal of Energy Chemistry, 22 (2013) 195-201. [4] T. Fu, Z. Li, Review of recent development in Co-based catalysts supported on carbon
dc.relation.references[4] T. Fu, Z. Li, Review of recent development in Co-based catalysts supported on carbon materials for Fischer–Tropsch synthesis, Chemical Engineering Science, 135 (2015) 3-20.
dc.relation.references[5] S. Tang, G. Sun, J. Qi, S. Sun, J. Guo, Q. Xin, G.M. Haarberg, Review of New Carbon Materials as Catalyst Supports in Direct Alcohol Fuel Cells, Chinese Journal of Catalysis, 31 (2010) 12-17.
dc.relation.references[6] D.R. Minett, J.P. O’Byrne, M.D. Jones, V.P. Ting, T.J. Mays, D. Mattia, One-step production of monolith-supported long carbon nanotube arrays, Carbon, 51 (2013) 327-334.
dc.relation.references[7] C. Moreno-castilla, F. Carrasco-marín, F.J. Maldonado-hódar, J. Rivera-utrilla, Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content, Carbon, 36 (1998) 145-151.
dc.relation.references[8] Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications, Separation and Purification Technology, 157 (2016) 141-161.
dc.relation.references[9] M.M. Zainol, N.A.S. Amin, M. Asmadi, Synthesis and characterization of carbon cryogel microspheres from lignin–furfural mixtures for biodiesel production, Bioresource Technology, 190 (2015) 44-50.
dc.relation.references[10] C.T. Alviso, R.W. Pekala, J. Gross, X. Lu, R. Caps, J. Fricke, Resorcinol-Formaldehyde and Carbon Aerogel Microspheres, MRS Online Proceedings Library Archive, 431 (1996) null-null.
dc.relation.references[11] R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci., 24 (1989) 3221-3227.
dc.relation.references[12] S.D. Lakshmi, P.K. Avti, G. Hegde, Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: A review, Nano-Structures & Nano-Objects, 16 (2018) 306- 321.
dc.relation.references[13] X. Chang, D. Chen, X. Jiao, Starch-derived carbon aerogels with high-performance for sorption of cationic dyes, Polymer, 51 (2010) 3801-3807.
dc.relation.references[14] C. Xu, X. Luo, X. Lin, X. Zhuo, L. Liang, Preparation and characterization of polylactide/thermoplastic konjac glucomannan blends, Polymer, 50 (2009) 3698-3705.
dc.relation.references[15] Z. Feng, Z. Shao, J. Yao, Y. Huang, X. Chen, Protein adsorption and separation with chitosan-based amphoteric membranes, Polymer, 50 (2009) 1257-1263.
dc.relation.references[16] A. Varzi, S. Passerini, Enabling high areal capacitance in electrochemical double layer capacitors by means of the environmentally friendly starch binder, Journal of Power Sources, 300 (2015) 216-222.
dc.relation.references[17] K. Drobíková, D. Plachá, O. Motyka, R. Gabor, K.M. Kutláková, S. Vallová, J. Seidlerová, Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel, Waste Management, 48 (2016) 471-477.
dc.relation.references[18] E.I. Nep, K. Asare-Addo, M.U. Ghori, B.R. Conway, A.M. Smith, Starch-free grewia gum matrices: Compaction, swelling, erosion and drug release behaviour, International Journal of Pharmaceutics, 496 (2015) 689-698.
dc.relation.references[19] S. Somboonchan, S. Lubbers, G. Roudaut, Water and temperature contribution to the structuration of starch matrices in the presence of flavour, Food Chemistry, 195 (2016) 79-86.
dc.relation.references[20] V. Selvanathan, M.H. Ruslan, M. Aminuzzaman, G. Muhammad, N. Amin, K. Sopian, M. Akhtaruzzaman, Resorcinol-Formaldehyde (RF) as a Novel Plasticizer for Starch-Based Solid Biopolymer Electrolyte, 12 (2020) 2170.
dc.relation.references[21] M. Bakierska, M. Molenda, D. Majda, R. Dziembaj, Functional Starch Based Carbon Aerogels for Energy Applications, Procedia Engineering, 98 (2014) 14-19.
dc.relation.references[22] M. Haghgoo, A.A. Yousefi, M.J. Zohuriaan Mehr, Nano porous structure of resorcinol– formaldehyde xerogels and aerogels: effect of sodium dodecylbenzene sulfonate, Iranian Polymer Journal, 21 (2012) 211-219.
dc.relation.references[23] K.T. Lee, S.M. Oh, Novel synthesis of porous carbons with tunable pore size by surfactanttemplated sol-gel process and carbonisation, Chemical Communications, (2002) 2722-2723.
dc.relation.references[24] N. Vera-Hincapié, E. Romero-Malagón, F. Carrasco-Marín, Y. Agámez-Pertuz, J. DíazVelásquez, Effect of the addition of a second phenol on the textural properties of carbon aerogels, Adsorption, 22 (2016) 81-87.
dc.relation.references[25] S. Marx, Glycerol-free biodiesel production through transesterification: a review, Fuel Process. Technol., 151 (2016) 139-147.
dc.relation.references[26] M.R. Monteiro, C.L. Kugelmeier, R.S. Pinheiro, M.O. Batalha, A. da Silva César, Glycerol from biodiesel production: Technological paths for sustainability, Renewable and Sustainable Energy Reviews, 88 (2018) 109-122.
dc.relation.references[27] L.-L. Xue, H.-H. Chen, J.-G. Jiang, Implications of glycerol metabolism for lipid production, Prog. Lipid Res., 68 (2017) 12-25.
dc.relation.references[28] M.S. Ardi, M.K. Aroua, N.A. Hashim, Progress, prospect and challenges in glycerol purification process: A review, Renewable and Sustainable Energy Reviews, 42 (2015) 1164- 1173.
dc.relation.references[29] A. Galadima, O. Muraza, A review on glycerol valorization to acrolein over solid acid catalysts, Journal of the Taiwan Institute of Chemical Engineers, 67 (2016) 29-44.
dc.relation.references[30] A.R. Trifoi, P.Ş. Agachi, T. Pap, Glycerol acetals and ketals as possible diesel additives. A review of their synthesis protocols, Renewable and Sustainable Energy Reviews, 62 (2016) 804- 814.
dc.relation.references[31] E.-E. Oprescu, E. Stepan, R.E. Dragomir, A. Radu, P. Rosca, Synthesis and testing of glycerol ketals as components for diesel fuel, Fuel Process. Technol., 110 (2013) 214-217.
dc.relation.references[32] M. De Torres, G. Jiménez-osés, J.A. Mayoral, E. Pires, M. de los Santos, Glycerol ketals: Synthesis and profits in biodiesel blends, Fuel, 94 (2012) 614-616.
dc.relation.references[33] J.K. Brooks, N. Bashirelahi, M.A. Reynolds, Charcoal and charcoal-based dentifrices: A literature review, The Journal of the American Dental Association, 148 (2017) 661-670. [33] J.K. Brooks, N. Bashirelahi, M.A. Reynolds, Charcoal and charcoal-based dentifrices: A literature review, The Journal of the American Dental Association, 148 (2017) 661-670.
dc.relation.references[34] E. Burchacka, M. Łukaszewicz, M. Kułażyński, Determination of mechanisms of action of active carbons as a feed additive, Bioorg. Chem., (2019).
dc.relation.references[35] Y. Cao, K. Wang, X. Wang, Z. Gu, T. Ambrico, W. Gibbons, Q. Fan, A.-A. Talukder, Preparation of active carbons from corn stalk for butanol vapor adsorption, Journal of Energy Chemistry, 26 (2017) 35-41.
dc.relation.references[36] E. Stojanovska, M.D. Calisir, N.D. Ozturk, A. Kilic, 3 - Carbon-based foams: Preparation and applications, in: A. Khan, M. Jawaid, Inamuddin, A.M. Asiri (Eds.) Nanocarbon and its Composites, Woodhead Publishing2019, pp. 43-90.
dc.relation.references[37] J. Zhou, M. Wang, X. Li, Facile preparation of nitrogen-doped high-surface-area porous carbon derived from sucrose for high performance supercapacitors, Appl. Surf. Sci., 462 (2018) 444-452.
dc.relation.references[38] Z. Chen, K. Liu, S. Liu, L. Xia, J. Fu, X. Zhang, C. Zhang, B. Gao, Porous Active Carbon Layer Modified Graphene for High-performance Supercapacitor, Electrochim. Acta, 237 (2017) 102-108.
dc.relation.references[39] P.C. Vilella, J.A. Lira, D.C.S. Azevedo, M. Bastos-Neto, R. Stefanutti, Preparation of biomass-based activated carbons and their evaluation for biogas upgrading purposes, Industrial Crops and Products, 109 (2017) 134-140.
dc.relation.references[40] G. Le Bozec, S. Giraudet, L. Le Polles, P. Le Cloirec, 1H NMR Investigations of Activated Carbon Loaded with Volatile Organic Compounds: Quantification, Mechanisms, and Diffusivity Determination, Langmuir, 33 (2017) 1605-1613.
dc.relation.references[41] J. Ma, C. Li, Y. Zhang, R. Ju, Combined Process of Ferrate Preoxidation and Biological Activated Carbon Filtration for Upgrading Water Quality, Ferrates, American Chemical Society2008, pp. 446-455.
dc.relation.references[42] J.A. Teixeira da Silva, F. Engelmann, Cryopreservation of oil palm (Elaeis guineensis Jacq.), Cryobiology, 77 (2017) 82-88.
dc.relation.references[43] V. Marin-Burgos, J.S. Clancy, J.C. Lovett, Contesting legitimacy of voluntary sustainability certification schemes: Valuation languages and power asymmetries in the Roundtable on Sustainable Palm Oil in Colombia, Ecological Economics, 117 (2015) 303-313.
dc.relation.references[44] L.E. Pardo, F.d.O. Roque, M.J. Campbell, N. Younes, W. Edwards, W.F. Laurance, Identifying critical limits in oil palm cover for the conservation of terrestrial mammals in Colombia, Biological Conservation, 227 (2018) 65-73.
dc.relation.references[45] J.A. Garcia-Nunez, N.E. Ramirez-Contreras, D.T. Rodriguez, E. Silva-Lora, C.S. Frear, C. Stockle, M. Garcia-Perez, Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents, Resources, Conservation and Recycling, 110 (2016) 99-114.
dc.relation.references[46] E. Blanco, C. Sepulveda, K. Cruces, J.L. García-Fierro, I.T. Ghampson, N. Escalona, Conversion of guaiacol over metal carbides supported on activated carbon catalysts, Catalysis Today, (2019).
dc.relation.references[47] M. Matyjaszek, K. Wodarski, A. Krzemień, C. Escanciano García-Miranda, A. Suárez Sánchez, Coking coal mining investment: Boosting European Union's raw materials initiative, Resources Policy, 57 (2018) 88-97.
dc.relation.references[48] B.D. Flores, A.G. Borrego, M.A. Diez, G.L.R. da Silva, V. Zymla, A.C.F. Vilela, E. Osório, How coke optical texture became a relevant tool for understanding coal blending and coke quality, Fuel Process. Technol., 164 (2017) 13-23.
dc.relation.references[49] J.A. Nieves, A.J. Aristizábal, I. Dyner, O. Báez, D.H. Ospina, Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application, Energy, 169 (2019) 380-397.
dc.relation.references[50] N. Job, F. Sabatier, J.-P. Pirard, M. Crine, A. Léonard, Towards the production of carbon xerogel monoliths by optimizing convective drying conditions, Carbon, 44 (2006) 2534-2542.
dc.relation.references[51] N. Briceño, Aerogeles de carbono como soportes catalíticos para la síntesis Fischer - Tropsch, Tesis, Universidad Nacional de Colombia (2014) 131.
dc.relation.references[52] H. ShamsiJazeyi, T. Kaghazchi, Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal, Journal of Industrial and Engineering Chemistry, 16 (2010) 852-858.
dc.relation.references[53] Y. Gao, Q. Yue, B. Gao, A. Li, Insight into activated carbon from different kinds of chemical activating agents: A review, Sci. Total Environ., 746 (2020) 141094.
dc.relation.references[54] C. Moreno-Castilla, M.A. Ferro-Garcia, J.P. Joly, I. Bautista-Toledo, F. Carrasco-Marin, J. Rivera-Utrilla, Activated Carbon Surface Modifications by Nitric Acid, Hydrogen Peroxide, and Ammonium Peroxydisulfate Treatments, Langmuir, 11 (1995) 4386-4392.
dc.relation.references[55] G.C.S. García C., A.; Agámez P., Y.; Díaz V., J. de J. , Comportamiento térmico de carbones de Santander y Cundinamarca y sus mezclas en la producción de coque metalúrgico, Inventum, 10 (2015) 49-53.
dc.relation.references[56] V. Likodimos, T.A. Steriotis, S.K. Papageorgiou, G.E. Romanos, R.R.N. Marques, R.P. Rocha, J.L. Faria, M.F.R. Pereira, J.L. Figueiredo, A.M.T. Silva, P. Falaras, Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation, Carbon, 69 (2014) 311-326.
dc.relation.references[57] Z.Q. Li, C.J. Lu, Z.P. Xia, Y. Zhou, Z. Luo, X-ray diffraction patterns of graphite and turbostratic carbon, Carbon, 45 (2007) 1686-1695.
dc.relation.references[58] C. Moreno-Castilla, F.J. Maldonado-Hódar, Carbon aerogels for catalysis applications: An overview, Carbon, 43 (2005) 455-465
dc.relation.references[59] J. Collins, D. Zheng, T. Ngo, D. Qu, M. Foster, Partial graphitization of activated carbon by surface acidification, Carbon, 79 (2014) 500-517.
dc.relation.references[60] Y. Kouketsu, T. Mizukami, H. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis, A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width, Island Arc, 23 (2014) 33-50.
dc.relation.references[61] S. Goler, A. Hagadorn, D.M. Ratzan, R. Bagnall, A. Cacciola, J. McInerney, J.T. Yardley, Using Raman spectroscopy to estimate the dates of carbon-based inks from Ancient Egypt, Journal of Cultural Heritage, (2018).
dc.relation.references[62] H. Ge, Z. Ye, R. He, Raman spectroscopy of diesel and gasoline engine-out soot using different laser power, Journal of Environmental Sciences, (2018).
dc.relation.references[63] S. Takabayashi, R. Ješko, M. Shinohara, H. Hayashi, R. Sugimoto, S. Ogawa, Y. Takakuwa, Chemical structural analysis of diamondlike carbon films: II. Raman analysis, Surface Science, 668 (2018) 36-41.
dc.relation.references[64] J.J. Song, D.D.L. Chung, P.C. Eklund, M.S. Dresselhaus, Raman scattering in graphite intercalation compounds, Solid State Communications, 20 (1976) 1111-1115.
dc.relation.references[65] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical Review B, 61 (2000) 14095-14107.
dc.relation.references[66] K. Gao, Y. Wang, X. Wei, L. Qiang, B. Zhang, J. Zhang, Hydrogenated amorphous carbon films with different nanostructure: A comparative study, Chemical Physics Letters, 715 (2019) 330-334.
dc.relation.references[68] Y. Yu, M. Xu, H. Yao, D. Yu, Y. Qiao, J. Sui, X. Liu, Q. Cao, Char characteristics and particulate matter formation during Chinese bituminous coal combustion, Proceedings of the Combustion Institute, 31 (2007) 1947-1954.
dc.relation.references[69] E. Bar-Ziv, A. Zaida, P. Salatino, O. Senneca, Diagnostics of carbon gasification by raman microprobe spectroscopy, Proceedings of the Combustion Institute, 28 (2000) 2369-2374.
dc.relation.references[70] A. Zaida, E. Bar-Ziv, L.R. Radovic, Y.-J. Lee, Further development of Raman Microprobe spectroscopy for characterization of char reactivity, Proceedings of the Combustion Institute, 31 (2007) 1881-1887.
dc.relation.references[71] T. Livneh, E. Bar-Ziv, O. Senneca, P. Salatino, Evolution of Reactivity of Highly Porous Chars from Raman Microscopy, Combustion Science and Technology, 153 (2000) 65-82.
dc.relation.references[72] B. Dippel, J. Heintzenberg, Soot characterization in atmospheric particles from different sources by NIR FT Raman spectroscopy, Journal of Aerosol Science, 30 (1999) 907-908.
dc.relation.references[73] A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martínez-Alonso, J.M.D. Tascón, Raman microprobe studies on carbon materials, Carbon, 32 (1994) 1523-1532.
dc.relation.references[74] O. Beyssac, B. Goffe, J.P. Petitet, E. Froigneux, M. Moreau, J.N. Rouzaud, On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 59 (2003) 2267-2276.
dc.relation.references[75] M. Enterría, F.J. Martín-Jimeno, F. Suárez-García, J.I. Paredes, M.F.R. Pereira, J.I. Martins, A. Martínez-Alonso, J.M.D. Tascón, J.L. Figueiredo, Effect of nanostructure on the supercapacitor performance of activated carbon xerogels obtained from hydrothermally carbonized glucose-graphene oxide hybrids, Carbon, 105 (2016) 474-483.
dc.relation.references[76] L. Bao, X. Zhu, H. Dai, Y. Tao, X. Zhou, W. Liu, Y. Kong, Synthesis of porous starch xerogels modified with mercaptosuccinic acid to remove hazardous gardenia yellow, Int. J. Biol. Macromol., 89 (2016) 389-395.
dc.relation.references[77] M. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76 (1998) 137-152.
dc.relation.references[78] E. Bailón-García, F. Carrasco-Marín, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, Development of carbon xerogels as alternative Pt-supports for the selective hydrogenation of citral, Catalysis Communications, 58 (2015) 64-69.
dc.relation.references[79] N. Job, A. Théry, R. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Béguin, J.-P. Pirard, Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon, 43 (2005) 2481-2494.
dc.relation.references[80] E. Gallegos-Suárez, A.F. Pérez-Cadenas, F.J. Maldonado-Hódar, F. Carrasco-Marín, On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes, Chemical Engineering Journal, 181-182 (2012) 851-855.
dc.relation.references[81] O. Czakkel, K. Marthi, E. Geissler, K. László, Influence of drying on the morphology of resorcinol–formaldehyde-based carbon gels, Microporous Mesoporous Mater, 86 (2005) 124- 133.
dc.relation.references[82] J. Wang, B. Shen, D. Kang, P. Yuan, C. Wu, Investigate the interactions between biomass components during pyrolysis using in-situ DRIFTS and TGA, Chemical Engineering Science, 195 (2019) 767-776.
dc.relation.references[83] P.E. Fanning, M.A. Vannice, A DRIFTS study of the formation of surface groups on carbon by oxidation, Carbon, 31 (1993) 721-730.
dc.relation.references[84] B.J. Meldrum, C.H. Rochester, Infrared spectra of carbonaceous chars under carbonization and oxidation conditions, Fuel, 70 (1991) 57-63.
dc.relation.references[85] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, CHAPTER 13 - Cumulated Double Bonds, in: D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli (Eds.) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, 1991, pp. 213-223.
dc.relation.references[86] Y. Yamada, S. Gohda, K. Abe, T. Togo, N. Shimano, T. Sasaki, H. Tanaka, H. Ono, T. Ohba, S. Kubo, T. Ohkubo, S. Sato, Carbon materials with controlled edge structures, Carbon, 122 (2017) 694-701.
dc.relation.references[87] N. Iwashita, C.R. Park, H. Fujimoto, M. Shiraishi, M. Inagaki, Specification for a standard procedure of X-ray diffraction measurements on carbon materials, Carbon, 42 (2004) 701-714.
dc.relation.references[88] J.J. Venter, M.A. Vannice, Applicability of “drifts” for the characterization of carbonsupported metal catalysts and carbon surfaces, Carbon, 26 (1988) 889-902.
dc.relation.references[89] J.M. O'Reilly, R.A. Mosher, Functional groups in carbon black by FTIR spectroscopy, Carbon, 21 (1983) 47-51. [90] C. Moreno-Castilla, M.V. López-Ramón, F. Carrasco-Marı́n, Changes in surface chemistry of activated carbons by wet oxidation, Carbon, 38 (2000) 1995-2001.
dc.relation.references[1] S. Hosseini, H. Moghaddas, S. Masoudi Soltani, S. Kheawhom, Technological Applications of Honeycomb Monoliths in Environmental Processes: A review, Process Safety and Environmental Protection, 133 (2020) 286-300.
dc.relation.references[2] P.A. Goodman, H. Li, Y. Gao, Y.F. Lu, J.D. Stenger-Smith, J. Redepenning, Preparation and characterization of high surface area, high porosity carbon monoliths from pyrolyzed bovine bone and their performance as supercapacitor electrodes, Carbon, 55 (2013) 291-298.
dc.relation.references[3] S. Lawson, B. Adebayo, C. Robinson, Q. Al-Naddaf, A.A. Rownaghi, F. Rezaei, The Effects of Cell Density and Intrinsic Porosity on Structural Properties and Adsorption Kinetics in 3DPrinted Zeolite Monoliths, Chemical Engineering Science, (2020) 115564.
dc.relation.references[4] D.F.M. Santos, O.S.G.P. Soares, J.L. Figueiredo, O. Sanz, M. Montes, M.F.R. Pereira, Preparation of ceramic and metallic monoliths coated with cryptomelane as catalysts for VOC abatement, Chemical Engineering Journal, 382 (2020) 122923.
dc.relation.references[5] E.D. Banús, V.G. Milt, E.E. Miró, M.A. Ulla, Catalytic coating synthesized onto cordierite monolith walls. Its application to diesel soot combustion, Applied Catalysis B: Environmental, 132–133 (2013) 479-486.
dc.relation.references[6] A. Bueno-López, D. Lozano-Castelló, I. Such-Basáñez, J.M. García-Cortés, M.J. IllánGómez, C. Salinas-Martínez de Lecea, Preparation of beta-coated cordierite honeycomb monoliths by in situ synthesis: Utilisation as Pt support for NOx abatement in diesel exhaust, Applied Catalysis B: Environmental, 58 (2005) 1-7.
dc.relation.references[7] J.C. Masini, F. Svec, Porous monoliths for on-line sample preparation: A review, Analytica Chimica Acta, 964 (2017) 24-44.
dc.relation.references[8] Z. Zhang, S. Zhao, G. Chen, J. Feng, J. Feng, Z. Yang, Influence of acid-base catalysis on the textural and thermal properties of carbon aerogel monoliths, Microporous and Mesoporous Materials, 296 (2020) 109997.
dc.relation.references[9] A. Galarneau, A. Sachse, B. Said, C.-H. Pelisson, P. Boscaro, N. Brun, L. Courtheoux, N. Olivi-Tran, B. Coasne, F. Fajula, Hierarchical porous silica monoliths: A novel class of microreactors for process intensification in catalysis and adsorption, Comptes Rendus Chimie, 19 (2016) 231-247.
dc.relation.references[10] M. Lee, Z. Wu, B. Wang, K. Li, Micro-structured alumina multi-channel capillary tubes and monoliths, Journal of Membrane Science, 489 (2015) 64-72.
dc.relation.references[11] G. Landi, P.S. Barbato, A. Di Benedetto, L. Lisi, Optimization of the preparation method of CuO/CeO2 structured catalytic monolith for CO preferential oxidation in H2-rich streams, Applied Catalysis B: Environmental, 181 (2016) 727-737.
dc.relation.references[12] O.H. Laguna, M.I. Domínguez, M.A. Centeno, J.A. Odriozola, Chapter 4 - Catalysts on Metallic Surfaces: Monoliths and Microreactors, New Materials for Catalytic Applications, Elsevier, Amsterdam, 2016, pp. 81-120.
dc.relation.references[13] Y. Zhu, K. Kanamori, N. Moitra, K. Kadono, S. Ohi, N. Shimobayashi, K. Nakanishi, Metal zirconium phosphate macroporous monoliths: Versatile synthesis, thermal expansion and mechanical properties, Microporous and Mesoporous Materials, 225 (2016) 122-127.
dc.relation.references[14] Q. Han, Q. Liang, X. Zhang, L. Yang, M. Ding, Graphene aerogel based monolith for effective solid-phase extraction of trace environmental pollutants from water samples, Journal of Chromatography A, 1447 (2016) 39-46.
dc.relation.references[15] J. Romanos, F. Barakat, S. Abou Dargham, Nanoporous Graphene Monolith for Hydrogen Storage, Materials Today: Proceedings, 5 (2018) 17478-17483.
dc.relation.references[16] V.N. Nguyen, R. Deja, R. Peters, L. Blum, D. Stolten, Study of the catalytic combustion of lean hydrogen-air mixtures in a monolith reactor, International Journal of Hydrogen Energy, 43 (2018) 17520-17530.
dc.relation.references[17] J. Gong, G. Zhao, G. Wang, L. Zhang, B. Li, Fabrication of macroporous carbon monoliths with controllable structure via supercritical CO2 foaming of polyacrylonitrile, Journal of CO2 Utilization, 33 (2019) 330-340.
dc.relation.references[18] K.B. Lynch, J. Ren, M.A. Beckner, C. He, S. Liu, Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications, Analytica Chimica Acta, 1046 (2019) 48-68.
dc.relation.references[19] M. Vergara-Barberán, E.J. Carrasco-Correa, M.J. Lerma-García, E.F. Simó-Alfonso, J.M. Herrero-Martínez, Current trends in affinity-based monoliths in microextraction approaches: A review, Analytica Chimica Acta, 1084 (2019) 1-20.
dc.relation.references[20] J.M. Gatica, G.A. Cifredo, G. Blanco, S. Trasobares, H. Vidal, Unveiling the source of activity of carbon integral honeycomb monoliths in the catalytic methane decomposition reaction, Catalysis Today, 249 (2015) 86-93.
dc.relation.references[21] J. Cue, McCueAlbert, J. Repik, C.E. Sumner, J. Miller, US4677086A, Shaped wood-based active carbon, EEUU, 1984.
dc.relation.references[22] H. Juntgen, H. Schumacher, J. Klein, K. Knoblauch, H.-J. Schroter, G. Kolling, I. Romey, US4124529A, Carbonaceous adsorbents and process for making same, EEUU, 1976.
dc.relation.references[23] B.D. C, D.E. M., J.R. E., US5389325, Activated carbon bodies having phenolic resin binder, EEUU, 1993.
dc.relation.references[24] P.D.A. Mccrae, T. Zhang, D.R.B. Walker, CA2442243C, Method of making shaped activated carbon, Canada, 2001.
dc.relation.references[25] Charles Edwan Sumner, J.R.C. Munjal, R. Seosamh, O'meadhraChester, W. SinkJerry, S. FauverGerald, C. Tustin, D.B. Compton, Robert Melvin Schisla, J.S. Bagrodia, CA2639955A1, Activated carbon monoliths and methods of making them, Canada, 2006, pp. 119.
dc.relation.references[26] FREECAD, FreeCAD Manual, www.freecadweb.org, 2020.
dc.relation.references[27] P. Dai, X. Zhao, D. Xu, C. Wang, X. Tao, X. Liu, J. Gao, Preparation, characterization, and properties of Pt/Al2O3/cordierite monolith catalyst for hydrogen generation from hydrolysis of sodium borohydride in a flow reactor, International Journal of Hydrogen Energy, 44 (2019) 28463-28470.
dc.relation.references[28] A.B. Bourlinos, D.D. Jiang, R.N. Das, E.P. Giannelis, Engineering of silica monoliths and the effect of clay doping on their properties, Journal of Materials Chemistry, 14 (2004) 1995- 2000.
dc.relation.references[29] M. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76 (1998) 137-152.
dc.relation.references[30] P.E. Imoisili, K.O. Ukoba, T.-C. Jen, Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash, Boletín de la Sociedad Española de Cerámica y Vidrio, (2019).
dc.relation.references[31] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56 (1939) 978-982.
dc.relation.references[32] H. Takagi, K. Maruyama, N. Yoshizawa, Y. Yamada, Y. Sato, XRD analysis of carbon stacking structure in coal during heat treatment, Fuel, 83 (2004) 2427-2433.
dc.relation.references[33] H.-H. Bui, L. Wang, K.-Q. Tran, Ø. Skreiberg, A. Luengnaruemitchai, CO2 Gasification of Charcoals in the Context of Metallurgical Application, Energy Procedia, 105 (2017) 316-321.
dc.relation.references[1] D.B. Pal, R. Chand, S.N. Upadhyay, P.K. Mishra, Performance of water gas shift reaction catalysts: A review, Renewable and Sustainable Energy Reviews, 93 (2018) 549-565.
dc.relation.references[2] S. Sharma, S.K. Ghoshal, Hydrogen the future transportation fuel: From production to applications, Renewable and Sustainable Energy Reviews, 43 (2015) 1151-1158.
dc.relation.references[3] J.A. Turner, Sustainable Hydrogen Production, Science, 305 (2004) 972-974.
dc.relation.references[4] J.R. Anstrom, K. Collier, 8 - Blended hydrogen–natural gas-fueled internal combustion engines and fueling infrastructure, in: F. Barbir, A. Basile, T.N. Veziroğlu (Eds.) Compendium of Hydrogen Energy, Woodhead Publishing, Oxford, 2016, pp. 219-232.
dc.relation.references[5] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, 114 (2003) 32-53.
dc.relation.references[6] D. Hotza, J.C. Diniz da Costa, Fuel cells development and hydrogen production from renewable resources in Brazil, International Journal of Hydrogen Energy, 33 (2008) 4915-4935.
dc.relation.references[7] R.A. Dagle, Y. Wang, G.-G. Xia, J.J. Strohm, J. Holladay, D.R. Palo, Selective CO methanation catalysts for fuel processing applications, Applied Catalysis A: General, 326 (2007) 213-218.
dc.relation.references[8] R.J. Farrauto, Y. Liu, W. Ruettinger, O. Ilinich, L. Shore, T. Giroux, Precious Metal Catalysts Supported on Ceramic and Metal Monolithic Structures for the Hydrogen Economy, Catalysis Reviews, 49 (2007) 141-196.
dc.relation.references[9] C. Song, Q. Liu, N. Ji, Y. Kansha, A. Tsutsumi, Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration, Applied Energy, 154 (2015) 392-401.
dc.relation.references[10] C.-C. Chen, H.-H. Tseng, Y.-L. Lin, W.-H. Chen, Hydrogen production and carbon dioxide enrichment from ethanol steam reforming followed by water gas shift reaction, Journal of Cleaner Production, 162 (2017) 1430-1441.
dc.relation.references[11] M. Antoniadou, S. Sfaelou, V. Dracopoulos, P. Lianos, Platinum-free photoelectrochemical water splitting, Catalysis Communications, 43 (2014) 72-74.
dc.relation.references[12] T.L. LeValley, A.R. Richard, M. Fan, The progress in water gas shift and steam reforming hydrogen production technologies – A review, International Journal of Hydrogen Energy, 39 (2014) 16983-17000.
dc.relation.references[13] M.A. Soria, P. Pérez, S.A.C. Carabineiro, F.J. Maldonado-Hódar, A. Mendes, L.M. Madeira, Effect of the preparation method on the catalytic activity and stability of Au/Fe2O3 catalysts in the low-temperature water–gas shift reaction, Applied Catalysis A: General, 470 (2014) 45- 55.
dc.relation.references[14] J. Li, H. Yoon, T.-K. Oh, E.D. Wachsman, SrCe0.7Zr0.2Eu0.1O3-based hydrogen transport water gas shift reactor, International Journal of Hydrogen Energy, 37 (2012) 16006- 16012.
dc.relation.references[15] D. Cameron, R. Holliday, D. Thompson, Gold’s future role in fuel cell systems, J. Power Sources, 118 (2003) 298-303.
dc.relation.references[16] H.F. Abbas, W.M.A. Wan Daud, Hydrogen production by methane decomposition: A review, International Journal of Hydrogen Energy, 35 (2010) 1160-1190.
dc.relation.references[17] A. Boisen, T.V.W. Janssens, N. Schumacher, I. Chorkendorff, S. Dahl, Support effects and catalytic trends for water gas shift activity of transition metals, J. Mol. Catal. A: Chem., 315 (2010) 163-170.
dc.relation.references[18] G. Jacobs, P.M. Patterson, L. Williams, E. Chenu, D. Sparks, G. Thomas, B.H. Davis, Water-gas shift: in situ spectroscopic studies of noble metal promoted ceria catalysts for CO removal in fuel cell reformers and mechanistic implications, Applied Catalysis A: General, 262 (2004) 177-187.
dc.relation.references[19] G.G. Olympiou, C.M. Kalamaras, C.D. Zeinalipour-Yazdi, A.M. Efstathiou, Mechanistic aspects of the water–gas shift reaction on alumina-supported noble metal catalysts: In situ DRIFTS and SSITKA-mass spectrometry studies, Catalysis Today, 127 (2007) 304-318.
dc.relation.references[20] S.C. Ammal, A. Heyden, Origin of the unique activity of Pt/TiO2 catalysts for the water– gas shift reaction, J. Catal., 306 (2013) 78-90.
dc.relation.references[21] G.N. Özyönüm, R. Yildirim, Water gas shift activity of Au–Re catalyst over microstructured cordierite monolith wash-coated by ceria, International Journal of Hydrogen Energy, 41 (2016) 5513-5521.
dc.relation.references[22] C. Wang, C. Liu, W. Fu, Z. Bao, J. Zhang, W. Ding, K. Chou, Q. Li, The water-gas shift reaction for hydrogen production from coke oven gas over Cu/ZnO/Al2O3 catalyst, Catalysis Today, 263 (2016) 46-51.
dc.relation.references[23] S.K. Wilkinson, L.G.A. van de Water, B. Miller, M.J.H. Simmons, E.H. Stitt, M.J. Watson, Understanding the generation of methanol synthesis and water gas shift activity over copperbased catalysts – A spatially resolved experimental kinetic study using steady and non-steady state operation under CO/CO2/H2 feeds, Journal of Catalysis, 337 (2016) 208-220.
dc.relation.references[24] K. Chayakul, T. Srithanratana, S. Hengrasmee, Catalytic activities of Re–Ni/CeO2 bimetallic catalysts for water gas shift reaction, Catalysis Today, 175 (2011) 420-429.
dc.relation.references[25] M.V. Twigg, Progress and future challenges in controlling automotive exhaust gas emissions, Applied Catalysis B: Environmental, 70 (2007) 2-15.
dc.relation.references[26] V. Palma, D. Pisano, M. Martino, Structured noble metal-based catalysts for the WGS process intensification, International Journal of Hydrogen Energy, 43 (2018) 11745-11754.
dc.relation.references[27] L. Gradisher, B. Dutcher, M. Fan, Catalytic hydrogen production from fossil fuels via the water gas shift reaction, Applied Energy, 139 (2015) 335-349.
dc.relation.references[28] Y.I. Choi, H.J. Yoon, S.K. Kim, Y. Sohn, Crystal-facet dependent CO oxidation, preferential oxidation of CO in H2-rich, water-gas shift reactions, and supercapacitor application over Co3O4 nanostructures, Applied Catalysis A: General, 519 (2016) 56-67.
dc.relation.references[29] N. Ishito, K. Hara, K. Nakajima, A. Fukuoka, Selective synthesis of carbon monoxide via formates in reverse water–gas shift reaction over alumina-supported gold catalyst, Journal of Energy Chemistry, 25 (2016) 306-310. [29] N. Ishito, K. Hara, K. Nakajima, A. Fukuoka, Selective synthesis of carbon monoxide via formates in reverse water–gas shift reaction over alumina-supported gold catalyst, Journal of Energy Chemistry, 25 (2016) 306-310.
dc.relation.references[30] M.N. Moreira, A.M. Ribeiro, A.F. Cunha, A.E. Rodrigues, M. Zabilskiy, P. Djinović, A. Pintar, Copper based materials for water-gas shift equilibrium displacement, Applied Catalysis B: Environmental, 189 (2016) 199-209.
dc.relation.references[31] B. Liu, H. Xu, Z. Zhang, Platinum based core–shell catalysts for sour water–gas shift reaction, Catalysis Communications, 26 (2012) 159-163.
dc.relation.references[32] G.P. van der Laan, A.A.C.M. Beenackers, Intrinsic kinetics of the gas–solid Fischer– Tropsch and water gas shift reactions over a precipitated iron catalyst, Applied Catalysis A: General, 193 (2000) 39-53.
dc.relation.references[33] M. Zhu, I.E. Wachs, Iron-Based Catalysts for the High-Temperature Water–Gas Shift (HTWGS) Reaction: A Review, ACS Catalysis, 6 (2016) 722-732.
dc.relation.references[34] R. Buitrago, J. Ruiz-Martínez, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. RodríguezReinoso, Water gas shift reaction on carbon-supported Pt catalysts promoted by CeO2, Catalysis Today, 180 (2012) 19-24.
dc.relation.references[35] Y. Ma, B. Liu, M. Jing, R. Zhang, J. Chen, Y. Zhang, J. Li, Promoted potassium salts based Ru/AC catalysts for water gas shift reaction, Chemical Engineering Journal, 287 (2016) 155- 161.
dc.relation.references[36] O. Arbeláez, T.R. Reina, S. Ivanova, F. Bustamante, A.L. Villa, M.A. Centeno, J.A. Odriozola, Mono and bimetallic Cu-Ni structured catalysts for the water gas shift reaction, Applied Catalysis A: General, 497 (2015) 1-9.
dc.relation.references[37] J. Yu, F.J. Tian, L.J. McKenzie, C.Z. Li, Char-Supported Nano Iron Catalyst for WaterGas-Shift Reaction: Hydrogen Production from Coal/Biomass Gasification, Process Safety and Environmental Protection, 84 (2006) 125-130.
dc.relation.references[38] J.C. Serrano-Ruiz, E.V. Ramos-Fernández, J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Preparation and characterization of CeO2 highly dispersed on activated carbon, Mater. Res. Bull., 43 (2008) 1850-1857.
dc.relation.references[39] S.T. Oyama, P. Hacarlioglu, Y. Gu, D. Lee, Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors, International Journal of Hydrogen Energy, 37 (2012) 10444-10450.
dc.relation.references[40] N.M. Schweitzer, J.A. Schaidle, O.K. Ezekoye, X. Pan, S. Linic, L.T. Thompson, High Activity Carbide Supported Catalysts for Water Gas Shift, J. Am. Chem. Soc., 133 (2011) 2378- 2381.
dc.relation.references[41] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Physical Review, 56 (1939) 978-982.
dc.relation.references[42] M. Donohue, G.L. Aranovich, Classification of Gibbs adsorption isotherms, Adv. Colloid Interface Sci., 76 (1998) 137-152.
dc.relation.references[43] Y. Kouketsu, T. Mizukami, H. Mori, S. Endo, M. Aoya, H. Hara, D. Nakamura, S. Wallis, A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width, Island Arc, 23 (2014) 33-50.
dc.relation.references[44] B. Dippel, J. Heintzenberg, Soot characterization in atmospheric particles from different sources by NIR FT Raman spectroscopy, Journal of Aerosol Science, 30 (1999) 907-908.
dc.relation.references[45] M. Gonzalez Castaño, T.R. Reina, S. Ivanova, M.A. Centeno, J.A. Odriozola, Pt vs. Au in water–gas shift reaction, J. Catal., 314 (2014) 1-9.
dc.relation.references[46] N. García-Moncada, M. González-Castaño, S. Ivanova, M.Á. Centeno, F. Romero-Sarria, J.A. Odriozola, New concept for old reaction: Novel WGS catalyst design, Applied Catalysis B: Environmental, 238 (2018) 1-5.
dc.relation.references[1] T.N. Pham, T. Sooknoi, S.P. Crossley, D.E. Resasco, Ketonization of Carboxylic Acids: Mechanisms, Catalysts, and Implications for Biomass Conversion, ACS Catalysis, 3 (2013) 2456-2473.
dc.relation.references[2] G.W. Huber, S. Iborra, A. Corma, Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chem. Rev., 106 (2006) 4044-4098.
dc.relation.references[3] R. Hilten, J. Weber, J.R. Kastner, Continuous Upgrading of Fast Pyrolysis Oil by Simultaneous Esterification and Hydrogenation, Energy & Fuels, 30 (2016) 8357-8368.
dc.relation.references[4] T.P. Vispute, H. Zhang, A. Sanna, R. Xiao, G.W. Huber, Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils, Science, 330 (2010) 1222.
dc.relation.references[5] M.A. Jackson, S.C. Cermak, Cross ketonization of Cuphea sp. oil with acetic acid over a composite oxide of Fe, Ce, and Al, Applied Catalysis A: General, 431–432 (2012) 157-163.
dc.relation.references[6] E. Karimi, I.F. Teixeira, L.P. Ribeiro, A. Gomez, R.M. Lago, G. Penner, S.W. Kycia, M. Schlaf, Ketonization and deoxygenation of alkanoic acids and conversion of levulinic acid to hydrocarbons using a Red Mud bauxite mining waste as the catalyst, Catalysis Today, 190 (2012) 73-88.
dc.relation.references[7] Y. Lee, J.-W. Choi, D.J. Suh, J.-M. Ha, C.-H. Lee, Ketonization of hexanoic acid to dieselblendable 6-undecanone on the stable zirconia aerogel catalyst, Applied Catalysis A: General, 506 (2015) 288-293.
dc.relation.references[8] H.B. Goyal, D. Seal, R.C. Saxena, Bio-fuels from thermochemical conversion of renewable resources: A review, Renewable and Sustainable Energy Reviews, 12 (2008) 504-517.
dc.relation.references[9] S. Czernik, A.V. Bridgwater, Overview of Applications of Biomass Fast Pyrolysis Oil, Energy & Fuels, 18 (2004) 590-598.
dc.relation.references[10] P. McKendry, Energy production from biomass (part 2): conversion technologies, Bioresour. Technol., 83 (2002) 47-54.
dc.relation.references11] Q. Zhang, J. Chang, T. Wang, Y. Xu, Review of biomass pyrolysis oil properties and upgrading research, Energy Convers. Manage., 48 (2007) 87-92.
dc.relation.references[12] P.M. Mortensen, J.D. Grunwaldt, P.A. Jensen, K.G. Knudsen, A.D. Jensen, A review of catalytic upgrading of bio-oil to engine fuels, Applied Catalysis A: General, 407 (2011) 1-19.
dc.relation.references[13] R. Martinez, M.C. Huff, M.A. Barteau, Ketonization of acetic acid on titania-functionalized silica monoliths, J. Catal., 222 (2004) 404-409.
dc.relation.references[14] C. Doornkamp, V. Ponec, The universal character of the Mars and Van Krevelen mechanism, J. Mol. Catal. A: Chem., 162 (2000) 19-32.
dc.relation.references[15] W.-J. Liu, X.-S. Zhang, Y.-C. Qv, H. Jiang, H.-Q. Yu, Bio-oil upgrading at ambient pressure and temperature using zero valent metals, Green Chemistry, 14 (2012) 2226-2233.
dc.relation.references[16] M. Gliński, J. Kijeński, A. Jakubowski, Ketones from monocarboxylic acids: Catalytic ketonization over oxide systems, Applied Catalysis A: General, 128 (1995) 209-217.
dc.relation.references[17] R.W. Snell, S.H. Hakim, J.A. Dumesic, B.H. Shanks, Catalysis with ceria nanocrystals: Biooil model compound ketonization, Applied Catalysis A: General, 464-465 (2013) 288-295.
dc.relation.references[18] G.A.H. Mekhemer, S.A. Halawy, M.A. Mohamed, M.I. Zaki, Ketonization of acetic acid vapour over polycrystalline magnesia: in situ Fourier transform infrared spectroscopy and kinetic studies, J. Catal., 230 (2005) 109-122.
dc.relation.references[19] M. Renz, Ketonization of Carboxylic Acids by Decarboxylation: Mechanism and Scope, Eur. J. Org. Chem., 2005 (2005) 979-988.
dc.relation.references[20] T.N. Pham, D. Shi, D.E. Resasco, Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase, Applied Catalysis B: Environmental, 145 (2014) 10-23.
dc.relation.references[21] D.E. Resasco, S.P. Crossley, Implementation of concepts derived from model compound studies in the separation and conversion of bio-oil to fuel, Catalysis Today, 257 (2015) 185-199.
dc.relation.references[22] A. Oasmaa, D.C. Elliott, J. Korhonen, Acidity of Biomass Fast Pyrolysis Bio-oils, Energy & Fuels, 24 (2010) 6548-6554.
dc.relation.references[23] A. Gumidyala, T. Sooknoi, S. Crossley, Selective ketonization of acetic acid over HZSM-5: The importance of acyl species and the influence of water, J. Catal., 340 (2016) 76-84.
dc.relation.references[24] R.W. Snell, B.H. Shanks, Insights into the Ceria-Catalyzed Ketonization Reaction for Biofuels Applications, ACS Catalysis, 3 (2013) 783-789.
dc.relation.references[25] T.N. Pham, D. Shi, T. Sooknoi, D.E. Resasco, Aqueous-phase ketonization of acetic acid over Ru/TiO2/carbon catalysts, J. Catal., 295 (2012) 169-178.
dc.relation.references[26] R. Pestman, R.M. Koster, J.A.Z. Pieterse, V. Ponec, Reactions of Carboxylic Acids on Oxides: 1. Selective Hydrogenation of Acetic Acid to Acetaldehyde, J. Catal., 168 (1997) 255- 264.
dc.relation.references[27] R. Pestman, R.M. Koster, A. van Duijne, J.A.Z. Pieterse, V. Ponec, Reactions of Carboxylic Acids on Oxides: 2. Bimolecular Reaction of Aliphatic Acids to Ketones, J. Catal., 168 (1997) 265-272.
dc.relation.references[28] R. Pestman, A. van Duijne, J.A.Z. Pieterse, V. Ponec, The formation of ketones and aldehydes from carboxylic acids, structure-activity relationship for two competitive reactions, J. Mol. Catal. A: Chem., 103 (1995) 175-180.
dc.relation.references[29] S. Wan, T. Pham, S. Zhang, L. Lobban, D. Resasco, R. Mallinson, Direct catalytic upgrading of biomass pyrolysis vapors by a dual function Ru/TiO2 catalyst, AlChE J., 59 (2013) 2275- 2285.
dc.relation.references[30] R.W. Snell, B.H. Shanks, Ceria calcination temperature influence on acetic acid ketonization: Mechanistic insights, Applied Catalysis A: General, 451 (2013) 86-93.
dc.relation.references[31] A.V. Ignatchenko, J.S. DeRaddo, V.J. Marino, A. Mercado, Cross-selectivity in the catalytic ketonization of carboxylic acids, Applied Catalysis A: General, 498 (2015) 10-24.
dc.relation.references[32] V.N. Panchenko, Y.A. Zaytseva, M.N. Simonov, I.L. Simakova, E.A. Paukshtis, DRIFTS and UV–vis DRS study of valeric acid ketonization mechanism over ZrO2 in hydrogen atmosphere, Journal of Molecular Catalysis A: Chemical, 388–389 (2014) 133-140.
dc.relation.references[33] T.K. Phung, A.A. Casazza, P. Perego, P. Capranica, G. Busca, Catalytic pyrolysis of vegetable oils to biofuels: Catalyst functionalities and the role of ketonization on the oxygenate paths, Fuel Processing Technology, 140 (2015) 119-124.
dc.relation.references[36] D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review, Energy & Fuels, 20 (2006) 848-889.
dc.relation.references[37] L. Deng, Y. Fu, Q.-X. Guo, Upgraded Acidic Components of Bio-oil through Catalytic Ketonic Condensation, Energy & Fuels, 23 (2009) 564-568.
dc.relation.references[38] K. Parida, J. Das, Mg/Al hydrotalcites: preparation, characterisation and ketonisation of acetic acid, J. Mol. Catal. A: Chem., 151 (2000) 185-192.
dc.relation.references[39] G. Busca, Acid Catalysts in Industrial Hydrocarbon Chemistry, Chem. Rev., 107 (2007) 5366-5410.
dc.relation.references[40] A. Altay, C.B. Carter, I. Arslan, M.A. Gülgün, Crystallization of CaAl4O7 and CaAl12O19 powders, Philosophical Magazine, 89 (2009) 605-621.
dc.relation.references[41] W. Staszak, M. Zawadzki, J. Okal, Solvothermal synthesis and characterization of nanosized zinc aluminate spinel used in iso-butane combustion, J. Alloys Compd., 492 (2010) 500-507.
dc.relation.references[42] J. Wei, J. Ding, X. Zhang, D. Wu, Z. Wang, J. Luo, K. Wang, Coated double-walled carbon nanotubes with ceria nanoparticles, Mater. Lett., 59 (2005) 322-325.
dc.relation.references[43] S.M. El-Khouly, G.M. Mohamed, N.A. Fathy, G.A. Fagal, Effect of nanosized CeO2 or ZnO loading on adsorption and catalytic properties of activated carbon, Adsorption Science & Technology, 35 (2017) 774-788.
dc.relation.references[34] S.D. Randery, J.S. Warren, K.M. Dooley, Cerium oxide-based catalysts for production of ketones by acid condensation, Applied Catalysis A: General, 226 (2002) 265-280. [35] J.C. Kuriacose, S.S. Jewur, Studies on the surface interaction of acetic acid on iron oxide, J. Catal., 50 (1977) 330-341.
dc.relation.references[44] Z. Zhou, X. Liu, Y. Hu, Z. Liao, S. Cheng, M. Xu, An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas, Fuel, 216 (2018) 356-363.
dc.relation.references[45] Z. Ma, X. Wu, Z. Si, D. Weng, J. Ma, T. Xu, Impacts of niobia loading on active sites and surface acidity in NbOx/CeO2–ZrO2 NH3–SCR catalysts, Applied Catalysis B: Environmental, 179 (2015) 380-394.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCatalysts
dc.subject.lembCatalizadores
dc.subject.lembChemistry, Technical
dc.subject.lembTecnología química
dc.subject.lembGels
dc.subject.lembGeles
dc.subject.proposalWGSR
dc.subject.proposalMonolith
dc.subject.proposalMonolito
dc.subject.proposalXerogel de carbono
dc.subject.proposalAlmidón
dc.subject.proposalCetonización de ácido acético
dc.subject.proposalCarbon xerogel
dc.subject.proposalStarch
dc.subject.proposalAcetic acid ketonization
dc.title.translatedDesign and preparation of catalysts supported on structured carbonaceous materials
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameColciencias
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit