Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorDuque Montoya, Álvaro Javier
dc.contributor.authorOchoa Beltrán, Angélica Liliana
dc.date.accessioned2022-03-15T13:50:34Z
dc.date.available2022-03-15T13:50:34Z
dc.date.issued2021-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81215
dc.descriptionilustraciones, diagramas, mapas, tablas
dc.description.abstractThe Andean forests harbor an astonishing plant diversity, which hampers the understanding of the main drivers of species assemblage along the elevational gradient. In this study, we used the multivariate methods RLQ and Fourth corner to identify the main determinants of plant trait assembly in the northwestern Andean forests of Colombia. We evaluated the relationship between six functional traits and three groups of environmental drivers: climate, soil fertility, and symbiotic root associations (mycorrhizae and nitrifying bacteria). Our findings showed that five functional groups represented the communities in the Andes, where two main axes explain 95.75% of the variability. The first is associated with the leaf economic spectrum and the second with the trade-off between survival/growth. Furthermore, we found that the interaction of regional (climatic variables) and local factors (soil fertility, symbiotic root associations), played a key role in determining the assembly of plant communities in our study area.
dc.description.abstractLos bosques andinos albergan una amplia diversidad, lo que vuelve complejo el entendimiento del ensamblaje de las comunidades a lo largo de su gradiente altitudinal. En este estudio, usamos los métodos multivariados RLQ y Fourth corner para comprender el ensamblaje de los bosques andinos del noroeste de Colombia. Estos métodos evaluaron la relación entre seis rasgos funcionales y tres grupos de impulsores: ambientales (clima y fertilidad del suelo), asociaciones de raíces simbióticas (micorrizas y bacterias nitrificantes) y tamaño del árbol (grandes y pequeños). Nuestros resultados mostraron que las comunidades de los Andes están representado por cinco grupos funcionales, donde el 95,75% de la variabilidad es explicada por dos ejes principales. El primero está asociado con el espectro económico de la hoja y el segundo con el equilibrio entre supervivencia / crecimiento. Además, encontramos que la interacción de factores regionales (variables climáticas) y factores locales (fertilidad del suelo, asociaciones de raíces y tamaño de los árboles) determinaron el ensamblaje de las comunidades en nuestra área de estudio. (Texto tomado de la fuente)
dc.format.extentxii, 46 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.otherBosques Andinos - Colombia
dc.titlePlant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollo
dc.description.notesDe este trabajo también se derivo un articulo: Ochoa-Beltrán, A.; Martínez-Villa, J.A.; Kennedy, P.G.; Salgado-Negret, B.; Duque, A. Plant Trait Assembly in Species-Rich Forests at Varying Elevations in the Northwest Andes of Colombia
dc.contributor.researchgroupConservación, Uso y Biodiversidad
dc.coverage.cityRegión Andina, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Medio Ambiente y Desarrollo
dc.description.researchareaCiencias Naturales - Ciencias Biológicas - Ecología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Geociencias y Medo Ambiente
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAgudelo, C. M., Benavides, A. M., Taylor, T., Feeley, K. J., & Duque, A. (2019). Functional composition of epiphyte communities in the Colombian Andes. Ecology, 100(12), 1–11. https://doi.org/10.1002/ecy.2858
dc.relation.referencesAide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., Bonilla-Moheno, M., Riner, G., Andrade-Núñez, M. J., & Muñiz, M. (2013). Deforestation and Reforestation of Latin America and the Caribbean (2001-2010). Biotropica, 45(2), 262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.x
dc.relation.referencesAlbert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.x
dc.relation.referencesAlboukadel, K., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses (R package version 1.0.7.). https://cran.r-project.org/package=factoextra%0A
dc.relation.referencesAsner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., & Vaughn, N. (2016). Large-scale climatic and geophysical controls on the leaf economics spectrum. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 4043–4051. https://doi.org/10.1073/pnas.1604863113
dc.relation.referencesBaraloto, C., Paine, C. E. T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Hérault, B., Patiño, S., Roggy, J.-C., & Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338–1347. https://doi.org/10.1111/j.1461-0248.2010.01517.x
dc.relation.referencesBlonder, B., Salinas, N., Bentley, L. P., Shenkin, A., Chambi Porroa, P. O., Valdez Tejeira, Y., Cyrille, V., Fyllas, N. M., Goldsmith, G. R., Martin, R. E., Asner, G. P., Díaz, S., Enquist, B. J., & Malhi, Y. (2017). Predicting trait‐environment relationships for venation networks along an Andes‐Amazon elevation gradient. Ecology, 98(5), 1239–1255. https://doi.org/10.1111/ijlh.12426
dc.relation.referencesBlundo, C., Malizia, L. R., & González-Espinosa, M. (2015). Distribution of functional traits in subtropical trees across environmental and forest use gradients. Acta Oecologica, 69, 96–104. https://doi.org/10.1016/j.actao.2015.09.008
dc.relation.referencesBooth, B. D., & Swanton, C. J. (2002). Assembly theory applied to weed communities. Weed Science, 50, 2–13. http://www.bioone.org/doi/abs/10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2
dc.relation.referencesBunn, R. A., Simpson, D. T., Bullington, L. S., Lekberg, Y., & Janos, D. P. (2019). Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME Journal, 13(8), 1891–1898. https://doi.org/10.1038/s41396-019-0403-2
dc.relation.referencesCamenzind, T., Hättenschwiler, S., Treseder, K., Lehmann, A., & Rillig, M. (2017). Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88(1), 4–21. https://doi.org/https://doi.org/10.1002/ecm.1279
dc.relation.referencesChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x
dc.relation.referencesCornelissen, J. H. C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., & Steege, H. (2003). A Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–338. https://doi.org/10.1071/BT02124
dc.relation.referencesDing, Y., Zang, R., Lu, X., Huang, J., & Xu, Y. (2019). The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient. Journal of Vegetation Science, 30, 973–983. https://doi.org/10.1111/jvs.12786
dc.relation.referencesDixon, R., Rao, M. . V. ., & Garg, V. . K. . (1994). Water relations and gas exchange of mycorrhizal leucaena leucocephala seedlings. Journal of Tropical Forest Science, 6(4), 542–552. https://www.jstor.org/stable/43581779
dc.relation.referencesDolédec, S., Chessel, D., Ter Braak, C. J. F., & Champely, S. (1996). Matching species traits to environmental variables: A new three-table ordination method. Environmental and Ecological Statistics, 3, 143–166. https://doi.org/10.1007/BF02427859
dc.relation.referencesDray, S., Dufour, A.-B., S, D., & A, D. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04.
dc.relation.referencesDray, S., & Legendre, P. (2008). Testing the species traits environment relationships: The fourth-corner problem revisited. Ecology, 89(12), 3400–3412. https://doi.org/10.1890/08-0349.1
dc.relation.referencesDuque, A., Peña, M. A., Cuesta, F., González-caro, S., Kennedy, P., Phillips, O. L., Calderón-loor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-villa, J. A., … Saatchi, S. (2021). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12, 2138. https://doi.org/10.1038/s41467-021-22459-8
dc.relation.referencesEsquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., ter Steege, H., Lopez-Gonzalez, G., Monteagudo Mendoza, A., Brienen, R., Feldpausch, T. R., Pitman, N., Alonso, A., van der Heijden, G., Peña-Claros, M., Ahuite, M., Alexiaides, M., Álvarez Dávila, E., Murakami, A. A., Arroyo, L., Aulestia, M., … Phillips, O. L. (2017). Seasonal drought limits tree species across the Neotropics. Ecography, 40, 618–629. https://doi.org/10.1111/ecog.01904
dc.relation.referencesFick, Steve, & Hijmans, R. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. https://doi.org/10.1002/joc.5086
dc.relation.referencesFinegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Eguiguren Velepucha, P., Fernandez, F., Licona, J. C., Lorenzo, L., Salgado Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103(1), 191–201. https://doi.org/10.1111/1365-2745.12346
dc.relation.referencesFisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., Silva-Espejo, J. E., & Huasco, W. H. (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172(3), 889–902. https://doi.org/10.1007/s00442-012-2522-6
dc.relation.referencesGötzenberger, L., de Bello, F., Brathen, K. A., Davison, J., Dubuis, A., Guisan, A., Leps, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K., & Zobel, M. (2012). Ecological assembly rules in plant communities — approaches , patterns and prospects. Biological Reviews, 88, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.x
dc.relation.referencesGrossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550–1566. https://doi.org/10.1111/nph.16485
dc.relation.referencesHartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28, 100–108. https://doi.org/10.2307/2346830
dc.relation.referencesHernández-Vargas, G., Perroni, Y., López-acosta, J. C., Noa-Carrazana, J. C., & Sánchez-velásquez, L. R. (2019). Do the distribution patterns of plant functional traits change during early secondary succession in tropical montane cloud forests? Acta Oecologica, 95, 26–35. https://doi.org/10.1016/j.actao.2019.01.003
dc.relation.referencesHomeier, J., Seeler, T., Pierick, K., & Leuschner, C. (2021). Leaf trait variation in species ‑ rich tropical Andean forests. Scientific Reports, 11, 9993. https://doi.org/10.1038/s41598-021-89190-8
dc.relation.referencesJager, M. M., Richardson, S. J., Bellingham, P. J., Clearwater, M. J., & Laughlin, D. C. (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103, 374–385. https://doi.org/10.1111/1365-2745.12366
dc.relation.referencesKeddy, P. A. (1992). A Pragmatic Approach to Functional Ecology. Functional Ecology, 6, 621–626. https://doi.org/10.2307/2389954
dc.relation.referencesKerkhoff, A. J., & Enquist, B. J. (2009). Multiplicative by nature: Why logarithmic transformation is necessary in allometry. Journal of Theoretical Biology, 257(3), 519–521. https://doi.org/10.1016/j.jtbi.2008.12.026
dc.relation.referencesKörner, C. (2007). The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006
dc.relation.referencesKörner, C., Neumayer, M., Menendez-Riedl, S. P., & Smeets-Scheel, A. (1989). Functional Morphology of Mountain Plants. Flora, 182, 353–383. https://doi.org/10.1016/s0367-2530(17)30426-7
dc.relation.referencesLegendre, P., Galzin, R. G., & Harmelin-Vivien, M. L. (1997). Relating behavior to habitat: Solutions to the fourth-corner problem. Ecology, 78(2), 547–562. https://doi.org/10.2307/2266029
dc.relation.referencesLiu, F., Zhang, M., Yang, W., Liu, Y., Wang, W., Zheng, J., & An, S. (2012). Leaf Functional Traits and Trait Relationships of Tropical Woody Vegetation in Relation to Successional Stage : Shifts in Understory and Canopy Layers Leaf functional traits and trait relationships of tropical woody vegetation in relation to successional. Ecoscience, 19(3), 198–208. https://doi.org/10.2980/19-3-3499
dc.relation.referencesLópez Camacho, R., Quintero Gómez, A., & Amado Ariza, S. M. (2020). Rasgos funcionales de la madera de tres bosques en Colombia: Bosque Seco, Andino y Alto-Andino. Ciencia Florestal, 30(3), 856–872. https://doi.org/10.5902/1980509839184
dc.relation.referencesMaherali, H. (2020). Mutualism as a plant functional trait: linking variation in the mycorrhizal symbiosis to climatic tolerance, geographic range and population dynamics. International Journal of Plant Sciences, 181(1), 1–30.
dc.relation.referencesMaherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K., & McGlinn, D. J. (2016). Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. American Naturalist, 188(5), 113–125. https://doi.org/10.1086/688675
dc.relation.referencesMalizia, A., Blundo, C., Carilla, J., Acosta, O. O., Cuesta, F., Duque, A., Aguirre, N., Aguirre, Z., Ataroff, M., Baez, S., Calderón-Loor, M., Cayola, L., Cayuela, L., Ceballos, S., Cedillo, H., Ríos, W. F., Feeley, K. J., Fuentes, A. F., Gámez Álvarez, L. E., … Young, K. R. (2020). Elevation and latitude drives structure and tree species composition in Andean forests : Results from a large-scale plot network. PLOS ONE, 14(4), e0231553. https://doi.org/10.1371/journal.pone.0231553
dc.relation.referencesMcgill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002
dc.relation.referencesMuscarella, R., Uriarte, M., Erickson, D. L., Swenson, N. G., Kress, W. J., & Zimmerman, J. K. (2016). Variation of tropical forest assembly processes across regional environmental gradients. Perspectives in Plant Ecology, Evolution and Systematics, 23, 52–62. https://doi.org/10.1016/j.ppees.2016.09.007
dc.relation.referencesMyers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/468895a
dc.relation.referencesNiinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), 693–714. https://doi.org/10.1007/s11284-010-0712-4
dc.relation.referencesNiinemets, Ü. (2016). Within-Canopy Variations in Functional Leaf Traits: Structural, Chemical and Ecological Controls and Diversity of Responses. In Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes) (pp. 100–130). Springer. https://doi.org/10.1007/978-94-017-7291-4
dc.relation.referencesNuccio, E. E., Hodge, A., Pett-Ridge, J., Herman, D. J., Weber, P. K., & Firestone, M. K. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15(6), 1870–1881. https://doi.org/10.1111/1462-2920.12081
dc.relation.referencesOrdoñez, J. C., Van Bodegom, P. M., Witte, J. P. M., Wright, I. J., Reich, P. B., & Aerts, R. (2009). A global study of relationships between leaf traits , climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x
dc.relation.referencesOrme, C. D. L., Davies, R. G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V. A., Webster, A. J., Ding, T. S., Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J., & Owens, I. P. F. (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016–1019. https://doi.org/10.1038/nature03850
dc.relation.referencesPerez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., Vos, A. C. De, Buchmann, N., … Cornelissen, J. H. C. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715–716.
dc.relation.referencesPhillips, R. P., Brzostek, E., & Midgley, M. G. (2013). The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41–51. https://doi.org/10.1111/nph.12221
dc.relation.referencesPinho, B. X., Tabarelli, M., Engelbrecht, B. M. J., Sfair, J., & Melo, F. P. L. (2019). Plant functional assembly is mediated by rainfall and soil conditions in a seasonally dry tropical forest. Basic and Applied Ecology, 40, 1–11. https://doi.org/10.1016/j.baae.2019.08.002
dc.relation.referencesPoorter, L. (2009). Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 181, 890–900.
dc.relation.referencesPoorter, L., Mcdonald, I., Alarco, A., Fichtler, E., Licona, J., Marielos, P.-C., Sterck, F., Villegas, Z., & Sass-klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481–492.
dc.relation.referencesRead, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. (2014). Convergent effects of elevation on functional leaf traits within and among species. Funtional Ecology, 28, 37–45. https://doi.org/10.1111/1365-2435.12162
dc.relation.referencesReich, P. B. (2014). The world-wide ‘ fast – slow ’ plant economics spectrum : a traits manifesto. Journal of Ecology, 102, 275–301. https://doi.org/10.1111/1365-2745.12211
dc.relation.referencesReich, P., Wright, I., Bares, J. C., Craine, J. M., Oleksyn, J., Walters, M. B., Reich, P. B., Wright, I. J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. (2003). The Evolution of Plant Functional Variation : Traits , Spectra , and Strategies. International Journal of Plant Sciences, 164(3), 143–164.
dc.relation.referencesRodríguez, N., Armenteras, D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. (Segunda ed). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.
dc.relation.referencesSalgado-Luarte, C., & Gianoli, E. (2012). Herbivores Modify Selection on Plant Functional Traits in a Temperate Rainforest Understory. The American Naturalist, 180(2), 42–53. https://doi.org/10.1086/666612
dc.relation.referencesSánchez-Cuervo, A. M., & Aide, T. M. (2013). Consequences of the Armed Conflict, Forced Human Displacement, and Land Abandonment on Forest Cover Change in Colombia: A Multi-scaled Analysis. Ecosystems, 16, 1052–1070. https://doi.org/10.1007/s10021-013-9667-y
dc.relation.referencesSantiago, L. S., & Wright, S. J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21(1), 19–27. https://doi.org/10.1111/j.1365-2435.2006.01218.x
dc.relation.referencesShen, Y., Yu, S., Lian, J., Shen, H., Cao, H.-L., Lu, H.-P., & Ye, W.-H. (2016). Inferring community assembly processes from trait diversity across environmental gradients. Journal of Tropical Ecology, 32(4), 1–10. https://doi.org/10.1017/S0266467416000262
dc.relation.referencesShi, L., Wang, J., Liu, B., Nara, K., Lian, C., Shen, Z., Xia, Y., & Chen, Y. (2017). Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments. Mycorrhiza, 27(8), 823–830. https://doi.org/10.1007/s00572-017-0795-7
dc.relation.referencesShi, Z., Li, K., Zhu, X., & Wang, F. (2020). The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology, 43, 100877. https://doi.org/10.1016/j.funeco.2019.100877
dc.relation.referencesShipley, B., Lechowicz, M. J., Wright, I., & Reich, P. B. (2006). Fundamental Trade-Offs Generating the Worldwide Leaf Economics Spectrum. Ecology, 87(3), 535–541. https://doi.org/10.1890/05-1051
dc.relation.referencesSteidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., De-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., GFBI Consortium, & Peay, K. G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569, 404–408. https://doi.org/10.1038/s41586-019-1128-0
dc.relation.referencesTanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). Experimental Investigation of Nutrient Limitation of Forest Growth on Wet Tropical Mountains. Ecology, 79(1), 10–22. https://doi.org/10.2307/176860
dc.relation.referencesTedersoo, L., Laanisto, L., Rahimlou, S., Toussaint, A., Hallikma, T., & Pärtel, M. (2018). Global database of plants with root-symbiotic nitrogen fixation: NodDB. Journal of Vegetation Science, 29(3), 560–568. https://doi.org/10.1111/jvs.12627
dc.relation.referencesTer Braak, C. J. F., Cormont, A., & Dray, S. (2012). Improved testing of species traits--environment relationships in the fourth-corner problem. Ecology, 93(7), 1525–1526.
dc.relation.referencesTränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747
dc.relation.referencesValladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749–763. https://doi.org/10.1111/j.1469-8137.2007.02275.x
dc.relation.referencesvan de Weg, M. J., Meir, P., Grace, J., & Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology and Diversity, 2(3), 243–254. https://doi.org/10.1080/17550870903518045
dc.relation.referencesWang, J., Wen, X., Zhang, X., Li, S., & Zhang, D. Y. (2018). Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-25839-1
dc.relation.referencesWieczynski, D. J., Boyle, B., Buzzard, V., Duran, S. M., Henderson, A. N., Hulshof, C. M., Kerkhoff, A. J., McCarthy, M. C., Michaletz, S. T., Swenson, N. G., Asner, G. P., Bentley, L. P., Enquist, B. J., & Savage, V. M. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 587–592. https://doi.org/10.1073/pnas.1813723116
dc.relation.referencesWorthy, S. J., & Swenson, N. G. (2019). Functional perspectives on tropical tree demography and forest dynamics. Ecological Processes, 8(1), 1–11. https://doi.org/10.1186/s13717-018-0154-4
dc.relation.referencesWright, I., Reich, P. B., Cornelissen, J. H. C. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., Westoby, M., & Wright, I. J. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.x
dc.relation.referencesWright, I., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornellssen, J. H. ., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. https://doi.org/10.1038/nature02403
dc.relation.referencesWright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecography, 91(12), 3664–3674.
dc.relation.referencesZuleta, D., Duque, A., Cardenas, D., Muller-Landau, H., & Davies, S. (2017). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Ecology, 98, 2538–2546. https://doi.org/10.1111/ijlh.12426
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembForests and forestry - Colombia
dc.subject.proposalCommunity assemble
dc.subject.proposalFunctional traits
dc.subject.proposalEnvironmental drivers
dc.subject.proposalAndean Mountains
dc.subject.proposalEnsamblaje comunitario
dc.subject.proposalRasgos funcionales
dc.subject.proposalImpulsores ambientales
dc.subject.proposalAndes
dc.title.translatedEnsamblaje de rasgos funcionales en bosques biodiversos a lo largo de un gradiente de elevación en los Andes del noroeste de Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Medio Ambiente


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit