Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorMurillo-Sánchez, Carlos Edmundo
dc.contributor.authorBuitrago Villada, María del Pilar
dc.date.accessioned2022-03-28T20:40:37Z
dc.date.available2022-03-28T20:40:37Z
dc.date.issued2021
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81411
dc.descriptiongráficos, tablas.
dc.description.abstractEste trabajo presenta una metodología de solución de un modelo estocástico usado en la planeación de la operación de sistemas eléctricos de potencia con alta penetración de fuentes de energía renovable, respuesta de la demanda y sistemas de almacenamiento energético, que además incluye de manera explícita el modelo AC de la red de transmisión. El impacto que tiene el modelo AC sobre la apropiada asignación y valoración de los recursos del sistema de potencia, en el contexto de mercados multi-dimensionales, se evidencia a través de un estudio comparativo simulando un caso de prueba de tamaño real. Resolver de forma directa un problema de las dimensiones que puede alcanzar la formulación propuesta requiere mucho tiempo, grandes esfuerzos de cálculo y recursos informáticos. Por tal motivo, se exploraron dos estrategias para explotar la estructura matemática del problema y abordar su solución usando técnicas de descomposición: La descomposición por Relajación Lagrangiana con lagrangiano Aumentado (RLA) y la Descomposición Generalizada de Benders (DGB). Entre estas, se implementó efectivamente DGB en su versión multicorte con una modificación en la formulación de los subproblemas mediante variables penalizadas. El algoritmo fue acelerado con una técnica de estabilización inspirada en los métodos de haz con región de confianza y el cómputo en paralelo de los subproblemas. Otras medidas de aceleración adicionales fueron diseñadas a partir de observaciones en la evolución de algunos parámetros durante los experimentos. El desempeño de la técnica DGB se validó a través de pruebas experimentales en dos casos de diferente tamaño: el sistema IEEE de 30 barras y el sistema de potencia colombiano de 96 barras. Los resultados sugieren que el esquema de solución propuesto es apropiado para tratar de forma eficiente un problema de optimización de tamaño real como el sistema de potencia colombiano. Una asignación de cantidades de potencia y reservas bastante aproximada fue reflejada en una desviación cercana al 0,005 % en el costo óptimo comparado con la solución de referencia; además del buen desempeño computacional dado por la reducción del 88 % del tiempo de cálculo con respecto a la solución de referencia (sin descomposición), generando un avance en el estado de arte de este campo de estudio.
dc.description.abstractThis work presents a solution methodology for a stochastic model used in the operational planning of electric power systems with high penetration of renewable sources, demand response, and energy storage systems, which also explicitly includes the AC model of the network. The AC model impacts the correct allocation and assessment of power system resources in the context of multi-dimensional markets, demonstrated through a comparative study simulating a real-size test case. Solving in a direct way a high dimensional problem that could be reached through the proposed formulation requires a lot of time, great calculation effort, and computer resources. For this reason, two strategies were explored to exploit the mathematical structure of the problem and approach its solution by decomposition techniques: Augmented Lagrangian Relaxation decomposition (ALR) and Generalized Benders Decomposition (GBD). Among these, multi-cut GBD was effectively implemented with a modification in the subproblems formulation through penalized variables. The algorithm was accelerated with a trust-region stabilization technique and the parallel computing of subproblems. Other additional acceleration measures were designed from observations of the evolution of some parameters during the experiments. The performance of the GBD technique was validated through experimental tests in two different-sized test cases: the IEEE 30-bus system and the Colombian 96-bus power system. The results suggest the effectiveness of the proposed solution scheme to efficiently solve a real-size optimization problem like the Colombian power system. A quite approximate power and reserve quantities allocation was reflected in an optimal cost deviation close to 0.005 %, compared with the reference solution; in addition to the good computational performance given by the 88 % reduction in the calculation time relative to the reference solution (without decomposition), generating an advance in the state of the art of this field of study.
dc.description.sponsorshipMinisterio de Ciencias (Colciencias) bajo el programa de Becas de Doctorados Nacionales convocatoria 727 de 2015.
dc.format.extentxxiv, 175 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDescomposición y coordinación paralela para solucionar un modelo de planeación de la operación de sistemas de generación y transmisión eléctrica con altas penetraciones de fuentes intermitentes, almacenamiento energético y tecnologías de redes inteligentes
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.contributor.researchgroupPotencia Energía y Mercados - GIPEM
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería - Ingeniería Automática
dc.description.researchareaAnálisis de sistemas de potencia eléctrica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacional
dc.relation.referencesJ. Lin and F. H. Magnago, “Desing, structure and operation of an electricity market,” in Electricity markets: Theories and applications, I. Press, Ed. Wiley, 2017, ch. 7, pp. 173–209.
dc.relation.referencesP. Pinson, “Wind energy: Forecasting challenges for its operational management,” Statist. Sci., vol. 28, no. 4, pp. 564–585, Nov. 2013.
dc.relation.referencesY. Wang, Z. Zhou, C. Liu, and A. Botterud, “Systematic evaluation of stochastic methods in power system scheduling and dispatch with renewable energy.” [Online]. Available: https://www.osti.gov/biblio/1307654
dc.relation.referencesE. Ela, C. Wang, S. Moorty, K. Ragsdale, J. O’Sullivan, M. Rothleder, and B. Hobbs, “Electricity markets and renewables: A survey of potential design changes and their consequences,” IEEE Power and Energy Magazine, vol. 15, no. 6, pp. 70–82, 2017.
dc.relation.referencesP. Denholm, E. Ela, B. Kirby, and M. Milligan, “The role of energy storage with electricity renewable generation,” NREL, Tech. Rep, Tech. Rep., Jan. 2010. [Online]. Available: http://www.nrel.gov/docs/fy10osti/47187.pdf
dc.relation.referencesM. Kefayati and R. Baldick, “Harnessing demand flexibility to match renewable pro duction using localized policies,” in 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2012, pp. 1105–1109.
dc.relation.referencesE. Karangelos and F. Bouffard, “Towards full integration of demand-side resources in joint forward energy/reserve electricity markets,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 280–289, 2012
dc.relation.referencesM. Motalleb, M. Thornton, E. Reihani, and R. Ghorbani, “A nascent market for contingency reserve services using demand response,” Applied Energy, vol. 179, pp. 985 –995, 2016.
dc.relation.referencesY. Degeilh and G. Gross, “Stochastic simulation of utility-scale storage resources in power systems with integrated renewable resources,” IEEE Transactions on Power Systems, vol. 30, no. 3, pp. 1424–1434, 2015
dc.relation.referencesE. Litvinov, F. Zhao, and T. Zheng, “Electricity markets in the United States: Power industry restructuring processes for the present and future,” IEEE Power and Energy Magazine, vol. 17, no. 1, pp. 32–42, 2019
dc.relation.referencesG. Martínez, J. Liu, B. Li, J. L. Mathieu, and C. L. Anderson, “Enabling renewable resource integration: The balance between robustness and flexibility,” in 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015, pp. 195–202.
dc.relation.referencesA. Papavasiliou and S. S. Oren, “Large-scale integration of deferrable demand and renewable energy sources,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 489–499, 2014.
dc.relation.referencesD. Kourounis, A. Fuchs, and O. Schenk, “Toward the next generation of multiperiod optimal power flow solvers,” IEEE Transactions on Power Systems, vol. 33, no. 4, pp. 4005–4014, 2018.
dc.relation.referencesW. A. Bukhsh, C. Zhang, and P. Pinson, “An integrated multiperiod OPF model with demand response and renewable generation uncertainty,” IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1495–1503, 2016.
dc.relation.referencesC. J. López-Salgado, A. Helseth, O. Añó, and D. M. Ojeda-Esteybar, “Stochastic daily hydrothermal scheduling based on decomposition and parallelization,” International Journal of Electrical Power Energy Systems, vol. 118, p. 105700, 2020
dc.relation.referencesI. Gomes, H. Pousinho, R. Melício, and V. Mendes, “Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market,” Energy, vol. 124, pp. 310 – 320, 2017
dc.relation.referencesA. Banshwar, N. K. Sharma, Y. R. Sood, and R. Shrivastava, “Market based procurement of energy and ancillary services from renewable energy sources in deregulated environment,” Renewable Energy, vol. 101, pp. 1390 – 1400, 2017.
dc.relation.referencesF. Bouffard and F. D. Galiana, “Stochastic security for operations planning with significant wind power generation,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 306–316, 2008.
dc.relation.referencesF. Liu, Z. Bie, S. Liu, and T. Ding, “Day-ahead optimal dispatch for wind integrated power system considering zonal reserve requirements,” Applied Energy, vol. 188, pp. 399–408, feb 2017.
dc.relation.referencesH. Sharifzadeh, N. Amjady, and H. Zareipour, “Multi-period stochastic security-constrained OPF considering the uncertainty sources of wind power, load demand and equipment unavailability,” Electric Power Systems Research, vol. 146, pp. 33–42, may 2017.
dc.relation.referencesA. J. Lamadrid, T. Mount, R. Zimmerman, C. E. Murillo-Sanchez, and L. Anderson, “Alternate mechanisms for integrating renewable sources of energy into electricity markets,” in 2012 IEEE Power and Energy Society General Meeting, 2012, pp. 1–8.
dc.relation.referencesN. Amjady, J. Aghaei, and H. A. Shayanfar, “Stochastic multiobjective market clearing of joint energy and reserves auctions ensuring power system security,” IEEE Transactions on Power Systems, vol. 24, no. 4, pp. 1841–1854, 2009.
dc.relation.referencesV. Virasjoki, P. Rocha, A. S. Siddiqui, and A. Salo, “Market impacts of energy storage in a transmission-constrained power system,” IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 4108–4117, 2016
dc.relation.referencesC. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J. Thomas, “A stochastic, contingency-based security-constrained optimal power flow for the procurement of energy and distributed reserve,” Decision Support Systems, vol. 56, pp. 1 –10, 2013.
dc.relation.referencesJ. Zhang, J. D. Fuller, and S. Elhedhli, “A stochastic programming model for a day-ahead electricity market with real-time reserve shortage pricing,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 703–713, 2010.
dc.relation.referencesM. Parastegari, R.-A. Hooshmand, A. Khodabakhshian, and A.-H. Zare, “Joint operation of wind farm, photovoltaic, pump-storage and energy storage devices in energy and reserve markets,” International Journal of Electrical Power & Energy Systems, vol. 64, pp. 275 – 284, 2015
dc.relation.referencesC. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J. Thomas, “Secure planning and operations of systems with stochastic sources, energy storage, and active demand,” IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 2220–2229, 2013
dc.relation.referencesA. J. Lamadrid, D. Muñoz-Alvarez, C. E. Murillo-Sánchez, R. D. Zimmerman, H. Shin, and R. J. Thomas, “Using the Matpower Optimal Scheduling Tool to test power system operation methodologies under uncertainty,” IEEE Transactions on Sustainable Energy, vol. 10, no. 3, pp. 1280–1289, 2019.
dc.relation.referencesH. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman, and R. J. Thomas, “On computational issues of market-based optimal power flow,” IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1185–1193, 2007.
dc.relation.referencesF. Capitanescu, “Critical review of recent advances and further developments needed in ac optimal power flow,” Electric Power Systems Research, vol. 136, pp. 57 – 68, 2016
dc.relation.referencesT. D. Mount, A. J. Lamadrid, W. Y. Jeon, R. D. Zimmerman, and C. E. Murillo-Sánchez, “How will customers pay for the smart-grid,” in 30th Annual Eastern Conference on Regulated Industries, Skytop, Jan. 2011.
dc.relation.referencesA. J. Lamadrid, T. Mount, R. Zimmerman, and C. E. Murillo-Sánchez, “Harnessing the renewable generation potential,” in 30th USAEE/IAEE North American Conference, 2011.
dc.relation.referencesA. J. Lamadrid, D. L. Shawhan, C. E. Murillo-Sánchez, R. D. Zimmerman, Y. Zhu, D. J. Tylavsky, A. G. Kindle, and Z. Dar, “Stochastically optimized, carbon-reducing dispatch of storage, generation, and loads,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 1064–1075, 2015
dc.relation.referencesC. Küchler and S. Vigerske, Decomposition of Multistage Stochastic Programs with Recombining Scenraio Trees. Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik, 2007.
dc.relation.referencesW. S. Sifuentes and A. Vargas, “Hydrothermal scheduling using benders decomposition: Accelerating techniques,” IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1351–1359, 2007.
dc.relation.referencesM. d. P. Buitrago-Villada, S. García-Marín, J. E. Zuluaga-Orozco, and C. E. Murillo-Sánchez, “On the importance of using an ac or dc network model in the multi-period secure stochastic optimal power flow for settling a multidimensional day-ahead market,” IEEE Latin America Transactions, vol. 19, no. 12, pp. 2003–2010, May 2021. [Online]. Available: https://latamt.ieeer9.org/index.php/transactions/article/view/4794
dc.relation.referencesA. Fuchs, J. Garrison, and T. Demiray, “A security-constrained multi-period OPF for the locational allocation of automatic reserves,” in 2017 IEEE Manchester PowerTech, 2017, pp. 1–6.
dc.relation.referencesA. Street, A. Brigatto, and D. M. Valladão, “Co-optimization of energy and ancillary services for hydrothermal operation planning under a general security criterion,” IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4914–4923, 2017.
dc.relation.referencesJ. Chen, T. D. Mount, J. S. Thorp, and R. J. Thomas, “Location-based scheduling and pricing for energy and reserves: a responsive reserve market proposal,” Decision Support Systems, vol. 40, no. 3, pp. 563 – 577, 2005, challenges of restructuring the power industry
dc.relation.referencesF. D. Galiana, F. Bouffard, J. M. Arroyo, and J. F. Restrepo, “Scheduling and pricing of coupled energy and primary, secondary, and tertiary reserves,” Proceedings of the IEEE, vol. 93, no. 11, pp. 1970–1983, 2005
dc.relation.referencesJ. M. Arroyo and F. D. Galiana, “Energy and reserve pricing in security and network-constrained electricity markets,” IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 634–643, 2005.
dc.relation.referencesJ. Wang, M. Shahidehpour, and Z. Li, “Contingency-constrained reserve requirements in joint energy and ancillary services auction,” IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1457–1468, 2009.
dc.relation.referencesW. Wei, F. Liu, S. Mei, and Y. Hou, “Robust energy and reserve dispatch under variable renewable generation,” IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 369–380, 2015
dc.relation.referencesF. Bouffard, F. D. Galiana, and A. J. Conejo, “Market-clearing with stochastic security - part I: formulation,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 1818–1826, 2005
dc.relation.referencesK. Van den Bergh and E. Delarue, “Energy and reserve markets: interdependency in electricity systems with a high share of renewables,” Electric Power Systems Research, vol. 189, p. 106537, 2020
dc.relation.referencesY. Z. Li, K. C. Li, P. Wang, Y. Liu, X. N. Lin, H. B. Gooi, G. F. Li, D. L. Cai, and Y. Luo, “Risk constrained economic dispatch with integration of wind power by multi-objective optimization approach,” Energy, vol. 126, pp. 810–820, 2017.
dc.relation.referencesUnidad de Planeación Minero Energética- UPME, “Plan de expansión de referencia generación-transmisión 2017-2031,” pp. 1–381, 2018. [Online]. Available: https://www1.upme.gov.co
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, “ MATPOWER Optimal Scheduling Tool (MOST) User’s Manual.” 2020. [Online]. Available: https://matpower.org/docs/MOST-manual.pdf
dc.relation.referencesGurobi Optimization LLC, “Gurobi Optimizer Reference Manual version 9.0.0.” 2020. [Online]. Available: http://www.gurobi.com
dc.relation.referencesA. Wächter and L. T. Biegler, “On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57, 2006.
dc.relation.referencesGeneradora y comercializadora de energía del Caribe - GECELCA S.A. E.S.P. (2014) Informe de gestión 2014. Accessed 2020-08-06. [Online]. Available: https://www.gecelca.com.co/ Descargas/ publico/ Transparencia/INFORME%20DE%20GESTION.pdf
dc.relation.referencesG. Cohen, Optimisation des Grands Systèmes. Cours du DEA MMME, Universitè de Paris I, 2004, pp. 1–116
dc.relation.referencesM. A. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming. Theory and algorithms, 3rd ed. Wiley-Interscience, 2006, vol. 1, pp. 257–298
dc.relation.referencesD. P. Bertsekas, “Multipliers Methods: A Survey,” Automatica, vol. 12, no. 7, pp. 135–145, 1976
dc.relation.referencesA. Ruszczynski, “On convergence of an augmented lagrangian decomposition method for sparse convex optimization,” Mathematics of operations research, vol. 20, pp. 634–656, 1995.
dc.relation.referencesM. R. Hestenes, “Multipliers and gradient methods,” Journal of Optimization Theory and Applications, vol. 4, pp. 303–320, 1969.
dc.relation.referencesM. J. D. Powell, “A method for nonlinear constraints in minimization problems,” Optimization (R.Fletchr, ed.), Academic Press, New York, vol. 4, pp. 283–298, 1969.
dc.relation.referencesG. Cohen and D. Zhu, Decomposition Coordination Methods in Large Scale Optimization Problems: The Nondifferentiable Case and the Use of Augmented Lagrangians. Advances in Large Scale Systems. JAI Press Inc., 1984, vol. 1, pp. 203–266.
dc.relation.referencesD. P. Bertsekas, Nonlinear programming, 2nd ed., 1999, ch. 4, pp. 201–205
dc.relation.referencesA. J. Conejo, E. Castillo, R. Mínguez, and R. García-Bertrand, Decomposition Techniques in Mathematical Programming. Engineering and Science Applications. Springer, 2006, vol. 1, pp. 195–205.
dc.relation.referencesN. Redondo and A. Conejo, “Short-term hydro-thermal coordination by lagrangian relaxation: solution of the dual problem,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 89–95, 1999.
dc.relation.referencesP. Bento, S. Mariano, M. Calado, and L. Ferreira, “A novel lagrangian multiplier update algorithm for short-term hydro-thermal coordination,” Energies, vol. 13, no. 24, pp. 728–742, 2020.
dc.relation.referencesW. Ongsakul and N. Petcharaks, “Fast lagrangian relaxation for constrained generation scheduling in a centralized electricity market,” International Journal of Electrical Power and Energy Systems, vol. 30, no. 1, p. 46–59, 2008.
dc.relation.referencesX. Feng and Y. Liao, “A new lagrangian multiplier update approach for lagrangian relaxation based unit commitment,” IEEE Transactions on Power Systems, vol. 34, no. 8, pp. 857–866, 2006
dc.relation.referencesJ. Benders, “Partitioning procedures for solving mixed-variables programming problems,” Numer. Math, vol. 4, p. 238–252, 1962.
dc.relation.referencesA. Geoffrion, “Generalized Benders decomposition,” J Optim Theory Appl, vol. 10, no. 4, pp. 237––260, 1972.
dc.relation.referencesH. Kim, S. Lee, S. Han, W. Kim, K. Ok, and S. Cho, “Integrated generation and transmission expansion planning using generalized Bender’s decomposition method,” in 2015 IEEE International Conference on Computational Intelligence Communication Technology, 2015, pp. 493–497
dc.relation.referencesZ. Li, W. Wu, B. Zhang, and B. Wang, “Decentralized multi-area dynamic economic dispatch using modified generalized Benders decomposition,” IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 526–538, 2016
dc.relation.referencesN. Alguacil and A. J. Conejo, “Multiperiod optimal power flow using Benders decomposition,” IEEE Transactions on Power Systems, vol. 15, no. 1, pp. 196–201, 2000.
dc.relation.referencesK. Chung, B. H. Kim, J. Lee, T. Oh, and J. Lee, “Transmission-security constrained optimal dispatch scheduling using generalized Benders decomposition,” in 2009 Transmission Distribution Conference Exposition: Asia and Pacific, 2009, pp. 1–4.
dc.relation.referencesM. Majidi-Qadikolai and R. Baldick, “A generalized decomposition framework for large-scale transmission expansion planning,” IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1635–1649, 2018
dc.relation.referencesA. Moreira, A. Street, and J. M. Arroyo, “An adjustable robust optimization approach for contingency-constrained transmission expansion planning,” IEEE Transactions on Power Systems, vol. 30, no. 4, pp. 2013–2022, 2015.
dc.relation.referencesM. R. Ansari, N. Amjady, and B. Vatani, “Stochastic security-constrained hydrothermal unit commitment considering uncertainty of load forecast, inflows to reservoirs and unavailability of units by a new hybrid decomposition strategy,” IET Generation, Transmission Distribution, vol. 8, no. 12, pp. 1900–1915, 2014
dc.relation.referencesR. Rahmaniani, T. G.Crainic, M. Gendreau, and W. Rei, “The Benders decomposition algorithm: A literature review,” Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation - CIRRELT, Tech. Rep., 2016.
dc.relation.referencesD. W. Watkins and D. C. McKinney, “Decomposition methods for water resources optimization models with fixed costs,” Advances in Water Resources, vol. 21, no. 4, pp. 283 – 295, 1998
dc.relation.referencesS. Trukhanov, L. Ntaimo, and A. Schaefer, “Adaptive multicut aggregation for two-stage stochastic linear programs with recourse,” European Journal of Operational Research, vol. 206, no. 2, pp. 395 – 406, 2010.
dc.relation.referencesR. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The Benders decomposition algorithm: A literature review,” European Journal of Operational Research, vol. 259, no. 3, pp. 801–817, 2017.
dc.relation.referencesR. Pacqueau, F. Soumis, and L. Hoang, “A fast and accurate algorithm for stochastic integer programming, applied to stochastic shift scheduling,” Ècole Polytechnique de Montrèal, Tech. Rep. [Online]. Available: https://www.gerad.ca/en/papers/G-2012-29
dc.relation.referencesJ. R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd ed. Springer-Verlag New York, 2011, vol. 1, pp. 198–202.
dc.relation.referencesJ. F. Bonnans, J. C. Gilbert, C. Lemarechal, and C. A. Sagastizabal, Numerical Optimization. Theoretical and Practical Aspects, 2nd ed. Springer, 2006, pp. 137–154
dc.relation.referencesJ. Linderoth and S. Wright, “Decomposition algorithms for stochastic programming on a computational grid,” Computational Optimization and Applications, no. 24, pp. 207 – 250, 2003.
dc.relation.referencesS. Zaourar and J. Malik, “Quadratic stabilization of Benders decomposition,” HAL - archives-ouvertes, no. hal-01181273, pp. 1 – 27, 2014.
dc.relation.referencesG. Cohen, Auxiliary problem principle and decomposition of optimization problems. J Optim Theory Appl, 1980, vol. 32, pp. 277–305
dc.relation.referencesA. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, 1st ed., August 1983, vol. 165.
dc.relation.referencesH. Ma and S. M. Shahidehpour, “Unit commitment with transmission security and voltage constraints,” IEEE Transactions on Power Systems, vol. 14, no. 2, pp. 757– 764, 1999
dc.relation.referencesR. C. Green, L. Wang, and M. Alam, “Applications and trends of high performance computing for electric power systems: Focusing on smart grid,” IEEE Transactions on Smart Grid, vol. 4, no. 2, pp. 922–931, 2013.
dc.relation.referencesR. C. Green, L. Wang, and M. Alam, “High performance computing for electric power systems: Applications and trends,” in 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 1–8
dc.relation.referencesS. K. Khaitan, “A survey of high-performance computing approaches in power systems,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5
dc.relation.referencesMATLAB, Parallel Computing Toolbox, User’s guide, MatWorks, Inc., 2018
dc.relation.referencesMATLAB, MATLAB Distributed Computing Server, System administrator’s guide, MatWorks, Inc., 2018.
dc.relation.referencesR. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-state operations, planning, and analysis tools for power systems research and education,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12–19, 2011
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, “Matpower User’s Manual version 7.0.” 2019. [Online]. Available: https://matpower.org/docs/MATPOWER-manual-7.1.pdf
dc.relation.referencesLawrence Livermore National Laboratory. (2021) Introduction to parallel computing tutorial. [Online]. Available: https://hpc.llnl.gov/training/tutorials/introduction-parallel-computing-tutorial
dc.relation.referencesH. Falsafi, A. Zakariazadeh, and S. Jadid, “The role of demand response in single and multi-objective wind-thermal generation scheduling: A stochastic programming,” Energy, vol. 64, pp. 853–867, 2014.
dc.relation.referencesO. Alsac and B. Stott, “Optimal load flow with steady-state security,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-93, no. 3, pp. 745–751, 1974
dc.relation.referencesR. Ferrero, S. Shahidehpour, and V. Ramesh, “Transaction analysis in deregulated power systems using game theory,” IEEE Transactions on Power Systems, vol. 12, no. 3, pp. 1340–1347, 1997.
dc.relation.referencesP. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, 1998, ch. 1. Setting the Stage, pp. 1–17
dc.relation.referencesJ. Gondzio and A. Grothey, “Exploiting structure in parallel implementation of interior point methods for optimization,” Computational Management Science, vol. 6, no. 2, pp. 135–160, 2009.
dc.relation.referencesR. D. Zimmerman and C. E. Murillo-Sánchez, “Multi-period SuperOPF (SuperOPF 2.0) User’s Manual.” 2013.
dc.relation.referencesFERC, “FERC RTO Unit Commitment Test System,” Federal Energy Regulatory Commission, Tech. Rep
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalDescomposición y coordinación
dc.subject.proposalDespacho económico seguro
dc.subject.proposalFuentes de energía renovable
dc.subject.proposalGeneración y transmisión de potencia
dc.subject.proposalOptimización numérica de gran escala
dc.subject.proposalPlaneación de sistemas de potencia
dc.subject.proposalProcesamiento en paralelo
dc.subject.proposalDecomposition and coordination
dc.subject.proposalLarge-scale numerical optimization
dc.subject.proposalParallel processing
dc.subject.proposalPower generation and transmission
dc.subject.proposalPower system planning
dc.subject.proposalRenewable energy sources
dc.subject.proposalSecurity economic dispatch
dc.subject.unescoFuente de energía renovable
dc.subject.unescoRenewable energy sources
dc.title.translatedParallel decomposition and coordination to solve an operation planning model for the electricity generation and transmission systems with high penetrations of intermittent sources, energy storage, and smart grid technologies
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentImage
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaEléctrica, Electrónica, Automatización Y Telecomunicaciones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit