dc.rights.license | Reconocimiento 4.0 Internacional |
dc.contributor.advisor | Zapata Madrigal, German |
dc.contributor.author | Portilla Portillo, Estéfano Jesús |
dc.date.accessioned | 2022-02-11T16:35:11Z |
dc.date.available | 2022-02-11T16:35:11Z |
dc.date.issued | 2021 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80948 |
dc.description | ilustraciones, tablas |
dc.description.abstract | El presente trabajo presenta la formulación y evaluación de un modelo de operación automática de trenes basado en datos para sistemas ferroviarios con sistema de control basado en comunicaciones (CBTC por sus siglas en inglés) y sin sistemas de comunicación de alta frecuencia. El modelo propuesto se enmarca en la operación automática de trenes con perfiles de velocidad calculados fuera de línea e integra una corrección de salida de control basada en reglas heurísticas. Los perfiles de velocidad usados por el modelo propuesto se denominan perfiles de velocidad condicionados, estos se obtienen a partir de un modelo de procesamiento de información, el cual usa los datos históricos de viaje de conducción manual y el conocimiento de los conductores experimentados. El modelo de procesamiento de información integra aprendizaje profundo y aprendizaje reforzado para obtener perfiles de velocidad sujetos a las condiciones reales del sistema ferroviario, evitando la necesidad del modelado de las dinámicas complejas de la conducción de trenes. Para la obtención de la corrección heurística, se propone usar el conocimiento de los conductores experimentados, el cual es consolidado en una serie de reglas heurísticas que se integran al algoritmo del modelo de operación automática de trenes. El modelo de operación automática de trenes propuesto en este trabajo es desarrollado e implementado para un sistema ferroviario que no cuenta con un sistema de comunicación de alta frecuencia y que opera con conducción manual. El desempeño del modelo se evalúa usando indicadores de confort, seguridad, consumo energético y puntualidad. (Texto tomado de la fuente) |
dc.description.abstract | This study presents the drafting and assessment of a data based automatic train operation model for railways with communication-based train control (CBTC) and without high frequency communication systems. The model proposed is framed in automatic train operation with speed profiles calculated offline and it integrates a control output correction based on heuristic rules. The speed profiles used by the proposed model are called conditioned speed profiles. These are obtained from an information processing model which uses historical data from manual driving and knowledge from experienced drivers. The information processing model integrates deep and reinforcement learning to obtain speed profiles subject to real railway system conditions, avoiding the need for modeling the complex dynamics of train driving. To obtain heuristic correction, it is proposed the use of experienced drivers’ knowledge which is consolidated in a series of heuristic rules that are integrated into the algorithm of the proposed train operation model. The automatic train operation model proposed in this study is developed and implemented for a railway system that does not have a high-frequency communication system and that operates with manual driving. The model performance is evaluated using comfort, safety, energy consumption, and punctuality indicators. |
dc.format.extent | xvi, 86 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject.ddc | 620 - Ingeniería y operaciones afines |
dc.title | Modelo de operación automática de trenes basado en datos para sistemas ferroviarios sin sistemas de comunicación continua |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Minas - Maestría en Ingeniería - Automatización Industrial |
dc.contributor.researchgroup | Investigación en Teleinformática y Teleautomática (Grupo T&T) |
dc.coverage.city | Medellín, Colombia |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en ingeniería - Automatización Industrial |
dc.description.researcharea | Automatización integrada inteligente |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Automática |
dc.publisher.faculty | Facultad de Minas |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.references | J. Yin, T. Tang, L. Yang, J. Xun, Y. Huang, and Z. Gao, “Research and
development of automatic train operation for railway transportation systems: A
survey,” Transp. Res. Part C Emerg. Technol., vol. 85, pp. 548–572, 2017, doi:
10.1016/j.trc.2017.09.009. |
dc.relation.references | J. Yin, D. Chen, and Y. Li, “Smart train operation algorithms based on expert
knowledge and ensemble CART for the electric locomotive,” Knowledge-Based
Syst., vol. 92, pp. 78–91, 2016, doi: 10.1016/j.knosys.2015.10.016. |
dc.relation.references | C.-Y. Zhang, D. Chen, J. Yin, and L. Chen, “A flexible and robust train operation
model based on expert knowledge and online adjustment,” Int. J. Wavelets,
Multiresolution Inf. Process., vol. 15, no. 03, p. 1750023, 2017, doi:
10.1142/s0219691317500230. |
dc.relation.references | Y. Wang, M. Zhang, J. Ma, and X. Zhou, “Survey on Driverless Train Operation for
Urban Rail Transit Systems,” Urban Rail Transit, vol. 2, no. 3–4, pp. 106–113,
2016, doi: 10.1007/s40864-016-0047-8. |
dc.relation.references | C. Y. Zhang, D. Chen, J. Yin, and L. Chen, “Data-driven train operation models
based on data mining and driving experience for the diesel-electric locomotive,”
Adv. Eng. Informatics, vol. 30, no. 3, pp. 553–563, 2016, doi:
10.1016/j.aei.2016.07.004. |
dc.relation.references | Y. J.a, C. D.a, and L. L.b, “Intelligent train operation algorithms for subway by
expert system and reinforcement learning,” IEEE Trans. Intell. Transp. Syst., vol.
15, no. 6, pp. 2561–2571, 2014, doi: 10.1109/TITS.2014.2320757. |
dc.relation.references | S. Clark, “A historical overview of railway signalling & control (or `from
Bobbies to Balises’),” in IET 13th Professional Development Course on Electric
Traction Systems, 2014, pp. 4 (18 .)-4 (18 .), doi: 10.1049/cp.2014.1433. |
dc.relation.references | S. Morar, “Evolution of communication based train control worldwide,” IET Semin.
Dig., vol. 2012, no. 14926, pp. 218–226, 2012, doi: 10.1049/ic.2012.0054.
82 Título de la tesis o trabajo de investigación |
dc.relation.references | G. M. Scheepmaker, H. Y. Willeboordse, J. H. Hoogenraad, R. S. Luijt, and R. M.
P. Goverde, “Comparing train driving strategies on multiple key performance
indicators,” J. Rail Transp. Plan. Manag., vol. 13, no. November 2019, p. 100163,
2020, doi: 10.1016/j.jrtpm.2019.100163. |
dc.relation.references | Y. Wang, N. Bin, B. Ton van den, and D. S. Bart, Optimal Trajectory Planning and
Train Scheduling for Urban Rail Transit Systems. 2016. |
dc.relation.references | A. Naweed and G. Balakrishnan, “Understanding the visual skills and strategies of
train drivers in the urban rail environment,” Work, vol. 47, no. 3, pp. 339–352, 2014,
doi: 10.3233/WOR-131705. |
dc.relation.references | “IEC 62290-1 Railway applications: urban guided transport management and
command/control systems. Part 1: system principles and fundamental concepts.,”
Int. Electrotech. Comm., 2014. |
dc.relation.references | H. rong Dong, S. gen Gao, B. Ning, and L. Li, “Extended fuzzy logic controller for
high speed train,” Neural Comput. Appl., vol. 22, no. 2, pp. 321–328, 2013, doi:
10.1007/s00521-011-0681-8. |
dc.relation.references | D. Gong and G. Li, “Research on Multi-objective Optimized Target Speed Curve of
Subway Operation Based on ATO System,” vol. 6, no. 2, pp. 133–137, 2020, doi:
10.6919/ICJE.202002. |
dc.relation.references | H. Liang and Y. Zhang, “Research on Automatic Train Operation Performance
Optimization of High Speed Railway Based on Asynchronous Advantage ActorCritic,” pp. 1674–1680, 2021, doi: 10.1109/cac51589.2020.9327330. |
dc.relation.references | A. Albrecht, P. Howlett, P. Pudney, X. Vu, and P. Zhou, “The key principles of
optimal train control—Part 1: Formulation of the model, strategies of optimal type,
evolutionary lines, location of optimal switching points,” Transp. Res. Part B
Methodol., vol. 94, pp. 482–508, 2016, doi: 10.1016/j.trb.2015.07.023. |
dc.relation.references | P. J. P. P.G. Howlett, Advances in Industrial Control. 2006. |
dc.relation.references | E. Khmelnitsky, “On an optimal control problem of train operation,” IEEE Trans.
Automat. Contr., vol. 45, no. 7, pp. 1257–1266, 2000, doi: 10.1109/9.867018. |
dc.relation.references | R. Liu and I. M. Golovitcher, “Energy-efficient operation of rail vehicles,” Transp.
Res. Part A Policy Pract., vol. 37, no. 10, pp. 917–932, 2003, doi:
10.1016/j.tra.2003.07.001. |
dc.relation.references | E. Rodrigo, S. Tapia, J. M. Mera, and M. Soler, “Optimizing electric rail energy
consumption using the lagrange multiplier technique,” J. Transp. Eng., vol. 139, no. 3, pp. 321–329, 2013, doi: 10.1061/(ASCE)TE.1943-5436.0000483. |
dc.relation.references | H. Ko, T. Koseki, and M. Miyatake, “Application of dynamic programming to the
optimization of the running profile of a train,” Adv. Transp., vol. 15, no. June 2014,
pp. 103–112, 2004. |
dc.relation.references | M. Miyatake and K. Matsuda, “Energy saving speed and charge/discharge control
of a railway vehicle with on-board energy storage by means of an optimization
model,” IEEJ Trans. Electr. Electron. Eng., vol. 4, no. 6, pp. 771–778, 2009, doi:
10.1002/tee.20479. |
dc.relation.references | Y. V. Bocharnikov, A. M. Tobias, and C. Roberts, “Reduction of train and net
energy consumption using genetic algorithms for trajectory optimisation,” IET
Semin. Dig., vol. 2010, no. 13342, pp. 1–5, 2010, doi: 10.1049/ic.2010.0038. |
dc.relation.references | K. K. Wong and T. K. Ho, “Coast control for mass rapid transit railways with
searching methods,” IEE Proc. - Electr. Power Appl., vol. 151, no. 3, p. 365, 2004,
doi: 10.1049/ip-epa:20040346. |
dc.relation.references | P. Howlett, “The Optimal Control of a Train,” Ann. Oper. Res., vol. 98, no. 1–4, pp.
65–87, 2000, doi: 10.1023/a:1019235819716. |
dc.relation.references | S. Liu, F. Cao, J. Xun, and Y. Wang, “Energy-Efficient Operation of Single Train
Based on the Control Strategy of ATO,” IEEE Conf. Intell. Transp. Syst.
Proceedings, ITSC, vol. 2015-Octob, pp. 2580–2586, 2015, doi:
10.1109/ITSC.2015.415. |
dc.relation.references | B. R. Ke, M. C. Chen, and C. L. Lin, “Block-layout design using maxmin ant system
for saving energy on mass rapid transit systems,” IEEE Trans. Intell. Transp. Syst.,
vol. 10, no. 2, pp. 226–235, 2009, doi: 10.1109/TITS.2009.2018324. |
dc.relation.references | G. Amaral et al., New Advances in Virtual Humans, vol. 140, no. 1. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008. |
dc.relation.references | K. Kim and S. I. J. Chien, “Optimal train operation for minimum energy
consumption considering track alignment, speed limit, and schedule adherence,” J.
Transp. Eng., vol. 137, no. 9, pp. 665–674, 2011, doi: 10.1061/(ASCE)TE.1943-
5436.0000246. |
dc.relation.references | S. Su, X. Li, T. Tang, and Z. Gao, “A subway train timetable optimization approach
based on energy-efficient operation strategy,” IEEE Trans. Intell. Transp. Syst., vol.
14, no. 2, pp. 883–893, 2013, doi: 10.1109/TITS.2013.2244885. |
dc.relation.references | V. Calderaro, V. Galdi, G. Graber, A. Piccolo, and D. Cogliano, “An algorithm to
optimize speed profiles of the metro vehicles for minimizing energy consumption,”
2014 Int. Symp. Power Electron. Electr. Drives, Autom. Motion, SPEEDAM 2014,
pp. 813–819, 2014, doi: 10.1109/SPEEDAM.2014.6872030. |
dc.relation.references | C. Sicre, A. P. Cucala, A. Fernández, and P. Lukaszewicz, “Modeling and
optimizing energy-efficient manual driving on high-speed lines,” IEEJ Trans. Electr.
Electron. Eng., vol. 7, no. 6, pp. 633–640, 2012, doi: 10.1002/tee.21782. |
dc.relation.references | W. Carvajal-Carreño, A. P. Cucala, and A. Fernández-Cardador, “Optimal design
of energy-efficient ATO CBTC driving for metro lines based on NSGA-II with fuzzy
parameters,” Eng. Appl. Artif. Intell., vol. 36, pp. 164–177, 2014, doi:
10.1016/j.engappai.2014.07.019. |
dc.relation.references | H. Liu, C. Qian, Z. Ren, and G. Wang, “Research on running curve optimization of
automatic train operation system based on genetic algorithm,” Int. Conf. Electr. Inf.
Technol. rail Transp., vol. 482, no. 4800, 2018, doi: 10.1007/978-981-10-7986-3. |
dc.relation.references | Q. Pu, X. Zhu, R. Zhang, J. Liu, D. Cai, and G. Fu, “Speed Profile Tracking by an
Adaptive Controller for Subway Train Based on Neural Network and PID
Algorithm,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 10656–10667, 2020,
doi: 10.1109/TVT.2020.3019699. |
dc.relation.references | X. Chen, Y. Zhang, and H. Huang, “Train speed control algorithm based on PID
controller and single-neuron PID controller,” Proc. - 2010 2nd WRI Glob. Congr.
Intell. Syst. GCIS 2010, vol. 1, pp. 107–110, 2010, doi: 10.1109/GCIS.2010.41. |
dc.relation.references | B. R. Ke, C. L. Lin, and C. W. Lai, “Optimization of train-speed trajectory and
control for mass rapid transit systems,” Control Eng. Pract., vol. 19, no. 7, pp. 675–
687, 2011, doi: 10.1016/j.conengprac.2011.03.003. |
dc.relation.references | S. Gao, J. Wei, H. Song, Z. Zhang, H. Dong, and X. Hu, “Fuzzy adaptive automatic
train operation control with protection constraints: A residual nonlinearity
approximation-based approach,” Eng. Appl. Artif. Intell., vol. 96, no. August, p.
103986, 2020, doi: 10.1016/j.engappai.2020.103986. |
dc.relation.references | R. Zhou, S. Song, A. Xue, K. You, and H. Wu, “Smart train operation algorithms
based on expert knowledge and reinforcement learning,” arXiv, pp. 1–12, 2020,
doi: 10.1109/tsmc.2020.3000073. |
dc.relation.references | Y. Zhou and Z. Zhang, “High-speed train control based on multiple-model adaptive
control with second-level adaptation,” Veh. Syst. Dyn., vol. 52, no. 5, pp. 637–652,
2014, doi: 10.1080/00423114.2014.887209. |
dc.relation.references | Z. Mao, G. Tao, B. Jiang, and X. G. Yan, “Adaptive Compensation of Traction
System Actuator Failures for High-Speed Trains,” IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 11, pp. 2950–2963, 2017, doi: 10.1109/TITS.2017.2666428. |
dc.relation.references | R. Cheng, D. Chen, B. Cheng, and S. Zheng, “Intelligent driving methods based on
expert knowledge and online optimization for high-speed trains,” Expert Syst. Appl.,
vol. 87, pp. 228–239, 2017, doi: 10.1016/j.eswa.2017.06.006. |
dc.relation.references | W. Zhong, S. Li, H. Xu, and W. Zhang, “On-Line Train Speed Profile Generation of
High-Speed Railway With Energy-Saving: A Model Predictive Control Method,”
IEEE Trans. Intell. Transp. Syst., pp. 1–12, 2020, doi:
10.1109/TITS.2020.3040730. |
dc.relation.references | A. Siahvashi and B. Moaveni, “Automatic Train Control Based On The Multi-agent
Control Of Cooperative Systems,” J. Math. Comput. Sci., vol. 01, no. 04, pp. 247–
257, 2010, doi: 10.22436/jmcs.001.04.02. |
dc.relation.references | D. A. El-Kebbe and M. Götz, “Distributed real-time control of railway crossings
using multi-agent technology,” Proc. - Int. Conf. Comput. Intell. Model. Control
Autom. CIMCA 2005 Int. Conf. Intell. Agents, Web Technol. Internet, vol. 1, pp.
768–772, 2005, doi: 10.1109/cimca.2005.1631357. |
dc.relation.references | M. Etxeberria-Garcia, M. Labayen, M. Zamalloa, and N. Arana-Arexolaleiba,
“Application of Computer Vision and Deep Learning in the railway domain for
autonomous train stop operation,” Proc. 2020 IEEE/SICE Int. Symp. Syst. Integr.
SII 2020, pp. 943–948, 2020, doi: 10.1109/SII46433.2020.9026246. |
dc.relation.references | D. Chen, R. Chen, Y. Li, and T. Tang, “Online learning algorithms for train
automatic stop control using precise location data of balises,” IEEE Trans. Intell.
Transp. Syst., vol. 14, no. 3, pp. 1526–1535, 2013, doi:
10.1109/TITS.2013.2265171. |
dc.relation.references | H. Dong, B. Ning, B. Cai, and Z. Hou, “Automatic train control system development
and simulation for high-speed railways,” IEEE Circuits Syst. Mag., vol. 10, no. 2,
pp. 6–18, 2010, doi: 10.1109/MCAS.2010.936782. |
dc.relation.references | M. Faieghi, A. Jalali, and S. K. E. D. M. Mashhadi, “Robust adaptive cruise control
of high speed trains,” ISA Trans., vol. 53, no. 2, pp. 533–541, 2014, doi:
10.1016/j.isatra.2013.12.007. |
dc.relation.references | X. Zhu, Q. Pu, Q. Zhang, and R. Zhang, “Automatic train operation speed profile
optimization and tracking with multi-objective in urban railway,” Period. Polytech.
Transp. Eng., vol. 48, no. 1, pp. 57–64, 2019, doi: 10.3311/PPtr.12039. |
dc.relation.references | N. Bin, Advanced Train Control Systems. 2010. |
dc.relation.references | M. Johnson, Communications Based Train Control – Rail Engineer. 2014. |
dc.relation.references | L. Zhu, D. Yao, and H. Zhao, “Reliability Analysis of Next-Generation CBTC Data
Communication Systems,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2024–
2034, 2019, doi: 10.1109/TVT.2018.2870053. |
dc.relation.references | Empresa de Transporte Masivo del Valle de Aburrá Limitada, “Metro de Medellin,”
2021. [Online]. Available: www.metrodemedellin.gov.co. [Accessed: 07-Apr-2021]. |
dc.relation.references | J. Yin, S. Su, J. Xun, T. Tang, and R. Liu, “Data-driven approaches for modeling
train control models: Comparison and case studies,” ISA Trans., vol. 98, no. xxxx,
pp. 349–363, 2020, doi: 10.1016/j.isatra.2019.08.024. |
dc.relation.references | D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd Int.
Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–15, 2015. |
dc.relation.references | T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor,” 35th Int.
Conf. Mach. Learn. ICML 2018, vol. 5, pp. 2976–2989, 2018. |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | Railway transport |
dc.subject.lemb | Transporte ferroviario |
dc.subject.proposal | ATO |
dc.subject.proposal | Operación automática de trenes |
dc.subject.proposal | Automatic train operation |
dc.subject.proposal | Data based train operation |
dc.subject.proposal | Data driven control |
dc.subject.proposal | Control with machine learning |
dc.subject.proposal | Control con aprendizaje de máquina |
dc.subject.proposal | Operación de trenes basada en datos |
dc.subject.proposal | Control basado en datos |
dc.title.translated | Data based train automatic operation model for railway systems without continuos communication systems |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dc.description.curriculararea | Área Curricular de Ingeniería Eléctrica e Ingeniería de Control |