dc.rights.license | Reconocimiento 4.0 Internacional |
dc.contributor.advisor | Saavedra Trujillo, Carlos Humberto |
dc.contributor.author | Peña Mejia, Yerson Gerardo |
dc.date.accessioned | 2022-02-14T21:33:44Z |
dc.date.available | 2022-02-14T21:33:44Z |
dc.date.issued | 2022-02-10 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/80981 |
dc.description | ilustraciones, gráficas, tablas |
dc.description.abstract | Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021.
Objetivos Investigar la prevalencia de coinfección y/o infección secundaria en pacientes hospitalizados con coronavirus 2 (SARS-CoV-2) y síndrome respiratorio agudo severo confirmado.
Métodos Se realizó un estudio observacional retrospectivo de pacientes hospitalizados con SARS-CoV-2 confirmado por PCR y antígeno (marzo-2020 a marzo 2021). En el Hospital Universitario Nacional de Colombia (HUN) se recibieron en total 3793 casos presuntivos IRA Grave por COVID-19(SARS CoV-2) de los cuales 1206 (32%) se confirmaron positivos, 1189 (31%) fueron negativos y 1398 (36%) no tenían datos completos por lo que fueron excluidos; de los anteriores cumplieron criterios de inclusión 952 pacientes se hizo un muestreo probabilístico por conveniencia con una muestra representativa de 161 pacientes, se analizaron los datos demográficos, microbiológicos y los resultados clínicos de los pacientes.
Resultado Se incluyeron 952 pacientes hospitalizados con diagnostico confirmado de COVID-19 en hospitalización general y/o UCI durante el periodo de marzo 2020 a marzo 2021, se documentaron 389 casos de infección bacteriana secundaria (IBS) confirmadas, en la UCI 318 (40.77%) mientras que en Hospitalización General 71(41.52%); de los aislamientos que se interpretaron como procesos infecciosos encontramos en primer lugar enterobacterias con más frecuencia K.pneumoniae (n:193), E.coli (n:105), entre otras; en segundo lugar los bacilos gramnegativos no fermentadores P.aeruginosa (n:80); en tercer lugar S. aureus (n: 58). El 42.2% de los aislamientos eran multiresistentes con prevalencia betalactamasas tipo AMPc (13%).La mortalidad general fue del 26.7%.
Conclusiones Encontramos alta prevalencia de IBS 40.8% en los pacientes con COVID-19 y se presentó de manera igual en pacientes críticamente enfermos hospitalización en UCI que en los no críticamente enfermos en hospitalización general con COVID-19; se documentaron 43.75 % de neumonías asociadas a la ventilación mecánica (NAV), así como también se evidenciaron 29.17% de bacteriemias asociadas a dispositivo, un dato que supone una estrecha relación de dispositivos invasivos con la presentación eventos infecciosos y mortalidad, sin embargo el diagnóstico de IBS no tuvo influencia en la supervivencia de los pacientes.
Palabras llave: Coinfección bacteriana, infección bacteriana secundaria; Coronavirus, SARS-CoV-2. (Texto tomado de la fuente) |
dc.description.abstract | Infections associated with COVID-19 in hospitalized patients. 2021.
Objectives: To investigate the prevalence of coinfection and/or secondary infection in patients hospitalized with confirmed coronavirus 2 (SARS-CoV-2) and severe acute respiratory syndrome.
Methods: A retrospective observational study of hospitalized patients with SARS-CoV-2 confirmed by PCR and antigen was conducted (March-2020 to March 2021). In the National University Hospital of Colombia (HUN) a total of 3,793 presumptive cases of Severe ARI due to COVID-19 (SARS CoV-2) were received, of which 1,206 (32%) were confirmed positive, 1,189 (31%) were negative, and 1,398 (36%) did not have complete data so they were excluded; Of the above, 952 patients met the inclusion criteria. A probabilistic convenience sampling was carried out with a representative sample of 161 patients. The demographic, microbiological and clinical results of the patients were analyzed.
Results: 952 hospitalized patients with a confirmed diagnosis of COVID-19 in general hospitalization and/or ICU were included during the period from March 2020 to March 2021, 389 cases of confirmed secondary bacterial infection (SBI) were documented, in the ICU 318 (40.77% ) while in General Hospitalization 71 (41.52%); Of the isolates that were interpreted as infectious processes, we first found Enterobacteriaceae, most frequently K.pneumoniae (n:193), E.coli (n:105), among others; in second place the non-fermenting gram-negative bacilli P.aeruginosa (n:80); in third place S. aureus (n: 58). 42.2% of the isolates were multiresistant with a prevalence of cAMP-type beta-lactamases (13%). Overall mortality was 26.7%.
Conclusions: We found high prevalence of IBS 40.8% in patients with COVID-19 and it was presented in the same way in critically ill patients hospitalized in the ICU as in non-critically ill patients in general hospitalization with COVID-19; 43.75% of pneumonia associated with mechanical ventilation (NAV) were documented, as well as 29.17% of device-associated bacteremia, a fact that implies a close relationship of invasive devices with the presentation of infectious events and mortality, however the diagnosis of IBS had no influence on patient survival.
Keywords: Bacterial coinfection, bacterial secondary infection; Coronavirus, SARS-CoV-2. |
dc.format.extent | xviii, 49 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights | Derechos reservados al autor, 2022 |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades |
dc.title | Infecciones asociadas a la COVID-19 en pacientes hospitalizados. 2021 |
dc.type | Trabajo de grado - Especialidad Médica |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Medicina - Especialidad en Medicina Interna |
dc.contributor.datacurator | Enciso Olivera Leonardo Jose |
dc.contributor.projectmember | García Moncayo Andrea Lorena |
dc.contributor.researcher | Peña Mejia Zaira Alejandra |
dc.description.degreelevel | Especialidades Médicas |
dc.description.degreename | Especialista en Medicina Interna |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Medicina Interna |
dc.publisher.faculty | Facultad de Medicina |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | 1. Rodriguez-Morales A, Bonilla-Aldana D, Tiwari R, Sah R, Rabaan A, Dhama K. COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments – An Overview. Journal of Pure and Applied Microbiology [Internet]. 2020;14(1):05-12. Available from: https://doi.org/10.22207/JPAM.14.1.02 |
dc.relation.references | 2. Zhou, P., Yang, XL., Wang, XG. et al. Un brote de neumonía asociado con un nuevo coronavirus de probable origen en murciélagos. Nature 579, 270–273 (2020). https://doi.org/10.1038/s41586-020-2012-7 |
dc.relation.references | 3. Rojas DJPM, Loría DMQ, Sánchez DMG, Chinchilla DAS. SARS CoV-2, manifestaciones clínicas y consideraciones en el abordaje diagnóstico de COVID- 19. Rev Auspiciada Por El Hosp Dr Rafael Ángel Calderón Guard. 2020;86(629). Disponible en: http://revistamedicacr.com/index.php/rmcr/article/view/287 |
dc.relation.references | 4. Kim D, Quinn J, Pinsky B, Shah NH, Brown I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA. 2020;323(20):2085-6.doi: 10.1001 / jama.2020.6266 |
dc.relation.references | 5. Xing Q, Li G, Xing Y, Chen T, Li W, Ni W, et al. Precautions are Needed for COVID-19 Patients with Coinfection of Common Respiratory Pathogens. medRXiv. 2020, http://dx.doi.org/10.1101/2020.02.29.20027698 |
dc.relation.references | 6. Rubin R. What Happens When COVID-19 Collides With Flu Season? JAMA. 2020;324(10):923-925. doi: 10.1001 / jama.2020.15260 |
dc.relation.references | 7. Aguilera-Calzadilla Y, Diaz-Morales Y, Ortiz-Díaz L, Gonzalez--Martínez O, Lovelle-Enríquez O, Sánchez-Álvarez M. Infecciones bacterianas asociadas a la COVID-19 en pacientes de una unidad de cuidados intensivos. Revista Cubana de Medicina Militar. 2020; 49 (3). Disponible en: http://www.revmedmilitar.sld.cu/index.php/mil/article/view/793 |
dc.relation.references | 8. Rodríguez-Morales, Álvarez Moreno, Saavedra Trujillo. Consenso Colombiano SARS-CoV-2/COVID-19. Asociación Colombiana de Infectología (ACIN) 2021, Tercera edición. Pag:17-18 |
dc.relation.references | 9. Morens DM, Taubenberger JK, Fauci AS. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 2008; 198: 962–70. |
dc.relation.references | 10. MacIntyre CR, Chughtai AA, Barnes M, et al. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis 2018; 18: 637 |
dc.relation.references | 11. Martín-Loeches I, Sanchez-Corral A, Diaz E, Granada RM, Zaragoza R, Villavicencio C, et al. Community-acquired respiratory coinfection in critically ill patients with pandemic 2009 influenza A(H1N1) virus. Chest 2011;139:555e62. |
dc.relation.references | 12. Rice TW, Rubinson L, Uyeki TM, Vaughn FL, John BB, Miller RR, et al. Critical illness from 2009 pandemic influenza A virus and bacterial coinfection in the United States. Crit Care Med 2012;40:1487e98 |
dc.relation.references | 13. Shah NS, Greenberg JA, McNulty MC, Gregg KS, Riddell J, Mangino JE, et al.Bacterial and viral co-infections complicating severe influenza: incidence and impact among 507 US patients, 2013e14. J Clin Virol 2016;80:12e9. |
dc.relation.references | 14. Johns Hopkins, University of Medicine. COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. 2021 [citado 7 de febrero de 2021]. Disponible en: https://coronavirus.jhu.edu/map.html |
dc.relation.references | 15. Instituto Nacional de Salud Colombia. Noticias coronavirus-casos [Internet]. COVID-19 en Colombia. 2021 [citado 7 de enero de 2021]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/coronavirus-casos.aspx |
dc.relation.references | 16. Rivero V, Alberto J, Ledezma R, Carlos J, Pacheco H, Iván, et al. La salud de las personas adultas mayores durante la pandemia de COVID-19. J Negat No Posit Results. 2020;726-39. https://dx.doi.org/10.19230/jonnpr.3772. |
dc.relation.references | 17. King A, Lefkowitz E, Adams M, Carstens E. Virus Taxonomy; 9th Report of the International Committee on Taxonomy of Viruses. 1st ed. San Diego, EEUU: Elsevier; 2012. |
dc.relation.references | 18. Fehr A, Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In: Maier H, Bickerton E. Coronaviruses: Methods and Protocols. New York, NY: Springer New York; 2015. |
dc.relation.references | 19. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology. 2020;17(6):613-620. |
dc.relation.references | 20. Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cellular & Molecular Immunology. 2020;17(6):621-630. Available from: https://doi.org/10.1038/s41423-020-0458-z. |
dc.relation.references | 21. Wrapp D, Wang N, Corbett K, Goldsmith J, Hsieh C, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-1263.Available from:https://doi.org/10.1126/science.abb2507. |
dc.relation.references | 22. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging Microbes & Infections. 2020;9(1):382-385. |
dc.relation.references | 23. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. Available from: https://doi.org/10.1038/s41586-020-2180-5. |
dc.relation.references | 24. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565-574. |
dc.relation.references | 25. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221-224. Available from: https://doi.org/10.1038/s41586-020-2179-y. |
dc.relation.references | 26. B.J. Langford et al. Bacterial co-infection and secondary infection in patients with COVID19: a living rapid review and meta-analysis. Clinical Microbiology and Infection (2020). doi.org/10.1016/j.cmi.2020.07.016 |
dc.relation.references | 27. Wu CP et al. Recognition and management of respiratory co-infection and secondary bacterial pneumonia in patients with COVID-19. Cleveland Clinic Journal of Medicine. 2020, 87 (11) 659-663; DOI: https://doi.org/10.3949/ccjm.87a.ccc015 |
dc.relation.references | 28. Song W, Jia X, Zhang X, Ling Y, Yi Z. Co-infection in COVID-19, a cohort study. J Infect. 2021;82(3):414-51. https://doi.org/10.1016/j.jinf.2020.10.006 |
dc.relation.references | 29. Griffiths, EC, Pedersen, AB, Fenton, A. y Petchey, OL (2011). Naturaleza y consecuencias de la coinfección en humanos. The Journal of Infection , 63 (3), 200-206. https://doi.org/10.1016/j.jinf.2011.06.005 |
dc.relation.references | 30. Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi H ali abraham, Jeda AS, et al. Bacterial co‐infections with SARS‐CoV‐2. Iubmb Life. 2020;10.1002/iub.2356. https://doi.org/10.1002/iub.2356 |
dc.relation.references | 31. Fattorini, L., Creti, R., Palma, C., Pantosti, A., Unit of Antibiotic Resistance and Special Pathogens, & Unit of Antibiotic Resistance and Special Pathogens of the Department of Infectious Diseases, Istituto Superiore di Sanità, Rome (2020). Bacterial coinfections in COVID-19: an underestimated adversary. Annali dell'Istituto superiore di sanita, 56(3), 359–364. https://doi.org/10.4415/ANN_20_03_14 |
dc.relation.references | 32. Zhu, X., Ge, Y., Wu, T., Zhao, K., Chen, Y., Wu, B., Zhu, F., Zhu, B., & Cui, L. (2020). Co-infection with respiratory pathogens among COVID-2019 cases. Virus research, 285, 198005. https://doi.org/10.1016/j.virusres.2020.198005. |
dc.relation.references | 33. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395(10229):1054-62. https://doi.org/10.1016/S0140-6736(20)30566-3 |
dc.relation.references | 34. Lansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. The Journal of infection, 81(2), 266–275. https://doi.org/10.1016/j.jinf.2020.05.046. |
dc.relation.references | 35. De Francesco MA, Poiesi C, Gargiulo F, Bonfanti C, Pollara P, Fiorentini S, et al. Co-infection of chlamydia pneumoniae and mycoplasma pneumoniae with SARS-CoV-2 is associated with more severe features. J Infect. abril de 2021;82(4):e4-7. https://doi.org/10.1016/j.jinf.2021.01.009. |
dc.relation.references | 36. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020;201(11):1380-8.. https://doi .org/10.1164/rccm.202002-0445OC. |
dc.relation.references | 37. Contou D, Claudinon A, Pajot O, Micaëlo M, Longuet Flandre P, Dubert M, et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann Intensive Care.2020;10:119. PMC7475952. |
dc.relation.references | 38. Garcia-Vidal C et al., Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study, Clinical Microbiology and Infection, https://doi.org/10.1016/j.cmi.2020.07.041. |
dc.relation.references | 39. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med. 2021 DOI: 10.1056/NEJMoa2116044. |
dc.relation.references | 40. Mahase E. Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ (Clinical research ed.). 2021; 375, n2713. https://doi.org/10.1136/bmj.n2713 |
dc.relation.references | 41. Gonzalez-Zorn, B. Antibiotic use in the COVID-19 crisis in Spain. Clinical Microbiology and Infection. 2021; 27(4), 646-647. https://doi.org/10.1016/j.cmi.2020.09.055. |
dc.relation.references | 42. Abelenda-Alonso G, Padullés A, Rombauts A, Gudiol C, Pujol M, Alvarez-Pouso C, et al. Antibiotic prescription during the COVID-19 pandemic: A biphasic pattern. Infect Control Hosp Epidemiol. :1-2. doi: 10.1017 / ice.2020.381). |
dc.relation.references | 43. Zavala-Flores E, Salcedo-Matienzo J. Medicación prehospitalaria en pacientes con COVID-19 de un hospital público de Lima-Perú. Acta Med Perurana. 2020; 37(3), 393 - 395. https://doi.org/10.35663/amp.2020.373.1277. |
dc.relation.references | 44. Peckham H, de Gruijter N, Raine C, Radziszewska A, Ciurtin C, Wedderburn L et al. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nature Communications. 2020;11(1).doi.org/10.1038/s41467-020-19741-6. |
dc.relation.references | 45. Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Bordell A, et al. Características, evolución clínica y factores asociados a la mortalidad en UCI de los pacientes críticos infectados por SARS-CoV-2 en España: estudio prospectivo, de cohorte y multicéntrico. Rev Esp Anestesiol Reanim. 2020;67(8):425-37. DOI: org/10.1016/j.redar.2020.07.003 |
dc.relation.references | 46. Armstrong, R. A., Kane, A. D., & Cook, T. M. (2021). Decreasing mortality rates in ICU during the COVID-19 pandemic. Anaesthesia, 76 Suppl 3, 10. https://doi.org/10.1111/anae.15230. |
dc.relation.references | 47. Armstrong, R. A., Kane, A. D., & Cook, T. M. (2020). Outcomes from intensive care in patients with COVID-19: a systematic review and meta-analysis of observational studies. Anaesthesia, 75(10), 1340–1349. https://doi.org/10.1111/anae.15201. |
dc.relation.references | 48. Mortality rates of patients with COVID-19 in the intensive care unit: a systematic review of the emerging literature. Pipetius Quah1 , Andrew Li1 and Jason Phua1,2 https://doi.org/10.1186/s13054-020-03006-1. |
dc.relation.references | 49. Algarín-Lara, E. Guevara-Romero, E. Osorio-Rodríguez et al., Factores relacionados con la neumonía bacteriana en pacientes con COVID-19 en una unidad de cuidados intensivos de Barranquilla, Colombia, Acta Colombiana de Cuidado Intensivo, https://doi.org/10.1016/j.acci.2021.07.002. |
dc.relation.references | 50. Saavedra C, López V, Linares P, Romero P, Solórzano C, Mora J, et al. Prevalencia de factores de riesgo para infección por Klebsiella pneumoniae resistente a carbapenémicos en adultos en un Hospital de cuarto nivel, Bogotá D.C. REC. 2018; 24: 13-9. |
dc.relation.references | 51. Giovanetti Y, Morales-Parra GI, Armenta-Quintero C. Perfil de resistencia bacteriana en hospitales y clínicas en el departamento del Cesar (Colombia). Medicina& Laboratorio 2017; 23:387-398-http://docs.bvsalud.org/biblioref/2018/05/883698/resistencia-bacteriana.pdf |
dc.relation.references | 52. Gómez-González JF, Sánchez-Duque JA. Perfil microbiológico y resistencia bacteriana en una unidad de cuidados intensivos de Pereira, Colombia, 2015. MÉD. UIS. 2018;31(2):9-15. Páginas. DOI: 10.18273/revmed.v31n2-2018001. |
dc.relation.references | 53. Furukawa D, Graber CJ. Antimicrobial Stewardship in a Pandemic: Picking Up the Pieces. Clin Infect Dis. 2021 May 18;72(10):e542-e544. doi: 10.1093/cid/ciaa1273. PMID: 32857832; PMCID: PMC7665318. |
dc.relation.references | 54. Huttner BD, Catho G, Pano-Pardo JR, Pulcini C, Schouten J. COVID-19: don't neglect antimicrobial stewardship principles! Clin Microbiol Infect. 2020 Jul;26(7):808-810. doi: 10.1016/j.cmi.2020.04.024. Epub 2020 Apr 30. PMID: 32360446; PMCID: PMC7190532. |
dc.relation.references | 55. Yam ELY. COVID-19 will further exacerbate global antimicrobial resistance. J Travel Med. 2020 Sep 26;27(6):taaa098. doi: 10.1093/jtm/taaa098. PMID: 32539142; PMCID: PMC7313869. |
dc.relation.references | 56. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2013;368(23):2159-68.DOI: org/10.1056/nejmoa1214103. |
dc.relation.references | 57. Gattinoni L, Carlesso E, Taccone P, Polli F, Guérin C, Mancebo J. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010;76(6):448-54. PMID: 20473258. |
dc.relation.references | 58. Maes M, Higginson E, Pereira-Dias J, Curran MD, Parmar S, Khokhar F, et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit Care. 2021;25(1):25. DOI: org/10.1186/s13054-021-03460-5. |
dc.relation.references | 59. Luyt C-E, Bouadma L, Morris AC, Dhanani JA, Kollef M, Lipman J, et al. Pulmonary infections complicating ARDS. Intensive Care Med. 2020;1-16. DOI:10.1016/j.immuni.2017.06.021. |
dc.relation.references | 60. Roquilly A, McWilliam HEG, Jacqueline C, et al. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity. 2017;47(1):135-147.e5. doi:10.1016/j.immuni.2017.06.021. |
dc.relation.references | 61. Ayzac L, Girard R, Baboi L, Beuret P, Rabilloud M, Richard JC, et al. Ventilator-associated pneumonia in ARDS patients: the impact of prone positioning. A secondary analysis of the PROSEVA trial. Intensive Care Med. 2016;42(5):871-8. DOI:org/10.1007/s00134-015-4167-5. |
dc.relation.references | 62. Arulkumaran N, Routledge M, Schlebusch S, Lipman J, Conway Morris A. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med. 2020;46(2):225-35. DOI: org/10.1007/s00134-020-05929-3. |
dc.relation.references | 63. Alvarez Castaño VH, Guavita Cuta L, Ayala DA, Torres AL. VIGILANCIA DEMOGRÁFICA DE LA MORTALIDAD POR COVID-19 EN COLOMBIA 2020 [Internet]. Bogotá, D.C, Colombia: Ministerio de Salud; 2021 [citado 1 de enero de 2022] p. 1-31. (Infografía COVID-19). Reporte No.53. Disponible en: www.minsalud.gov.co%2Fsites%2Frid%2FLists%2FBibliotecaDigital%2FRIDE%2FVS%2FED%2FVSP%2Fvigilancia-demografica-mortalidad-covid-19-colombia2020.pdf&clen=7347860 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.decs | Virus del SRAS |
dc.subject.decs | SARS Virus |
dc.subject.decs | Coronavirus Infections |
dc.subject.decs | COVID-19 |
dc.subject.decs | Infecciones por coronavirus |
dc.subject.proposal | Coinfección bacteriana |
dc.subject.proposal | Bacterial coinfection |
dc.subject.proposal | infección bacteriana secundaria |
dc.subject.proposal | bacterial secondary infection |
dc.subject.proposal | Coronavirus |
dc.subject.proposal | SARS-CoV-2 |
dc.title.translated | Infections associated with COVID-19 in hospitalized patients. 2021 |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Público general |