Detección de antracnosis foliar en plantas de mango por medio de análisis de imágenes hiperespectrales
dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Prieto Ortiz, Flavio Augusto |
dc.contributor.author | Penagos Espinel, Oscar Fernando |
dc.date.accessioned | 2022-03-08T16:44:42Z |
dc.date.available | 2022-03-08T16:44:42Z |
dc.date.issued | 2021 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81152 |
dc.description | ilustraciones, graficas |
dc.description.abstract | La antracnosis es una enfermedad que afecta una gran cantidad de plantas, es producida principalmente por el hongo Colletotrichum, dada su fácil propagación por el aire, su abundante presencia en climas cálidos o en temporadas de alta temperatura como países con estaciones de verano y primavera, y su control mediante agentes químicos, genera la muerte de numerosas plantas y con ello grandes pérdidas económicas afectando principalmente a agricultores. El objetivo de este proyecto es evaluar el uso de imágenes hiperespectrales como apoyo a la detección de antrancnosis, para ello se hace uso de métodos de clasificación tradicionales como LDA y KNN y enfocados en datos espectrales como SAM, además del reductor de dimensionalidad PCA con el fin de encontrar la mínima cantidad de bandas espectrales necesarias para detectar la presencia del patógeno. (Texto tomado de la fuente) |
dc.description.abstract | Anthracnose is a disease that a affects a large number of plants, it is mainly produced by the fungus Colletotrichum, given its easy propagation through the air, its abundant presence in hot climates or in seasons of high temperature such as summer and spring seasons, and its control by chemical agents, generates the death of numerous plants and with it great economic losses affecting mainly farmers. The objective of this project is to evaluate the use of hyperspectral images to support the detection of anthracnose, using traditional classification methods such as LDA and KNN and focused on spectral data such as SAM, in addition to the dimensionality reducer PCA in order to find the minimum number of spectral bands necessary to detect the presence of the pathogen. |
dc.format.extent | vi, 39 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 530 - Física::537 - Electricidad y electrónica |
dc.title | Detección de antracnosis foliar en plantas de mango por medio de análisis de imágenes hiperespectrales |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica |
dc.contributor.researcher | Velasquez Hernandez Carlos Alberto |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magíster en Ingeniería - Ingeniería Electrónica |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty | Facultad de Ingeniería |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Aires, Priscila ; Fernandes Gambarra Neto, Francisco ; Coutinho, Wirton ; Araújo, Alderi ; Silva, Gilvan ; Gouveia, Josivanda ; Medeiros, Everaldo: Near infrared hyperspectral images and pattern recognition techniques used to identify etiological agents of cotton anthracnose and ramulosis. En: Journal of Spectral Imaging 7 (Abril, 2018) |
dc.relation.references | Alias, M. S. ; Ismail Adnan, A. M. ; Jugah, K. ; Ishaq, I. ; Fizree, Z. A.: Detection of Basal Stem Rot (BSR) disease at oil palm plantation using hyperspectral imaging. En: 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2013, pp. 1-4 |
dc.relation.references | Bertels, Luc ; Deronde, Bart ; Kempeneers, Pieter ; Debruyn, Walter ; Provoost, Sam: Optimized Spectral Angle Mapper classi fication of spatially heterogeneous dynamic dune vegetation, a case study along the Belgian coastline. En: 9th International Symposium on Physical Measurements and Signatures in Remote Sensing (ISPMSRS). Beijing, China (Noviembre,2002) |
dc.relation.references | Cente, IBM K. Análisis discriminante: Método de inclusión por pasos. https://www.ibm.com/support/knowledgecenter/es/SSLVMB_subs/statistics_mainhelp_ddita/spss/base/idh_disc_met.html, (15-05-2020). 2019 |
dc.relation.references | Feng, Q.; Chen, J. ; Li, X. ; Li, C. ; Wang, X.: Multi-spectral Image Fusion Method for Identifying Similar-colored Tomato Organs. En: 2019 IEEE International Conference on Unmanned Systems and Arti cial Intelligence (ICUSAI), 2019, p. 142-145 |
dc.relation.references | de la Fuente Fernández, Santiago. Análisis discriminante. http:// www.estadistica.net/Master-Econometria/Analisis_Discriminante.pdf, (06-05-2020). 2011 |
dc.relation.references | Gogineni, Rajesh ; Chaturvedi, Ashvini: Hyperspectral Image Classification. Diciembre, 2019 |
dc.relation.references | Gutiérrez, Salvador; Wendel, Alexander; Underwood, James: Ground based hyperspectral imaging for extensive mango yield estimation. En: Computers and Electronics in Agriculture 157 (Febrero, 2019), pp. 126-135 |
dc.relation.references | Hemmleb, Matthias; A, F. ; B, A. ; C, A. ; Maierhofer, Christiane ; Wg, Commission: Multi-spectral data acquisition and processing techniques for damage detection on building surfaces, Enero, 2006 |
dc.relation.references | Hennessy, Andrew ; Clarke, Kenneth ; Lewis, Megan: Hyperspectral Classifi cation of Plants: A Review of Waveband Selection Generalisability. En: Remote Sensing 12 (Enero, 2020), pp. 113 |
dc.relation.references | Ibérica, Decco. , ¿Qué es la antracnosis y cómo afecta a los cultivos? https://www. deccoiberica.es/que-es-la-antracnosis-y-como-afecta-a-los-cultivos/,(15-05-2020). 2018 |
dc.relation.references | Karaca, A. C. ; C esmeci, D. ; Erturk, A. ; Gullu, M. K. ; Erturk, S.: Hyperspectral change detection with stereo disparity information enhancement. En: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2014, pp. 1-4 |
dc.relation.references | Kavzoglu, Taskin ; Tonbul, Hasan ; Colkesen, Ismail: Dimensionality reduction for hyperspectral images to improve object-based image classi fication using feature selection and principal component analysis, Octubre, 2018 |
dc.relation.references | Lu, Jinzhu ; Ehsani, Reza ; Shi, Yeyin ; Abdulridha, Jaafar ; De Castro, Ana ; Xu, Yunjun: Field detection of anthracnose crown rot in strawberry using spectroscopy technology. En: Computers and Electronics in Agriculture 135 (Abril, 2017), pp. 289-299 |
dc.relation.references | Masso-Garden. Plantas y enfermedades, Antracnosis. http://www.massogarden. com/es/plagas-y-enfermedades-es/antracnosis,(15-05-2020). 2015. |
dc.relation.references | Qianwen, L. ; Bingliang, H.: The Hyper-Spectral Image Compression System Based on DSP. En: 2008 International Workshop on Education Technology and Training 2008 International Workshop on Geoscience and Remote Sensing Vol. 2, 2008, pp. 171-174 |
dc.relation.references | Qin, Jianwei ; Burks, Thomas ; Kim, moon s. ; Chao, Kuanglin ; Ritenour, Mark: Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classi fication method. En: Sensing and Instrumentation for Food Quality and Safety 2 (Septiembre, 2008), pp. 168-177 |
dc.relation.references | Rodrigo, Joaquín A. Análisis discriminante lineal (LDA) y análisis discriminante cuadrático (QDA). https://www.cienciadedatos.net/documentos/28_linear_discriminant_analysis_lda_y_quadratic_discriminant_analysis_qda, (15-05-2020). 2016 |
dc.relation.references | Rodríguez, María J.: Estadística informática casos y ejemplos con el SPSS. http://www.digitaliapublishing.com/a/639 : Alicante: Universidad de Alicante, 2001 |
dc.relation.references | Saberioon, M. ; CísaA™, P. ; Labbé, L.: In VIVO Fish Diet Discrimination using Selected Hyperspectral Image Classifi cation Methods. En: 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2018, pp. 1-5 |
dc.relation.references | Stamatas, Georgios ; Balas, Costas ; Kollias, Nikiforos: Hyperspectral Image Acquisition and Analysis of Skin. En: Proc SPIE 4959 (Julio, 2003) |
dc.relation.references | Su, Hongjun ; Sheng, Yehua ; Du, Peijun ; Chen, Chen ; Liu, Kui: Hyperspectral image classi fication based on volumetric texture and dimensionality reduction. (Noviembre, 2014) |
dc.relation.references | Sun, W. ; Du, Q.: Hyperspectral Band Selection: A Review. En: IEEE Geoscience and Remote Sensing Magazine 7 (2019), Nr. 2, pp. 118-139 |
dc.relation.references | Wang, A. S. ; Pelc, N. J.: Su cient Statistics as a Generalization of Binning in Spectral X-ray Imaging. En: IEEE Transactions on Medical Imaging 30 (2011), Nr. 1, pp. 84-93 |
dc.relation.references | Yang, Jing-Hui ; Wang, Li-Guo ; Qian, Jin-Xi: Hyperspectral image classification based on spatial and spectral features and sparse representation. En: Applied Geophysics 11 (Diciembre, 2015), pp. 489-499 |
dc.relation.references | Yao, Haibo ; Hruska, Zuzana ; Kincaid, Russell ; Ononye, Ambrose ; Brown, Robert ; Cleveland, Thomas: Spectral Angle Mapper classi fication of fluorescence hyperspectral image for aflatoxin contaminated corn, Julio, 2010, pp. 1-4 |
dc.relation.references | Ye, X. ; Iino, K. ; Zhang, S. ; Oshita, S.: Nondestructive monitoring of chicken meat freshness using hyperspectral imaging technology. En: 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2015, pp. 1-4 |
dc.relation.references | Yeh, Yu-Hui ; Chung, Wei-Chang ; Liao, Jui-Yu ; Chung, Chia-Lin ; Kuo, Yan-Fu ; Lin, Ta-Te: Strawberry foliar anthracnose assessment by hyperspectral imaging. En: Computers and Electronics in Agriculture 122 (Marzo, 2016), pp. 1-9 |
dc.relation.references | Zhang, Baohua ; Fan, Shuxiang ; Li, Jiangbo ; Huang, Wenqian ; Zhao, Chunjiang ; Qian, Man ; Zheng, Ling: Detection of Early Rottenness on Apples by Using Hyperspectral Imaging Combined with Spectral Analysis and Image Processing. En: Food Analytical Methods 8 (Enero, 2015) |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.lemb | HONGOS-ECOLOGIA |
dc.subject.lemb | ECOLOGIA VEGETAL |
dc.subject.lemb | INDUSTRIA DE EQUIPOS PARA DIAGNOSTICO POR IMAGENES |
dc.subject.proposal | Imágenes hiperespectrales |
dc.subject.proposal | Antracnosis |
dc.subject.proposal | Métodos de clasificación supervisada |
dc.subject.proposal | Principal Component Analysis |
dc.subject.proposal | Spectral Angle Mapper |
dc.subject.proposal | k-Nearest Neighbor |
dc.subject.proposal | Linear discriminant analysis |
dc.subject.proposal | Hyperspectral Image |
dc.subject.proposal | Anthracnose |
dc.subject.proposal | Unsupervised Classi cation Methods |
dc.title.translated | Detection of foliar anthracnose on mango plants by hyperspectral image analysis |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
dcterms.audience.professionaldevelopment | Investigadores |
Files in this item
This item appears in the following Collection(s)
This work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit