Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorPrieto Ortiz, Flavio Augusto
dc.contributor.authorPenagos Espinel, Oscar Fernando
dc.date.accessioned2022-03-08T16:44:42Z
dc.date.available2022-03-08T16:44:42Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81152
dc.descriptionilustraciones, graficas
dc.description.abstractLa antracnosis es una enfermedad que afecta una gran cantidad de plantas, es producida principalmente por el hongo Colletotrichum, dada su fácil propagación por el aire, su abundante presencia en climas cálidos o en temporadas de alta temperatura como países con estaciones de verano y primavera, y su control mediante agentes químicos, genera la muerte de numerosas plantas y con ello grandes pérdidas económicas afectando principalmente a agricultores. El objetivo de este proyecto es evaluar el uso de imágenes hiperespectrales como apoyo a la detección de antrancnosis, para ello se hace uso de métodos de clasificación tradicionales como LDA y KNN y enfocados en datos espectrales como SAM, además del reductor de dimensionalidad PCA con el fin de encontrar la mínima cantidad de bandas espectrales necesarias para detectar la presencia del patógeno. (Texto tomado de la fuente)
dc.description.abstractAnthracnose is a disease that a affects a large number of plants, it is mainly produced by the fungus Colletotrichum, given its easy propagation through the air, its abundant presence in hot climates or in seasons of high temperature such as summer and spring seasons, and its control by chemical agents, generates the death of numerous plants and with it great economic losses affecting mainly farmers. The objective of this project is to evaluate the use of hyperspectral images to support the detection of anthracnose, using traditional classification methods such as LDA and KNN and focused on spectral data such as SAM, in addition to the dimensionality reducer PCA in order to find the minimum number of spectral bands necessary to detect the presence of the pathogen.
dc.format.extentvi, 39 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc530 - Física::537 - Electricidad y electrónica
dc.titleDetección de antracnosis foliar en plantas de mango por medio de análisis de imágenes hiperespectrales
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica
dc.contributor.researcherVelasquez Hernandez Carlos Alberto
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Electrónica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAires, Priscila ; Fernandes Gambarra Neto, Francisco ; Coutinho, Wirton ; Araújo, Alderi ; Silva, Gilvan ; Gouveia, Josivanda ; Medeiros, Everaldo: Near infrared hyperspectral images and pattern recognition techniques used to identify etiological agents of cotton anthracnose and ramulosis. En: Journal of Spectral Imaging 7 (Abril, 2018)
dc.relation.referencesAlias, M. S. ; Ismail Adnan, A. M. ; Jugah, K. ; Ishaq, I. ; Fizree, Z. A.: Detection of Basal Stem Rot (BSR) disease at oil palm plantation using hyperspectral imaging. En: 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2013, pp. 1-4
dc.relation.referencesBertels, Luc ; Deronde, Bart ; Kempeneers, Pieter ; Debruyn, Walter ; Provoost, Sam: Optimized Spectral Angle Mapper classi fication of spatially heterogeneous dynamic dune vegetation, a case study along the Belgian coastline. En: 9th International Symposium on Physical Measurements and Signatures in Remote Sensing (ISPMSRS). Beijing, China (Noviembre,2002)
dc.relation.referencesCente, IBM K. Análisis discriminante: Método de inclusión por pasos. https://www.ibm.com/support/knowledgecenter/es/SSLVMB_subs/statistics_mainhelp_ddita/spss/base/idh_disc_met.html, (15-05-2020). 2019
dc.relation.referencesFeng, Q.; Chen, J. ; Li, X. ; Li, C. ; Wang, X.: Multi-spectral Image Fusion Method for Identifying Similar-colored Tomato Organs. En: 2019 IEEE International Conference on Unmanned Systems and Arti cial Intelligence (ICUSAI), 2019, p. 142-145
dc.relation.referencesde la Fuente Fernández, Santiago. Análisis discriminante. http:// www.estadistica.net/Master-Econometria/Analisis_Discriminante.pdf, (06-05-2020). 2011
dc.relation.referencesGogineni, Rajesh ; Chaturvedi, Ashvini: Hyperspectral Image Classification. Diciembre, 2019
dc.relation.referencesGutiérrez, Salvador; Wendel, Alexander; Underwood, James: Ground based hyperspectral imaging for extensive mango yield estimation. En: Computers and Electronics in Agriculture 157 (Febrero, 2019), pp. 126-135
dc.relation.referencesHemmleb, Matthias; A, F. ; B, A. ; C, A. ; Maierhofer, Christiane ; Wg, Commission: Multi-spectral data acquisition and processing techniques for damage detection on building surfaces, Enero, 2006
dc.relation.referencesHennessy, Andrew ; Clarke, Kenneth ; Lewis, Megan: Hyperspectral Classifi cation of Plants: A Review of Waveband Selection Generalisability. En: Remote Sensing 12 (Enero, 2020), pp. 113
dc.relation.referencesIbérica, Decco. , ¿Qué es la antracnosis y cómo afecta a los cultivos? https://www. deccoiberica.es/que-es-la-antracnosis-y-como-afecta-a-los-cultivos/,(15-05-2020). 2018
dc.relation.referencesKaraca, A. C. ; C esmeci, D. ; Erturk, A. ; Gullu, M. K. ; Erturk, S.: Hyperspectral change detection with stereo disparity information enhancement. En: 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2014, pp. 1-4
dc.relation.referencesKavzoglu, Taskin ; Tonbul, Hasan ; Colkesen, Ismail: Dimensionality reduction for hyperspectral images to improve object-based image classi fication using feature selection and principal component analysis, Octubre, 2018
dc.relation.referencesLu, Jinzhu ; Ehsani, Reza ; Shi, Yeyin ; Abdulridha, Jaafar ; De Castro, Ana ; Xu, Yunjun: Field detection of anthracnose crown rot in strawberry using spectroscopy technology. En: Computers and Electronics in Agriculture 135 (Abril, 2017), pp. 289-299
dc.relation.referencesMasso-Garden. Plantas y enfermedades, Antracnosis. http://www.massogarden. com/es/plagas-y-enfermedades-es/antracnosis,(15-05-2020). 2015.
dc.relation.referencesQianwen, L. ; Bingliang, H.: The Hyper-Spectral Image Compression System Based on DSP. En: 2008 International Workshop on Education Technology and Training 2008 International Workshop on Geoscience and Remote Sensing Vol. 2, 2008, pp. 171-174
dc.relation.referencesQin, Jianwei ; Burks, Thomas ; Kim, moon s. ; Chao, Kuanglin ; Ritenour, Mark: Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classi fication method. En: Sensing and Instrumentation for Food Quality and Safety 2 (Septiembre, 2008), pp. 168-177
dc.relation.referencesRodrigo, Joaquín A. Análisis discriminante lineal (LDA) y análisis discriminante cuadrático (QDA). https://www.cienciadedatos.net/documentos/28_linear_discriminant_analysis_lda_y_quadratic_discriminant_analysis_qda, (15-05-2020). 2016
dc.relation.referencesRodríguez, María J.: Estadística informática casos y ejemplos con el SPSS. http://www.digitaliapublishing.com/a/639 : Alicante: Universidad de Alicante, 2001
dc.relation.referencesSaberioon, M. ; CísaA™, P. ; Labbé, L.: In VIVO Fish Diet Discrimination using Selected Hyperspectral Image Classifi cation Methods. En: 2018 9th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2018, pp. 1-5
dc.relation.referencesStamatas, Georgios ; Balas, Costas ; Kollias, Nikiforos: Hyperspectral Image Acquisition and Analysis of Skin. En: Proc SPIE 4959 (Julio, 2003)
dc.relation.referencesSu, Hongjun ; Sheng, Yehua ; Du, Peijun ; Chen, Chen ; Liu, Kui: Hyperspectral image classi fication based on volumetric texture and dimensionality reduction. (Noviembre, 2014)
dc.relation.referencesSun, W. ; Du, Q.: Hyperspectral Band Selection: A Review. En: IEEE Geoscience and Remote Sensing Magazine 7 (2019), Nr. 2, pp. 118-139
dc.relation.referencesWang, A. S. ; Pelc, N. J.: Su cient Statistics as a Generalization of Binning in Spectral X-ray Imaging. En: IEEE Transactions on Medical Imaging 30 (2011), Nr. 1, pp. 84-93
dc.relation.referencesYang, Jing-Hui ; Wang, Li-Guo ; Qian, Jin-Xi: Hyperspectral image classification based on spatial and spectral features and sparse representation. En: Applied Geophysics 11 (Diciembre, 2015), pp. 489-499
dc.relation.referencesYao, Haibo ; Hruska, Zuzana ; Kincaid, Russell ; Ononye, Ambrose ; Brown, Robert ; Cleveland, Thomas: Spectral Angle Mapper classi fication of fluorescence hyperspectral image for aflatoxin contaminated corn, Julio, 2010, pp. 1-4
dc.relation.referencesYe, X. ; Iino, K. ; Zhang, S. ; Oshita, S.: Nondestructive monitoring of chicken meat freshness using hyperspectral imaging technology. En: 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2015, pp. 1-4
dc.relation.referencesYeh, Yu-Hui ; Chung, Wei-Chang ; Liao, Jui-Yu ; Chung, Chia-Lin ; Kuo, Yan-Fu ; Lin, Ta-Te: Strawberry foliar anthracnose assessment by hyperspectral imaging. En: Computers and Electronics in Agriculture 122 (Marzo, 2016), pp. 1-9
dc.relation.referencesZhang, Baohua ; Fan, Shuxiang ; Li, Jiangbo ; Huang, Wenqian ; Zhao, Chunjiang ; Qian, Man ; Zheng, Ling: Detection of Early Rottenness on Apples by Using Hyperspectral Imaging Combined with Spectral Analysis and Image Processing. En: Food Analytical Methods 8 (Enero, 2015)
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembHONGOS-ECOLOGIA
dc.subject.lembECOLOGIA VEGETAL
dc.subject.lembINDUSTRIA DE EQUIPOS PARA DIAGNOSTICO POR IMAGENES
dc.subject.proposalImágenes hiperespectrales
dc.subject.proposalAntracnosis
dc.subject.proposalMétodos de clasificación supervisada
dc.subject.proposalPrincipal Component Analysis
dc.subject.proposalSpectral Angle Mapper
dc.subject.proposalk-Nearest Neighbor
dc.subject.proposalLinear discriminant analysis
dc.subject.proposalHyperspectral Image
dc.subject.proposalAnthracnose
dc.subject.proposalUnsupervised Classi cation Methods
dc.title.translatedDetection of foliar anthracnose on mango plants by hyperspectral image analysis
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit