Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRuiz-Colorado, Angela Adriana
dc.contributor.authorBonilla Ospina, Nataly
dc.date.accessioned2022-03-31T19:44:02Z
dc.date.available2022-03-31T19:44:02Z
dc.date.issued2020-12-03
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81428
dc.descriptionIlustraciones
dc.description.abstractEl uso de enzimas en diferentes sectores industriales es una alternativa a los procesos químicos convencionales. Las enzimas son atractivas, debido a ventajas técnico-económicas en el proceso, como bajas temperaturas (30ºC - 50ºC), pH (4,0 -5,5) y concentraciones de solventes orgánicos, entre otros. Las enzimas, ofrecen alta especificidad al sustrato, condiciones de proceso moderadas a suaves comparadas con procesos industriales convencionales, baja toxicidad y pureza del producto. En consecuencia, reducción de impactos ambientales negativos. Las celulasas, son el segundo tipo de enzimas predominantes en la industria biotecnológica ya que tiene numerosas aplicaciones en diferentes campos, incluyendo la industria textil, pulpa y papel, alimentos, producción de biocombustibles, farmacéutica, entre otras. Su biosíntesis es controlada por mecanismos como la inducción y la regulación nutricional (regulación de las fuentes de carbono o nitrógeno), principalmente. Diferentes microorganismos son capaces de producir el complejo enzimático celulasas, sin embargo, hongos como Fusarium sp. son ampliamente estudiados, por su buen rendimiento en la producción enzimas y su habilidad de secretar el complejo extracelularmente. En este estudio, Carboximetilcelulosa fue usado como única fuente de carbón para la producción de enzimas celulolíticas (celulasas y endoglucanasas), por Fusarium sp. bajo fermentación en estado sólido (FES). Los efectos de la humedad (65% -80%), la temperatura (28-35ºC), el pH (4,5 – 6,0 Unidades) y el tiempo de fermentación (2-6 días) sobre la producción enzimática, fueron determinados siguiendo la metodología de superficie de respuesta. La condición ideal para la producción para Fusarium sp., tanto de celulasas como endoglucanasas fueron 10 días de fermentación, 71,74% de humedad, pH 5,02 y temperatura 28,8 ºC. La síntesis de celulasa fue reprimida en presencia de xilosa y fructosa, mientras que, fue inducida en presencia de lactosa y soforosa. Finalmente, se caracterizó el extracto enzimático a diferentes temperaturas y pH, lo que permitió determinar que la actividad relativa para endoglucanasa se presenta a 50ºC y pH 5,0, mientras que para actividad celulasa, se presenta a 60ºC y pH 6,0. (Texto tomado de la fuente)
dc.description.abstractThe use of enzymes in different industrial sectors is a conventional alternative to chemical processes, it is attractive due to technical and economic advantages in the process, such as low temperatures (30ºC - 50ºC), pH (4,0 -5,5) and concentrations of organic solvents, among others. Enzymes provide high substrate specificity, moderate to mild process conditions, low toxicity and product purity, thus reducing negative environmental impacts. Cellulases, the second type of enzymes predominant in the industry, are mainly controlled by mechanisms such as induction and nutritional regulation (regulation of carbon or nitrogen sources). Different microorganisms can produce complex cellulase enzymes; however, fungi like Fusarium sp. are widely studied for their good yield in the production of enzymes and their ability to secrete the complex extracellularly. Carboxymethylcellulose was used as the sole source of carbon to produce cellulolytic enzymes, by Fusarium sp. under solid state fermentation (FES, by its acronym in Spanish). The effects of moisture (65-80%), temperature (28-35ºC), pH (4.5 - 6.0 Units) and fermentation time (2-6 days) on enzymatic production were determined following the surface response methodology. The ideal condition for endoglucanase production was 4 days of fermentation 70% humidity, pH 4.5 and temperature 30 ° C, these factors being of significant influence on Fusarium sp. The cellulase synthesis was repressed in the presence of xylose and fructose, while it was induced in the presence of lactose and sophorose. Finally, the enzyme extract was characterized at different temperatures and pH, which determined the highest relative activity for endoglucanase is presented at 50 °C and pH 5.0, while for cellulase activity, it is presented at 60 °C and pH 6.0.
dc.format.extent62 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleOptimización de la producción de celulasa a partir de Fusarium sp.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupBioprocesos y Flujos Reactivos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaBioprocesos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Procesos y Energía
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAhamed, A., & Vermette, P. (2008). Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 40(3), 399–407. https://doi.org/10.1016/j.bej.2007.11.030
dc.relation.referencesBehera, S. S., & Ray, R. C. (2016). Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal of Biological Macromolecules, 86, 656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090
dc.relation.referencesChambergo, F. S., & Valencia, E. Y. (2016). Fungal biodiversity to biotechnology. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-016-7305-2
dc.relation.referencesChellapandi, P., & Jani, A. A. (2009). Enhanced endoglucanase production by soil isolates of Fusarium sp. and Aspergillus sp. through submerged fermentation process. Turkish Journal of Biochemistry, 34(4), 209–214.
dc.relation.referencesDa, P., Delabona, S., Donizete, R., Buzon Pirota, P., Codima, C. A., Tremacoldi, R., … Sanchez Farinas, C. (2013). Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Industrial Crops and Products, 42, 236–242. https://doi.org/10.1016/j.indcrop.2012.05.035
dc.relation.referencesDe Almeida, M. N., Guimarães, V. M., Bischoff, K. M., Falkoski, D. L., Pereira, O. L., Gonçalves, D. S. P. O., & de Rezende, S. T. (2011). Cellulases and hemicellulases from endophytic acremonium species and its application on sugarcane bagasse hydrolysis. Applied Biochemistry and Biotechnology, 165(2), 594–610. https://doi.org/10.1007/s12010-011- 9278-z
dc.relation.referencesDe Almeida, M. N., Guimarães, V. M., Falkoski, D. L., Paes, G. B. T., Ribeiro, J. I., Visser, E. M., de Rezende, S. T. (2014). Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse. Applied Biochemistry and Biotechnology, 172(3), 1332–1346. https://doi.org/10.1007/s12010-013-0572-9
dc.relation.referencesde Cassia Pereira, J., Paganini Marques, N., Rodrigues, A., Brito de Oliveira, T., Boscolo, M., da Silva, R., … Bocchini Martins, D. A. (2015). Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. Journal of Applied Microbiology, 118(4), 928–939. https://doi.org/10.1111/jam.12757
dc.relation.referencesDeswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102(10), 6065–6072. https://doi.org/10.1016/j.biortech.2011.03.032
dc.relation.referencesElisashvili, V., Kachlishvili, E., & Penninckx, M. (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology and Biotechnology, 35(11), 1531–1538. https://doi.org/10.1007/s10295-008-0454-2
dc.relation.referencesElisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. N. (2009). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 25(2), 331– 339. https://doi.org/10.1007/s11274-008-9897-x
dc.relation.referencesFang, X., Yano, S., Inoue, H., & Sawayama, S. (2008). Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. Journal of Bioscience and Bioengineering, 106(2), 115–120. https://doi.org/10.1263/jbb.106.115
dc.relation.referencesGutiérrez-Rojas, I., Moreno-Sarmiento, N., & Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología. https://doi.org/10.1016/j.riam.2013.10.009
dc.relation.referencesHamidi-Esfahani, Z., Shojaosadati, S. A., & Rinzema, A. (2004). Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation. Biochemical Engineering Journal, 21(3), 265–272. https://doi.org/10.1016/j.bej.2004.07.007
dc.relation.referencesJha, K., Khare, S. K., & Gandhi, A. P. (1995). Solid-state fermentation of soyhull for the production of cellulase. Bioresource Technology, 54(3), 321–322. https://doi.org/10.1016/0960-8524(95)00154-9
dc.relation.referencesJuturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203. Retrieved from https://www- sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S1364032114000999
dc.relation.referencesKachlishvili, E., Penninckx, M. J., Tsiklauri, N., & Elisashvili, V. (2006). Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World Journal of Microbiology and Biotechnology, 22(4), 391–397. https://doi.org/10.1007/s11274-005-9046-8
dc.relation.referencesKhan, M. M. H., Ali, S., Fakhru’l-Razi, A., & Alam, M. Z. (2007). Use of fungi for the bioconversion of rice straw into cellulase enzyme. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 42(4), 381–386. https://doi.org/10.1080/03601230701312647
dc.relation.referencesKilikian, B. V, Afonso, L. C., Souza, T. F. C., Ferreira, R. G., & Pinheiro, I. R. (n.d.). Filamentous fungi and media for cellulase production in solid state cultures. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059312/pdf/bjm-45-279.pdf
dc.relation.referencesKing, B. C., Donnelly, M. K., Bergstrom, G. C., Walker, L. P., & Gibson, D. M. (2009). An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnology and Bioengineering, 102(4), 1033–1044. https://doi.org/10.1002/bit.22151
dc.relation.referencesKobakhidze, A., Asatiani, M., Kachlishvili, E., & Elisashvili, V. (2016). Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes. Annals of Agrarian Science. https://doi.org/10.1016/j.aasci.2016.07.001
dc.relation.referencesKumar Bharti, A., Kumar, A., Kumar, A., & Dutt, D. (2018). Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. https://doi.org/10.1016/j.jrras.2018.01.003
dc.relation.referencesKumaran, S., Sastry, C. A., & Vikineswary, S. (1997). Laccase, cellulase and xylanase activities during growth of Pleurotus sajor-caju on sago hampas. World Journal of Microbiology and Biotechnology, 13(1), 43–49. https://doi.org/10.1007/BF02770806
dc.relation.referencesKobakhidze, A., Asatiani, M., Kachlishvili, E., & Elisashvili, V. (2016). Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes. Annals of Agrarian Science. https://doi.org/10.1016/j.aasci.2016.07.001
dc.relation.referencesKumar Bharti, A., Kumar, A., Kumar, A., & Dutt, D. (2018). Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. https://doi.org/10.1016/j.jrras.2018.01.003
dc.relation.referencesLi, Y., Liu, C., Bai, F., & Zhao, X. (2016). Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresource Technology, 216, 503–510. https://doi.org/10.1016/j.biortech.2016.05.108
dc.relation.referencesLee, C. K., Darah, I., & Ibrahim, C. O. (2011). Production and Optimization of Cellulase Enzyme Using Aspergillus niger USM AI 1 and Comparison with Trichoderma reesei via Solid State Fermentation System. Biotechnology Research International, 2011, 1–6. https://doi.org/10.4061/2011/658493
dc.relation.referencesLiu, X., & Kokare, C. (2017). Chapter 11 – Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes (pp. 267–298). https://doi.org/10.1016/B978-0-12-803725-6.00011-X
dc.relation.referencesMarín, M., Anchez, A. S., & Artola, A. (2019). Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. https://doi.org/10.1016/j.jclepro.2018.10.264
dc.relation.referencesMarques, N. P., De Cassia Pereira, J., Gomes, E., Da Silva, R., Araújo, A. R., Ferreira, H., … Bocchini, D. A. (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse T to the production of cellulases and xylanases and their enzymatic extracts have potential for application in pre-treated sugarcane bagasse saccharification processes. https://doi.org/10.1016/j.indcrop.2018.05.022
dc.relation.referencesNazir, A., Soni, R., Saini, H. S., Kaur, A., & Chadha, B. S. (2010). Profiling differential expression of cellulases and metabolite footprints in aspergillus terreus. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-009-8775-9
dc.relation.referencesObruca, S., Marova, I., Matouskova, P., Haronikova, A., & Lichnova, A. (2012). Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiologica, 57(3), 221–227. https://doi.org/10.1007/s12223-012-0098-5
dc.relation.referencesPanagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products, 18(1), 37–45. https://doi.org/10.1016/S0926- 6690(03)00018-9
dc.relation.referencesPatel, A. K., Singhania, R. R., & Pandey, A. (2017). Chapter 2 – Production, Purification, and Application of Microbial Enzymes. In Biotechnology of Microbial Enzymes (pp. 13–41). https://doi.org/10.1016/B978-0-12-803725-6.00002-9 mictec.2010.03.010
dc.relation.referencesRay, R. C., & Behera, S. S. (2016). Chapter 3. Solid State Fermentation for Production of Microbial Cellulases. Biotechnology of Microbial Enzymes, 43–80. https://doi.org/10.1016/B978-0-12- 803725-6.00003-0
dc.relation.referencesRay, R. C., & Behera, S. S. (2017). Chapter 3 – Solid State Fermentation for Production of Microbial Cellulases. In Biotechnology of Microbial Enzymes (pp. 43–79). https://doi.org/10.1016/B978-0-12-803725-6.00003-0
dc.relation.referencesRastegari, A. A. (2018). Molecular Mechanism of Cellulase Production Systems in Penicillium. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 153– 166). https://doi.org/10.1016/b978-0-444-63501-3.00008-9
dc.relation.referencesRies, L. N. A., Beattie, S. R., Espeso, E. A., Cramer, R. A., & Goldman, G. H. (2016). Diverse regulation of the CreA carbon catabolite repressor in aspergillus nidulans. Genetics, 203(1), 335–352. https://doi.org/10.1534/genetics.116.187872
dc.relation.referencesSánchez, C. (2009, March 1). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, Vol. 27, pp. 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
dc.relation.referencesShahriarinour, M., Noor, M., Wahab, A., Mohamad, R., Mustafa, S., & Ariff, A. B. (2011). Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. African Journal of Biotechnology, 10(38), 7459–7467. https://doi.org/10.5897/AJB11.199
dc.relation.referencesSingh nee’ Nigam, P., & Pandey, A. (2009). Solid-State Fermentation Technology for Bioconversion of Biomass and Agricultural Residues. In Biotechnology for Agro-Industrial Residues Utilisation (pp. 197–221). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-9942-7_10
dc.relation.referencesSinghania, R. R., Kumar Patel, A., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid- state fermentation. Biochemical Engineering Journal, 44, 13–18. https://doi.org/10.1016/j.bej.2008.10.019
dc.relation.referencesSinghania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46, 541–549. https://doi.org/10.1016/j.enz
dc.relation.referencesSiqueira, J. G. W., Rodrigues, C., Vandenberghe, L. P. de S., Woiciechowski, A. L., & Soccol, C. R. (2020). Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2019.105419
dc.relation.referencesThomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161. https://doi.org/10.1016/j.bej.2013.10.013 Trivedi, L. S., & Rao, K. K. (1981). Production of cellulolytic enzymes by Fusarium species. Biotechnology Letters, 3(6), 281–284. https://doi.org/10.1007/BF00127395
dc.relation.referencesVan Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002
dc.relation.referencesVelázquez-Cedeño, M. A., Mata, G., & Savoie, J. M. (2002). Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: Changes in the production of some lignocellulolytic enzymes. World Journal of Microbiology and Biotechnology, 18(3), 201–207. https://doi.org/10.1023/A:1014999616381
dc.relation.referencesWan Yoon, L., Nam Ang, T., Cheng Ngoh, G., & Seak May Chua, A. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. https://doi.org/10.1016/j.biombioe.2014.05.01Behera, S. S., & Ray, R. C. (2016). Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal of Biological Macromolecules, 86, 656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090
dc.relation.referencesYoon, L. W., Ang, T. N., Ngoh, G. C., & Chua, A. S. M. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass and Bioenergy, 67, 319–338. https://doi.org/10.1016/J.BIOMBIOE.2014.05.013
dc.relation.referencesZeng, G., Yu, M., Chen, Y., Huang, D., Zhang, J., Huang, H., … Yu, Z. (2010). Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresource Technology, 101(1), 222–227. https://doi.org/10.1016/j.biortech.2009.08.013.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCelulosa
dc.subject.lembCellulose
dc.subject.proposalFusarium sp
dc.subject.proposalEnzimas
dc.subject.proposalCelulasas
dc.subject.proposalEndoglucanasa
dc.subject.proposalMetodología superficie de respuesta
dc.subject.proposalEnzymes
dc.subject.proposalCellulase
dc.subject.proposalEndoglucanases
dc.subject.proposalResponse Surface Methodology
dc.title.translatedOptimization of cellulase production by Fusarium sp.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleos


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit