dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.contributor.advisor | Grajales Buitrago, Marco Antonio |
dc.contributor.advisor | Camacho Rodríguez, Bernardo Armando |
dc.contributor.advisor | Angarita de Botero, María del Pilar |
dc.contributor.advisor | Sánchez Pedraza, Ricardo |
dc.contributor.author | Burbano Gutiérrez, Juan Felipe |
dc.date.accessioned | 2022-02-01T19:45:25Z |
dc.date.available | 2022-02-01T19:45:25Z |
dc.date.issued | 2021 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80841 |
dc.description | ilustraciones |
dc.description.abstract | La infección por SARSCoV-2 causa la enfermedad por coronavirus del 2019 (COVID-19), considerada como pandemia, con complicaciones hematológicas derivadas de síndromes hiperinflamatorios y autoinmunidad en pacientes de alto riesgo y ancianos que desarrollan una infección grave por COVID-19. Una de las complicaciones documentadas es la anemia hemolítica autoinmune (AHAI), que está mediada por la emergencia de autoanticuerpos contra los eritrocitos del huésped. El diagnóstico de AHAI a menudo no se realiza, lo que conduce a resultados clínicos deficientes debido a anemia, disfunción endotelial e hipoperfusión tisular.
Se realizó un estudio observacional de corte transversal por período para evaluar la coocurrencia de anemia y prueba de antiglobulina directa (PAD) positiva, en pacientes hospitalizados por COVID-19 en dos hospitales de Bogotá, Colombia, del 18 de marzo al 29 de abril. 2021. La asociación sustantiva entre anemia y PAD positiva se estimó por medio del coeficiente de agrupamiento o de cluster; Las variables de confusión que se sabe están asociadas con la anemia y PAD (p. ej., inflamación, gravedad de COVID-19, sangrado mayor y tratamiento con antibióticos) se controlaron mediante regresión logística multivariable.
Se evaluaron 185 pacientes, 84 (45,4%) eran mujeres y la edad media fue 59,7 ± 14,7. Cien (54,1%) ingresaron a la unidad de cuidados intensivos, 67 (36,2%) con disfunción multiorgánica (medida por qSOFA ≥2). La prevalencia de anemia y PAD positiva fue del 19,4% (intervalo de confianza [IC] del 95%, 13,8 a 25,2). El coeficiente de cluster fue de
1,55, lo que demuestra una asociación sustancial no coincidencial. La disfunción multiorgánica, la PAD positiva y la terapia con antibióticos se asociaron significativamente con anemia durante la hospitalización (OR: 5,11 (IC 95%: 2,46 - 10,60), 2,72 (IC 95%: 1,32 – 5,60) y 2,48 (IC 95% 1,10 - 5,57), respectivamente.
En conclusión, la coocurrencia de anemia y PAD positiva en pacientes hospitalizados con infección por SARS-CoV-2 no es una coincidencia y se asocia a insuficiencia multiorgánica y terapia con antibióticos. Para el médico, la anemia de nueva aparición después o durante la hospitalización debido a un COVID-19 grave debe despertar sospechas de AHAI. (texto tomado de la fuente) |
dc.description.abstract | Hematologic complications derived from hyperinflammatory syndromes and autoimmunity can be seen in high-risk and elderly patients who develop severe COVID-19 infection. One of the reported complications is autoimmune hemolytic anemia (AIHA), which is mediated by the emergency of autoantibodies against host erythrocytes. The diagnosis of AIHA is often unrecognized leading to poor clinical outcomes due to anemia, endothelial dysfunction, and tissue hypoperfusion.
Herein, we conducted a cross-sectional, observational study to evaluate the prevalence of anemia and a positive Direct Antiglobulin Test (DAT), among hospitalized patients with COVID-19 in two hospitals in Bogota, Colombia during COVID surge from March 18 to April 29, 2021. The association between anemia and a positive DAT was estimated by cluster coefficient; confounding variables known to be associated with anemia (eg, inflammation, COVID-19 severity, mayor bleeding and antibiotic therapy) were controlled by multivariate logistic regression.
One hundred and eighty-five patients were evaluated, 84 (45,4%) were female, and the mean age was 59,7 ± 14,7. One hundred (54,1%) were admitted to intensive care unit, 67 (36,2%) with multi-organ dysfunction (measured by qSOFA ≥2). The prevalence of anemia and positive DAT was 19.4% (95% confidence interval [CI], 13.8 to 25.2). Cluster coefficient was 1.55 showing a substantive non coincidental association. Multi-organic dysfunction,
positive DAT and antibiotic therapy were significantly associated with anemia that occurred during hospitalization (OR:5,11 (95% CI 2,46 – 10,60), 2,72 (95% CI 1,32 – 5,60) and 2,48 (95% CI 1,10 – 5,57), respectively
In summary, the prevalence of anemia and positive DAT in hospitalized patients with SARS-CoV-2 infection is not coincidental and it is associated to multiple organ failure and antibiotic therapy. For the clinician, new onset anemia following hospitalization due to severe COVID-19 should raise suspicion for AIHA. |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades |
dc.subject.other | Infecciones por Coronavirus |
dc.subject.other | Coronavirus Infections |
dc.subject.other | Anemia |
dc.subject.other | Anemia Hemolítica Autoinmune |
dc.subject.other | Anemia, Hemolytic, Autoimmune |
dc.title | Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19 |
dc.type | Trabajo de grado - Especialidad Médica |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Medicina - Especialidad en Hematología |
dc.contributor.researcher | Amador Rodríguez, Mónica Patricia |
dc.contributor.researcher | Gaviria García, Paula Andrea |
dc.contributor.researcher | Grass Guáqueta, Jeser Santiago |
dc.contributor.researcher | Deantonio Paéz, Danna Valentina |
dc.description.degreelevel | Especialidades Médicas |
dc.description.degreename | Especialista en Hematología |
dc.description.researcharea | Hematología |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Medicina Interna |
dc.publisher.faculty | Facultad de Medicina |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.indexed | LaReferencia |
dc.relation.references | 1. Organización Mundial de la Salud. WHO Coronavirus Disease (COVID-19)
Dashboard. Published 2020. Accessed August 30, 2021. https://covid19.who.int/ |
dc.relation.references | 2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
doi:10.1016/S0140-6736(20)30183-5 |
dc.relation.references | 3. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected
patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin
Virol. 2020;127(January):104362. doi:10.1016/j.jcv.2020.104362 |
dc.relation.references | 4. Zulfiqar A-A, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic
Purpura in a Patient with Covid-19. N Engl J Med. 2020;382(18):e43.
doi:10.1056/NEJMc2010472 |
dc.relation.references | 5. Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré Syndrome Associated
with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576.
doi:10.1056/NEJMc2009191 |
dc.relation.references | 6. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in
Patients with Covid-19. N Engl J Med. 2020;382(17):e38.
doi:10.1056/NEJMc2007575 |
dc.relation.references | 7. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia
associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31.
doi:10.1111/bjh.16794 |
dc.relation.references | 8. Berzuini A, Bianco C, Paccapelo C, et al. Red cell–bound antibodies and transfusion
requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-768.
doi:10.1182/blood.2020006695 |
dc.relation.references | 9. Hendrickson JE, Tormey CA. COVID-19 and the Coombs test. Blood.
2020;136(6):655-656. doi:10.1182/blood.2020007483 |
dc.relation.references | 10. Gammazza AM, Légaré S, Lo Bosco G, et al. Human molecular chaperones share
with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell
Stress Chaperones. 2020;25(5):737-741. doi:10.1007/s12192-020-01148-3 |
dc.relation.references | 11. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL,
Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia
affecting patients with COVID-19? Br J Haematol. 2020;190(2):e92-e93.
doi:10.1111/bjh.16883 |
dc.relation.references | 12. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of
hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann
Hematol. 2021;100(1):37-43. doi:10.1007/s00277-020-04256-3 |
dc.relation.references | 13. Sterne JAC, Murthy S, Diaz J V., et al. Association Between Administration of
Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19.
JAMA. 2020;324(13):1330. doi:10.1001/jama.2020.17023 |
dc.relation.references | 14. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia
in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/nejmoa2001017 |
dc.relation.references | 15. Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ B.
2020;21(5):343-360. doi:10.1631/jzus.B2000083 |
dc.relation.references | 16. Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2. JAMA.
2020;324(5):441. doi:10.1001/jama.2020.12458 |
dc.relation.references | 17. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection
to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a
systematic review and meta-analysis. Lancet. 2020;395(10242):1973-1987.
doi:10.1016/S0140-6736(20)31142-9 |
dc.relation.references | 18. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and
transmissibility of COVID-19. Nat Med. 2020;26(5):672-675. doi:10.1038/s41591-
020-0869-5 |
dc.relation.references | 19. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue
Isolation? Clin Infect Dis. 2020;0(0):1-14. doi:10.1093/cid/ciaa1249 |
dc.relation.references | 20. World Health Organization. Criteria for releasing COVID-19 patients from isolation.
Sci Br. 2020;(17 June):1-5. https://www.who.int/publications/i/item/criteria-forreleasing-covid-19-patients-from-isolation |
dc.relation.references | 21. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019
(CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann
Intern Med. 2020;172(9):577-582. doi:10.7326/M20-0504 |
dc.relation.references | 22. Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on upto-date knowledge. Am J Otolaryngol - Head Neck Med Surg. 2020;41(5):102581.
doi:10.1016/j.amjoto.2020.102581 |
dc.relation.references | 23. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult
inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet.
2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3 |
dc.relation.references | 24. Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med.
2020;383(18):1757-1766. doi:10.1056/nejmcp2009249 |
dc.relation.references | 25. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress
syndrome: The Berlin definition. JAMA - J Am Med Assoc. 2012;307(23):2526-
2533. doi:10.1001/jama.2012.5669 |
dc.relation.references | 26. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome.
Drazen JM, ed. N Engl J Med. 2017;377(6):562-572. doi:10.1056/NEJMra1608077 |
dc.relation.references | 27. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. Published
online 2020:1-10. doi:10.1056/nejmcp2009575 |
dc.relation.references | 28. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the
Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of
72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA -
J Am Med Assoc. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648 |
dc.relation.references | 29. Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome
of COVID-19. Nature. 2020;583(7816):437-440. doi:10.1038/s41586-020-2355-0 |
dc.relation.references | 30. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide
Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med.
2020;383(16):1522-1534. doi:10.1056/NEJMoa2020283 |
dc.relation.references | 31. Kaser A. Genetic Risk of Severe Covid-19. N Engl J Med. 2020;383(16):1590-1591.
doi:10.1056/nejme2025501 |
dc.relation.references | 32. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The Coronavirus Spike
Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization
of the Fusion Core Complex. J Virol. 2003;77(16):8801-8811.
doi:10.1128/JVI.77.16.8801-8811.2003 |
dc.relation.references | 33. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin
Immunol. 2020;215(January):108427. doi:10.1016/j.clim.2020.108427 |
dc.relation.references | 34. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of
SARS-CoV-2. Nat Med. 2020;26(4):450-452. doi:10.1038/s41591-020-0820-9 |
dc.relation.references | 35. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike
Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell.
2020;78(4):779-784.e5. doi:10.1016/j.molcel.2020.04.022 |
dc.relation.references | 36. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: Control of
acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814-820.
doi:10.1007/s00109-006-0094-9 |
dc.relation.references | 37. Ou J, Zhou Z, Dai R, et al. Emergence of SARS-CoV-2 spike RBD mutants that
enhance viral infectivity through increased human ACE2 receptor binding affinity.
bioRxiv. Published online January 1, 2020:2020.03.15.991844.
doi:10.1101/2020.03.15.991844 |
dc.relation.references | 38. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized
patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586-
020-2196-x |
dc.relation.references | 39. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19
(COVID-19): Relationship to Duration of Infection. Radiology. 2020;295(3):200463.
doi:10.1148/radiol.2020200463 |
dc.relation.references | 40. Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19? Science (80-
). 2020;369(6503):510-511. doi:10.1126/science.abc6156 |
dc.relation.references | 41. loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2
(ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol
Neurobiol. 2021;283(September 2020):103548. doi:10.1016/j.resp.2020.103548 |
dc.relation.references | 42. Zhang C, Wu Z, Li J, Zhao H, Wang G. Cytokine release syndrome in severe
COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce
mortality. Int J Antimicrob Agents. 2020;55(5):105954.
doi:10.1016/j.ijantimicag.2020.105954 |
dc.relation.references | 43. Wang C, Zhou X, Wang M, Chen X. The Impact of SARS-CoV-2 on the Human
Immune System and Microbiome. Infect Microbes Dis. 2021;3(1):14-21.
doi:10.1097/IM9.0000000000000045 |
dc.relation.references | 44. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska
E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives.
Immun Ageing. 2020;17(1):38. doi:10.1186/s12979-020-00208-7 |
dc.relation.references | 45. Barcellini W, Fattizzo B, Zaninoni A. Current and emerging treatment options for
autoimmune hemolytic anemia. Expert Rev Clin Immunol. 2018;14(10):857-872.
doi:10.1080/1744666X.2018.1521722 |
dc.relation.references | 46. Jäger U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune
hemolytic anemia in adults: Recommendations from the First International
Consensus Meeting. Blood Rev. 2020;41(xxxx):100648.
doi:10.1016/j.blre.2019.100648 |
dc.relation.references | 47. Smirnova SJ, Sidorova J V., Tsvetaeva N V., et al. Expansion of CD8+ cells in
autoimmune hemolytic anemia. Autoimmunity. 2016;49(3):147-154.
doi:10.3109/08916934.2016.1138219 |
dc.relation.references | 48. Xu L, Zhang T, Liu Z, Li Q, Xu Z, Ren T. Critical role of Th17 cells in development
of autoimmune hemolytic anemia. Exp Hematol. 2012;40(12):994-1004.e4.
doi:10.1016/j.exphem.2012.08.008 |
dc.relation.references | 49. Howie HL, Hudson KE. Murine models of autoimmune hemolytic anemia. Curr Opin
Hematol. 2018;25(6):473-481. doi:10.1097/MOH.0000000000000459 |
dc.relation.references | 50. Brodsky RA. Warm Autoimmune Hemolytic Anemia. Solomon CG, ed. N Engl J
Med. 2019;381(7):647-654. doi:10.1056/NEJMcp1900554 |
dc.relation.references | 51. Berentsen S. New Insights in the Pathogenesis and Therapy of Cold AgglutininMediated Autoimmune Hemolytic Anemia. Front Immunol. 2020;11(April):12-14.
doi:10.3389/fimmu.2020.00590 |
dc.relation.references | 52. McNicholl F. Clinical syndromes associated with cold agglutinins. Transfus Sci.
2000;22(1-2):125-133. doi:10.1016/S0955-3886(00)00033-3 |
dc.relation.references | 53. Hill A, Hill QA. Autoimmune hemolytic anemia. Hematology. 2018;2018(1):382-389.
doi:10.1182/asheducation-2018.1.382 |
dc.relation.references | 54. Koffas A, Dolman GE, Kennedy PTF. Hepatitis B virus reactivation in patients
treated with immunosuppressive drugs: a practical guide for clinicians. Clin Med
(Northfield Il). 2018;18(3):212-218. doi:10.7861/clinmedicine.18-3-212 |
dc.relation.references | 55. Barcellini W, Zaninoni A, Fattizzo B, et al. Predictors of refractoriness to therapy
and healthcare resource utilization in 378 patients with primary autoimmune
hemolytic anemia from eight Italian reference centers. Am J Hematol.
2018;93(9):E243-E246. doi:10.1002/ajh.25212 |
dc.relation.references | 56. Coombs RRA, Mourant AE, Race RR. A new test for the detection of weak and
incomplete Rh agglutinins. Br J Exp Pathol. 1945;26:255-266.
http://www.ncbi.nlm.nih.gov/pubmed/21006651 |
dc.relation.references | 57. Parker V, Tormey CA. The Direct Antiglobulin Test: Indications, Interpretation, and
Pitfalls. Arch Pathol Lab Med. 2017;141(2):305-310. doi:10.5858/arpa.2015-0444-
RS |
dc.relation.references | 58. Borge PD, Mansfield PM. The Positive Direct Antiglobulin Test and
ImmuneMediated Hemolysis. In: Cohn CS, Delaney M, Johnson ST, Katz LM, eds.
Technical Manual AABB. 20th ed. ; 2020:429-452. |
dc.relation.references | 59. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated
with autoimmune hemolytic anemia. Ann Hematol. 2020;99(7):1679-1680.
doi:10.1007/s00277-020-04137-9 |
dc.relation.references | 60. Wahlster L, Weichert-Leahey N, Trissal M, Grace RF, Sankaran VG. COVID-19
presenting with autoimmune hemolytic anemia in the setting of underlying immune
dysregulation. Pediatr Blood Cancer. 2020;67(9):1-2. doi:10.1002/pbc.28382 |
dc.relation.references | 61. Li M, Nguyen CB, Yeung Z, Sanchez K, Rosen D, Bushan S. Evans syndrome in a
patient with COVID-19. Br J Haematol. 2020;190(2):e59-e61.
doi:10.1111/bjh.16846 |
dc.relation.references | 62. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Simultaneous onset of
COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190(1):31-
32. doi:10.1111/bjh.16786 |
dc.relation.references | 63. Huscenot T, Galland J, Ouvrat M, Rossignol M, Mouly S, Sène D. SARS-CoV-2-
associated cold agglutinin disease: a report of two cases. Ann Hematol.
2020;99(8):1943-1944. doi:10.1007/s00277-020-04129-9 |
dc.relation.references | 64. Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin
Neurosci. 2020;77(April):246. doi:10.1016/j.jocn.2020.05.015 |
dc.relation.references | 65. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes
(KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation
and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150.
doi:10.1038/kisup.2012.73 |
dc.relation.references | 66. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed
positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single
center analysis. Travel Med Infect Dis. 2020;36:101606.
doi:10.1016/j.tmaid.2020.101606 |
dc.relation.references | 67. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Third.
John Wiley & Sons, Inc.; 2003. doi:10.1002/0471445428 |
dc.relation.references | 68. Newcombe RG. Two-sided confidence intervals for the single proportion:
comparison of seven methods. Stat Med. 1998;17(8):857-872.
doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E |
dc.relation.references | 69. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for
linear and logistic regression. Stat Med. 1998;17(14):1623-1634.
doi:10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S |
dc.relation.references | 70. Organización Panamericana de la Salud. Requerimientos para uso de equipos de
protección personal (EPP) para el nuevo coronavirus (2019-nCoV) en
establecimientos de salud. Bioseguridad y Transp nCoV. 2020;1:1-4.
https://iris.paho.org/handle/10665.2/51976 |
dc.relation.references | 71. Organización Panamerica de la Salud. Directrices provisionales de bioseguridad de
laboratorio para el manejo y transporte de muestras asociadas al nuevo coronavirus
20191 (2019-nCoV). Bioseguridad y Transp nCoV. 2020;1:1-10.
https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.html |
dc.relation.references | 72. Batstra L, Bos EH, Neeleman J. Quantifying psychiatric comorbidity. Soc Psychiatry
Psychiatr Epidemiol. 2002;37(3):105-111. doi:10.1007/s001270200001 |
dc.relation.references | 73. Coutelier JP, Detalle L, Musaji A, Meite M, Izui S. Two-Step Mechanism of Virusinduced Autoimmune Hemolytic Anemia. Ann N Y Acad Sci. 2007;1109(1):151-157.
doi:10.1196/annals.1398.018 |
dc.relation.references | 74. Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity,
and autoimmunity. Immunol Rev. 2013;255(1):197-209. doi:10.1111/imr.12091 |
dc.relation.references | 75. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM.
Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular
Mechanisms. Viruses. 2019;11(8):762. doi:10.3390/v11080762 |
dc.relation.references | 76. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune
disorders in the course of COVID-19: a systematic review of reported cases.
Hematology. 2021;26(1):225-239. doi:10.1080/16078454.2021.1881225 |
dc.relation.references | 77. Motta JC, Novoa DJ, Gómez CC, et al. Factores pronósticos en pacientes
hospitalizados con diagnóstico de infección por SARS-CoV-2 en Bogotá, Colombia.
Biomédica. 2020;40(Supl. 2):116-130. doi:10.7705/biomedica.5764 |
dc.relation.references | 78. Matsunaga N, Hayakawa K, Terada M, et al. Clinical Epidemiology of Hospitalized
Patients With Coronavirus Disease 2019 (COVID-19) in Japan: Report of the
COVID-19 Registry Japan. Clin Infect Dis. Published online September 28, 2020.
doi:10.1093/cid/ciaa1470 |
dc.relation.references | 79. Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe
autoimmune hemolytic Anemia in COVID-19 İnfection, safely treated with steroids.
Mediterr J Hematol Infect Dis. 2020;12(1):4-7. doi:10.4084/MJHID.2020.053 |
dc.relation.references | 80. Maslov D V., Simenson V, Jain S, Badari A. COVID-19 and Cold Agglutinin
Hemolytic Anemia. TH Open. 2020;04(03):e175-e177. doi:10.1055/s-0040-
1715791 |
dc.relation.references | 81. Patil NR, Herc ES, Girgis M. Cold agglutinin disease and autoimmune hemolytic
anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol
Oncol Stem Cell Ther. 2020;(January):19-21. doi:10.1016/j.hemonc.2020.06.005 |
dc.relation.references | 82. Hannon JL. Management of Blood Donors and Blood Donations From Individuals
Found to Have a Positive Direct Antiglobulin Test. Transfus Med Rev.
2012;26(2):142-152. doi:10.1016/j.tmrv.2011.08.004 |
dc.relation.references | 83. Froissart A, Rossi B, Ranque B, et al. Effect of a Red Blood Cell Transfusion on
Biological Markers Used to Determine the Cause of Anemia: A Prospective Study.
Am J Med. 2018;131(3):319-322. doi:10.1016/j.amjmed.2017.10.005 |
dc.relation.references | 84. Cid J, Ortín X, Beltran V, et al. The direct antiglobulin test in a hospital setting.
Immunohematology. 2020;19(1):16-18. doi:10.21307/immunohematology-2019-
468 |
dc.relation.references | 85. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A. The diagnosis and
management of primary autoimmune haemolytic anaemia. Br J Haematol.
2017;176(3):395-411. doi:10.1111/bjh.14478 |
dc.relation.references | 86. Lai M, Visconti E, D’Onofrio G, Tamburrini E, Cauda R, Leone G. Lower hemoglobin
levels in human immunodeficiency virus-infected patients with a positive direct
antiglobulin test (DAT): relationship with DAT strength and clinical stages.
Transfusion. 2006;46(7):1237-1243. doi:10.1111/j.1537-2995.2006.00876.x |
dc.relation.references | 87. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia
associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31.
doi:10.1111/bjh.16794 |
dc.relation.references | 88. Raghuwanshi B. Serological Blood Group Discrepancy and Cold Agglutinin
Autoimmune Hemolytic Anemia Associated With Novel Coronavirus. Cureus.
Published online November 15, 2020. doi:10.7759/cureus.11495 |
dc.relation.references | 89. Hassanein H, Hajdenberg J. High Thermal Amplitude Red Blood Cell Agglutinating
Cold Type Autoantibodies in a Case of Severe Acute Respiratory Syndrome
Coronavirus 2 Pneumonia and Multiorgan Failure. J Med Cases. 2021;12(1):16-17.
doi:10.14740/jmc3608 |
dc.relation.references | 90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune
Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus.
Published online June 30, 2021. doi:10.7759/cureus.16078 |
dc.relation.references | 90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune
Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus.
Published online June 30, 2021. doi:10.7759/cureus.16078 |
dc.relation.references | 92. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have
we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50.
doi:10.1186/s42358-020-00151-7 |
dc.relation.references | 93. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune
conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506.
doi:10.1016/j.jaut.2020.102506 |
dc.relation.references | 94. van den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity. Eur J
Gen Pract. 1996;2(2):65-70. doi:10.3109/13814789609162146 |
dc.relation.references | 95. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with
COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520-
531. doi:10.1016/j.cmi.2020.12.018 |
dc.relation.references | 96. Roy CN. Anemia of Inflammation. Hematology. 2010;2010(1):276-280.
doi:10.1182/asheducation-2010.1.276 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | COVID-19 |
dc.subject.proposal | SARS-CoV-2 |
dc.subject.proposal | Anemia |
dc.subject.proposal | Anemia hemolítica autoinmune |
dc.subject.proposal | Prueba antiglobulínica directa |
dc.subject.proposal | Autoimmune hemolytic anemia |
dc.subject.proposal | Direct antiglobulin test |
dc.title.translated | Prevalence of anemia and positive direct antiglobulin test (DAT) in hospitalized patients with COVID-19 |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Público general |