Show simple item record

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorOrjuela Londoño, Álvaro
dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.authorCárdenas Ramírez, Juliana
dc.date.accessioned2022-07-06T19:07:43Z
dc.date.available2022-07-06T19:07:43Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81683
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractLa presente investigación evalúa la factibilidad técnica de la extracción con solventes de los ácidos grasos libres presentes en los aceites vegetales usados. La primera parte de la investigación fue realizada por medio de un proceso de extracción en sistemas de tanque agitado operados por lotes, en el cual se seleccionó etanol como el mejor solvente para el proceso y las mejores condiciones de temperatura (60 ºC), relación másica aceite:solvente (1:2) y contenido de agua (4%) en el solvente. A estas condiciones la remoción fue del 77% de acidez, 37% de color, 53% de polares, y las pérdidas de aceite en el solvente fueron menores al 0.8%. Por otra parte, se encontró que propiedades como el índice de peróxido, índice de yodo, índice de saponificación, índice anisidina y la distribución de ácidos grasos no son afectadas por el proceso de extracción. Posteriormente, la extracción fue realizada en un contactor de película líquida descendente, el cual permitió la operación en continuo y los mejores resultados fueron obtenidos con una relación másica de aceite:etanol de 1:2, flujo de aceite 0.74 kg/h y una longitud de empaque de 1.07 m. Se alcanzó una efectividad de remoción de impurezas de 51% de acidez, 17% de color, 6.7% de polares. (Texto tomado de la fuente).
dc.description.abstractThis research evaluates the technical feasibility of solvent extraction of free fatty acids present in used vegetable oils. The first part of the research was carried out through a batch extraction process, in which ethanol is selected as the best solvent for the process and the best conditions: temperature (60 ºC), oil:solvent mass ratio (1: 2 ) and water content (4%) in the solvent. These allowed to achieve a removal of 77% acidity, 37% color, 53% polar and oil losses in the solvent less than 0.8%. On the other hand, it was found that properties such as peroxide value, iodine value, saponification value, anisidine value and fatty acid distribution were not affected by the extraction process. Subsequently, the extraction was carried out in a liquid film contactor, which allowed continuous operation and the best results were obtained with an oil:ethanol mass ratio of 1:2, an oil flow of 0.74 kg/h and a length of packaging of 1.07 m, achieved an impurity removal effectiveness of 51% acidity, 17% color, 6.7% polar.
dc.format.extentxvii, 149 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
dc.titleDesacidificación de aceites vegetales usados mediante el método de extracción con solventes
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación de Procesos Químicos y Bioquímicos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaBiorrefinerías – Biocombustibles
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería Química y Ambiental
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesUN, «Sustainable Development Goals. Goal 12: Ensure Sustainable Consumption and Production Patterns,» 2020. [En línea]. Available: https://www.un.org/sustainabledevelopment/sustainable-consumption-production/. [Último acceso: 2020 Julio 28].
dc.relation.referencesA. Orjuela, «Industrial Oleochemicals from Used Cooking Oils (UCOs)- Sustainability Benefits and Challenges,» de Advances in Carbon Management Technologies, vol. 2, CRC Press, 2020.
dc.relation.referencesOECD-FAO, «Agricultural Outlook 2019-2028 OECD-FAO,» 2019. [En línea]. Available: http://www.fao.org/3/ca4076en/ca4076en.pdf. [Último acceso: 1 4 2020].
dc.relation.referencesT. Tsoutsos, S. Tournaki, O. Paraíba y S. Kaminaris, «The Used Cooking Oil-to-biodiesel chain in Europe assessment of best practices and environmental performance,» Renewable and Sustainable Energy Reviews, vol. 54, pp. 74-83, 2016.
dc.relation.referencesL. A. Rincón, J. G. Cadavid y A. Orjuela, «Used cooking oils as potential oleochemical feedstock of urban biorefineries - Study case in Bogota, Colombia,» Waste Management, vol. 88, pp. 200-210, 2019.
dc.relation.referencesB. Mendecka, L. Lombardi y J. Koziol, «Probabilistic multi-criteria analysis for evaluation of biodiesel production technologies from used cooking oil,» Renewable Energy, vol. 147, pp. 2542-2553, 2020.
dc.relation.referencesUE, «DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009,» 23 04 2009. [En línea]. Available: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PDF. [Último acceso: 30 03 2020].
dc.relation.referencesL. Talens Peiró, L. Lombardi, G. Villalba Méndez y X. Gabarrell i Durany, «Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO),» Energy, vol. 35, nº 2, pp. 889-893, 2010.
dc.relation.referencesZ. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam y K. Sopian, «Overview of the production of biodiesel from waste cooking oil,» Renewable and Sustainable Energy Reviews, vol. 18, pp. 184-193, 2013.
dc.relation.referencesJ. Cvengros y Z. Cvengrosová, «Used frying oils and fats and their utilization in the production of methyl esters of higher fatty acids,» Biomass and Bioenergy, vol. 27, pp. 173-181, 2004.
dc.relation.referencesUSDA , «U.S. Bioenergy Statistics,» 22 01 2020. [En línea]. Available: https://www.ers.usda.gov/data-products/us-bioenergy-statistics/. [Último acceso: 1 04 2020].
dc.relation.referencesJ. Cárdenas, A. Orjuela, D. L. Sánchez, P. C. Narváez, B. Katryniok y J. Clark, «Pre-treatment of used cooking oils for the production of green chemicals: A review,» Journal of Cleaner Production, vol. 289, nº 125129, 2021.
dc.relation.referencesC. Sze Ki Lin, L. A. Pfaltzgraff, L. Herrero Davila, E. B. Mubofu, S. Abderrahim, J. H. Clark, A. A. Koutinas, N. Kopsahelis, K. Stamatelatou, F. Dickson, S. Thankappan, Z. Mohamed, R. Brocklesby y R. Luque, «Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective,» Energy & Environmental Science, vol. 6, pp. 426-464, 2013.
dc.relation.referencesG. L. Maddikeri, A. B. Pandit y P. R. Gogate, «Intensification Approaches for Biodiesel Synthesis from Waste Cooking Oil: A Review,» Industrial & Engineering Chemistry Research, vol. 51, pp. 14610-14628, 2012.
dc.relation.referencesJ. Riera y R. Codony, «Recycled cooking oils: assessment of risks for public health - Final Study,» European Parliament, Luxembourg, 2000.
dc.relation.referencesE. Choe y D. Min, «Chemistry of Deep-Fat Frying Oils. 72, R77-R86. https://doi.org/10.1111/j.1750-3841.2007.00352.x,» Journal of Food Science, vol. 72, nº 5, pp. R77-R86, 2007.
dc.relation.referencesS. Marmesat, E. Rodrigues, J. Velasco y C. Dobarganes, «Quality of used frying fats and oils: comparison of rapid tests based on chemical and physical oil properties,» International Journal of Food Science and Technology, vol. 42, pp. 601-608, 2007.
dc.relation.referencesW. Zhenzhong, Y. Xinhai, T. Shan-Tung, Y. Jinyue y E. Danhlquist, «Biodiesel production from waste cooking oil catalyzed by TiO2–MgO mixed oxides,» Bioresource Technology, vol. 101, pp. 9570-9576, 2010.
dc.relation.referencesA. Demirbas, «Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification,» Energy Conversion and Management, vol. 50, pp. 923-927, 2009.
dc.relation.referencesL. A. Rincón Vija, Reutilización de aceites de cocina usados en la producción de aceites epoxidados, vol. Tesis, Bogotá: Universidad Nacional de Colombia, 2018.
dc.relation.referencesA. V. Tomasevic y S. S. Siler-Marinkovic, «Methanolysis of used frying oil,» Fuel Processing Technology, vol. 81, pp. 1-6, 2003.
dc.relation.referencesA. N. Phan y T. M. Phan, «Biodiesel production from waste cooking oils,» Fuel, vol. 87, pp. 3490-3496, 2008.
dc.relation.referencesM. P. Dorado, E. Ballesteros, M. Mittelbach y F. J. López, «Kinetic Parameters Affecting the Alkali-Catalyzed Transesterification process of Used Olive Oil,» Energy & Fuels, vol. 18, pp. 1457-1462, 2004.
dc.relation.referencesD. I. Jordanov, P. S. Petkov, Y. K. Dimitrov y S. K. Ivanov, «Methanol transesterification of different vegetable oils,» Petroleum & Coal, vol. 49, nº 2, pp. 21-23, 2007.
dc.relation.referencesM. Gupta, Practical Guide to Vegetable Oil Processing. 2nd ed., Lynnwood, USA: Academic Press and AOCS Press, 2017. B. Supple, R. Howard Hildige, E. Gonzalez Gomez y J. Leahy, «The effect of steam treating waste cooking oil on the yield of methyl ester,» JAOCS, vol. 79, nº 2, pp. 175-178, 2002.
dc.relation.referencesMacjerry Sunfloweroil, «Used Cooking Oil (UCO),» [En línea]. Available: https://macjerrysunfloweroilltd.webnode.com/products/avocado-oil-rbd/. [Último acceso: 28 Julio 2020].
dc.relation.referencesT. Issariyakul, M. G. Kulkarni, A. K. Dalai y N. N. Bakhshi, «Production of biodiesel from waste fryer grease using mixed methanol/ethanol system,» Fuel Processing Technology, vol. 88, pp. 429-436, 2007.
dc.relation.referencesR. Skelton, «Processing of used cooking oil for the production of biofuels. In Waldron, K. (Ed.),» de Handbook of Waste Management and Co-Product Recovery in Food Processing, Cambridge, UK, Woodhead Publishing Ltd. And CRC press LLC, 2009.
dc.relation.referencesT. Eryilmaz, F. Aksoy, L. Aksoy, H. Bayrakceken, F.-E. Aysal, S. Sahin y M.-K. Yesilyurt, «Process optimization for biodiesel production from neutralized waste cooking oil and the effect of this biodiesel on engine performance,» Ciencia, tecnologia y futuro, vol. 8, nº 1, pp. 121-127, 2018.
dc.relation.referencesA. Ramadhas, S. Jayaraj y C. Muraleedharan, «Biodiesel production from high FFA rubber seed oil,» Fuel, vol. 84, pp. 335-340, 2005.
dc.relation.referencesJ. V. Gerpen, «Biodiesel processing and production,» Fuel Processing Technology , vol. 86, pp. 1097-1107, 2005.
dc.relation.referencesP. Felizardo, M. J. Neiva Correia, I. Raposo, J. F. Mendes, R. Berkemeier y J. Moura Bordado, «Production of biodiesel from waste frying oils,» Waste Management, vol. 26, pp. 487-494, 2006.
dc.relation.referencesC. E. C. Rodrigues y A. J. A. Meirelles , «Extraction of Free Fatty Acids from Peanut Oil and Avocado Seed Oil: Liquid-Liquid Equilibrium Data at 298.2 K,» Journal Chemical Engineering, vol. 53, pp. 1698-1704, 2008.
dc.relation.referencesC. Vaisali, S. Charanyaa, P. D. Belur y I. Regupathi, «Refining of edible oils: a critical appraisal of current and potential technologies,» International Journal of Food Science and Technology, vol. 50, nº 1, pp. 13-23, 2015.
dc.relation.referencesL. C. Meher, V. S. S. Dharmagadda y S. N. Naik , «Optimization of alkali-catalyzed transesteriWcation of Pongamia pinnata oil for production of biodiesel,» Bioresource Technology, vol. 97, pp. 1392-1397, 2006.
dc.relation.referencesF. Shahidi, «Quality Characteristics of Edible Oils. In Shahidi, F., Spanier, A., Ho, C., Braggins, T.,» de Quality of Fresh and Processed Foods. Advances in Experimental Medicine and Biology, Boston, MA, USA, Springer, 2004.
dc.relation.referencesS. Pinzi y M. Dorado, «Feedstocks for advanced biodiesel production. In Luque, R., Melero, J. A., (Eds.),» de Advances in Biodiesel Production , Cambridge, UK, Woodhead Publishing Series in Energy, 2012.
dc.relation.referencesA. E. Bailey, Bailey's Industrial Oil and Fat Products, vol. 2, F. Shahidi, Ed., New Jersey: Wiley Interscience, 2005.
dc.relation.referencesR. E. Treybal, Operaciones de transferencia de masa, 2 ed., A. G. Rodríguez, Ed., Mexico: McGraw Hill, 2000.
dc.relation.referencesL. A. Figueroa Casallas, Modelamiento de un sistema de separación de ácidos grasos libres y fitonutrientes en el aceite de palma desgomado empleando contactores de película líquida operados en paralelo usando etanol como solvente, Bogotá, 2019.
dc.relation.referencesX. Yuan, J. Liu, G. Zeng, J. Shi, J. Tong y G. Huang, «Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology,» Renewable Energy , vol. 33, pp. 1678-1684, 2008.
dc.relation.referencesF. A. Manyoma Arboleda, Reducción de ácidos grasos en aceites vegetales mediante extracción por solventes, Bogotá, 2017.
dc.relation.referencesAesan, «Agencia Española de Seguridad Alimentaria y Nutrición : 3-MCPD, glicidol y sus ésteres,» 2020. [En línea]. Available: https://www.aesan.gob.es/AECOSAN/web/seguridad_alimentaria/subdetalle/3_MCPD.htm. [Último acceso: 27 Enero 2022].
dc.relation.referencesM. Ulfah, O. S. Firdaus, H. Suherman y S. Subagjo, «Biodiesel Production Through Waste Cooking Oil (WCO) Esterification Using Sulfated Alumina as Catalyst,» IOP Conf. Ser-Mat Sci. Eng, vol. 543, nº 012007, 2018.
dc.relation.referencesS. Zainal Abidin, K. F. Haigh y B. Saha, «Esterification of free fatty acids in used cooking oil using ion-exchange resins as catalysts: An efficient pretreatment method for biodiesel feedstock,» Industrial & Engineering Chemistry Research, vol. 51, pp. 14653-14664, 2012.
dc.relation.referencesS. Cho, T. Kwon y S. Yoon, «Selective removal of free fatty acids in oils using a microorganism,» Journal of American Oil Chemists Society, vol. 67, pp. 558-560, 1990.
dc.relation.referencesM. Xiangmei, C. Guanyi y W. Yonghong, «Biodiesel production from waste cooking oil via alkali catalyst and its engine test,» Fuel Processing Technology, vol. 89, pp. 851-857, 2008.
dc.relation.referencesP. Sahoo y L. M. Das, «Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils,» Fuel, vol. 88, pp. 1588-1594, 2009.
dc.relation.referencesN. Nam Tran, M. Tisma, S. Budzaki, E. J. McMurchie, O. M. Morales Gonzalez, V. Hessel y Yung Ngothai, «Scale-up and economic analysis of biodiesel production from recycled grease trap waste,» Applied Energy, vol. 229, pp. 142-150, 2018.
dc.relation.referencesS. Kumar Karmee, R. Dharma Patria y C. S. Ki Lin, «Techno-Economic Evaluation of Biodiesel Production from Waste Cooking Oil—A Case Study of Hong Kong,» International Journal of Molecular Sciences, vol. 16, pp. 4363-4371, 2015.
dc.relation.referencesM. G. Kulkarni, R. Gopinath, L. C. Meher y A. Kumar Dalai, «Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification,» Green Chemistry, vol. 8, pp. 1056-1062, 2006.
dc.relation.referencesT. K. Mag, «Blanqueo: Teoría y Práctica,» de Processing of the world conference proceedings edible fats and oils, Champaign IL, AOCS Press, 1990.
dc.relation.referencesN. P. Quintana Garzón, «Recuperación de aceite de fritura al vacío mediante la aplicación de tierra filtrante Trysil,» Quito, 2014.
dc.relation.referencesS. Rahayu y B. A. Supriyatin, «Activated carbon-based bio-adsorbent for reducing free fatty acid number of cooking oil,» AIP Conf. Proc., nº 050004, 2018.
dc.relation.referencesN. Sarier y C. Guler, «The mechanims of Beta-carotene adsorption on activated montmorillonite,» J. Amer. Oil Chem. Soc., vol. 66, pp. 917-923, 1989.
dc.relation.referencesS. G. Sumnu y S. Sahin, Advances in Deep-Fat Frying of Foods, Boca Ratón, USA: CRC Press, 2008.
dc.relation.referencesT.-W. Chung, Y.-L. Wu y S.-H. Hsu, «Removal of free fatty acid from plan oil by the adsorption process,» Materials Science and Engineering, vol. 362, 2018.
dc.relation.referencesL. M. C. F. C. N. M. Kheang, «Recovery and conversion of palm olein-derived used frying oil to methyl esters for biodiesel,» J. Oil Palm Res., nº 18, pp. 247-252. , 2006.
dc.relation.referencesB. Bhosle y R. Subramanian, «New approaches in deacidification of edible oils - a review,» Journal of Food Engineering, vol. 69, nº 1, pp. 481-494, 2005.
dc.relation.referencesA. K. N. Ladhe, «Application of Membrane Technology in Vegetable Oil Processing.,» de In Cui, Z. F., Muralidhara, H. S. (Eds.) Membrane Technology. A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing., London, UK, Butterworth-Heinemann, 2010.
dc.relation.referencesA. J. Meirelles, «Desarrollo de un nuevo proceso de refinación para mantener los carotenos en el aceite de palma comestible,» Palmas Espec., vol. 31, nº II, pp. 141-152, 2010.
dc.relation.referencesC. E. C. Rodrigues, R. Antoniassi y A. J. A. Meirelles, «Equilibrium Data for the System Rice Bran Oil + Fatty acids + Ethanol + Water at 292.2 K,» Journal Chemical Engineering, vol. 48, pp. 367-373, 2003.
dc.relation.referencesO. I. Mba, M.-J. Dumont y M. Ngadi, «Palm oil: proccesing, characterization and utilization in the food industry - A review,» Food Bioscience, vol. 10, pp. 26-41, 2015.
dc.relation.referencesK. I. M. S. N. Palanisamy, «Preliminary evaluation of the effectiveness of moisture removal and energy usage in pretreatment module of waste cooking oil for biodiesel production,» IOP C. Ser. Earth Env. Sci. , vol. 16 , nº 012053, 2013.
dc.relation.referencesM. K. Lam, K. T. Lee y A. R. Mohamed, «Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review,» Biotechnology Advances, vol. 28, pp. 500-518, 2010.
dc.relation.referencesJ. M. Dias, M. C. M. Alvim Ferraz y M. F. Almeida , «Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality,» Fuel, vol. 87, pp. 3572-3578, 2008.
dc.relation.referencesP. Patil, D. Shuguang, I. Rhodes y P. J. Lammers, «Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes,» Fuel, vol. 89, pp. 360-364, 2010.
dc.relation.referencesN. Saifuddin y K. H. Chua, «Production of ethyl ester (biodiesel) from used frying oil: Optimization of transesterification process using microwave irradiation,» Malaysian Journal of Chemistry, vol. 6, nº 1, pp. 077-082, 2004.
dc.relation.referencesP. C. J. T. W. Sutrisna, «Microfiltration of Oily Waste Water: A study of Flux Decline and Feed Types,» IOP Conf. Ser-Mat Sci. Eng., vol. 543, nº 012079, 2018.
dc.relation.referencesP. B. H. Hermans, «Principles of the Mathematical Treatment of Constant-Pressure Filtration,» J. Soc. Chem. Ind., vol. 55T, pp. 1-4, 1936.
dc.relation.referencesD. Bacovsky, W. Korbitz, M. Mittelbach y M. Worgetter, «Biodiesel production: Technology and European providers,» 2007.
dc.relation.referencesL. Andrade de Sá, M. C. Capellini y C. E.C. Rodrigues, «Soybean oil deacidifitcation by liquid-liquid extraction using hydrous ethanol,» Journal of Food Process Engineering, pp. 1-11, 2020.
dc.relation.referencesS. Chumsantea, K. Aryusuk, S. Lilitchan, N. Jeyashoke y K. Krisnangkura, «Reducing oil losses in alkali refining,» Journal of the American Oil Chemists' Society, pp. 1913-1919, 2012.
dc.relation.referencesC. B. Gonçalves, E. Batista y A. J. A. Meirelles, «Liquid-Liquid Equilibrium Data for the System Corn Oil + Oleic Acid + Ethanol + Water at 298.15 K,» Journal of Chemical & Engineering Data, vol. 47, pp. 416-420, 2002.
dc.relation.referencesC. Thomopoulos, «Méthode de Desacidification des Huiles par Solvant Sélectif,» Revue-Francaise-des-Corps-Gras, pp. 143-150, 1971.
dc.relation.referencesC. G. Pina y A. Meirelles, «Deacidification of Corn Oil by Solvent Extraction in a Perforated Rotating Disc Column,» Journal of the American Oil Chemists' Society, pp. 553-559, 2000.
dc.relation.referencesL. A. Rincon, J. Cárdenas Ramírez y A. Orjuela, «Assessment of degumming and bleaching processes for used cooking oils upgrading into oleochemical feedstocks,» Journal of Environmental Chemical Engineering, 2020.
dc.relation.referencesE. Batista, S. Monnerat, K. Kato, L. Stragevitch y A. J. Meirelles, «Liquid-Liquid Equilibrium for Systems of Canola Oil, Oleic Acid, and Short-Chain Alcohols.,» Journal of Chemical & Engineering Data, pp. 1360-1364, 1999.
dc.relation.referencesC. Chiyoda, E. C. Peixoto, A. J. Meirelles y C. E. Rodrigues, «Liquid-liquid equilibria for systems composed of refined soybean oil, free fatty acids, ethanol, and water at different temperatures,» Fluid Phase Equilibria, pp. 141-147, 2010.
dc.relation.referencesC. E. Rodrigues, E. C. Peixoto y A. J. Meirelles, «Phase equilibrium for systems composed by refined soybean oil + commercial linoleic acid + ethanol + water, at 323.2 K,» Fluid Phase Equilibria, pp. 122-128, 2007.
dc.relation.referencesA. Hemmati, M. Shirvani, M. Torab-Mostaedi y A. Ghaemi, «Hold-up and Flooding characteristics in a perforated rotating disc contactor (PRDC),» RSC Advances, pp. 630025-63033, 2015.
dc.relation.referencesC. M. Oliveira, B. R. Garavazo y C. E. Rodrigues, «Liquid-liquid equilibria for systems composed of rice bran oil and alcohol-rich solvents: Application to extraction and deacidification of oil,» Journal of Food Engineering , vol. 110, nº 3, pp. 418-427, 2012.
dc.relation.referencesM. S. Cuevas, C. E. Rodrigues y A. J. Meirelles, «Effect of solvent hydration and temperature in the deacidification process of sunflower oil using ethanol,» Journal of Food Engineering, vol. 95, nº 2, pp. 291-297, 2009.
dc.relation.referencesC. B. Gonçalves y A. J. A. Meirelles, «Liquid–liquid equilibrium data for the system palm oil + fatty acids + ethanol + water at 318.2K,» Fluid Phase Equilibria, pp. 139-150, 2004.
dc.relation.referencesC. B. Gonçalves, C. E. Rodrigues, E. C. Marcon y A. J. Meirelles, «Deacidification of palm oil by solvent extraction,» Separation and Purification Technology, vol. 160, pp. 106-111, 2016.
dc.relation.referencesC. E. C. Rodrigues, É. C. D. Reipert, A. F. d. Souza, P. A. Pessoa Filho y A. J. A. Meirelles, «Equilibrium data for systems composed by cottonseed oil + commercial linoleic acid + ethanol + water + tocopherols at 298.2 K,» Fluid Phase Equilibria, vol. 238, pp. 193-203, 2005.
dc.relation.referencesC. E. C. Rodrigues, A. Filipini y A. Meirelles , «Phase Equilibrium for Systems Composed by High Unsaturated Vegetable Oils + Linoleic Acid + Ethanol + Water at 298.2 K,» Journal of Chemical & Engineering Data, vol. 51, nº 1, pp. 15-21, 2005.
dc.relation.referencesR. Antoniassi, W. Esteves y A. J. Almeida Meirelles, «Pretreatment of corn oil for physical refining,» Journal of the American Oil Chemists' Society, vol. 75, pp. 1411-1415, 1998.
dc.relation.referencesMinitab, «¿Qué son los diseños de superficie de respuesta, los diseños centrales compuestos y los diseños de Box-Behnken?,» 2019. [En línea]. Available: https://support.minitab.com/es-mx/minitab/18/help-and-how-to/modeling-statistics/doe/supporting-topics/response-surface-designs/response-surface-central-composite-and-box-behnken-designs/. [Último acceso: 02 01 2021].
dc.relation.referencesX. Leong, C. Ng, K. Jaarin y M. Mustafa, «Effects of repeated heating of cooking oils on antioxidant content and endothelial function,» Journal of Pharmacology and Therapeutics, 2015.
dc.relation.referencesA. Sebastian, S. M. Ghazani y A. G. Marangoni, «Quality and safety of frying oils used in restaurants,» Food Research International, vol. 64, pp. 420-423, 2014.
dc.relation.referencesH. A. Al-Kahtani, «Survey of quality of used frying oils from restaurants,» Journal of the American Oil Chemists Society, vol. 12, pp. 857-862, 1991.
dc.relation.referencesC. Tompkins y E. G. Perkins, «The evaluation of frying oils with the p-Anisidine value,» Journal of the American Oil Chemists' Society, 199.
dc.relation.referencesG. R. List, C. D. Evans, W. F. Kwolek, K. Warner, B. K. Boundy y J. C. Cowan, «Oxidation and quality of soybean oil: a preliminaty study of the anisidine test,» Journal of the American Oil Chemists' Society, vol. 41, nº 2, pp. 17-21, 1974.
dc.relation.referencesM. A. Noriega, P. C. Narváez, J. G. Cadavid y A. C. Habert, «Modeling of biodiesel production in Liquid-Liquid Film Reactors including mass transfer effects,» Fuel Processing Technology, pp. 524-534, 2017.
dc.relation.referencesM. Gomes, C. M. Da Silva, S. Couri, R. I. Nogueira y S. P. Freitas, «Partition of Free Fatty Acids in Deacidification of Maca ba Pulp Oil by Liquid-Liquid Extraction using Ethanol/Water as Solvent,» Defect and Diffusion Forum, nº 312-315, pp. 554-559, 20111.
dc.relation.referencesF. García Reina, F. Cordero Rodríguez, R. Ramírez Zamora y F. Hernández Rodríguez, «Determinación del calor específico de los aceites térmico y de soya y su efecto en la eficiencia energética de la caldera de freidora de papas,» Revista Colombiana de Tecnologías de Avanzada, vol. 2, nº 34, pp. 98-102, 2019.
dc.relation.referencesWinnipeg, «Emission factors in kg CO2-equivalent per unit,» 2012. [En línea]. Available: https://www.winnipeg.ca/finance/findata/matmgt/documents/2012/682-2012/682-2012_Appendix_H-WSTP_South_End_Plant_Process_Selection_Report/Appendix%207.pdf. [Último acceso: 15 Marzo 2022]. .
dc.relation.referencesGlobal Petrol Prices, «Brazil etanol prices,» 2022. [En línea]. Available: https://www.globalpetrolprices.com/Brazil/ethanol_prices/. [Último acceso: 15 Marzo 2022].
dc.relation.referencesGlobal Petrol Prices, «Colombia natural gas prices,» 2022. [En línea]. Available: https://www.globalpetrolprices.com/Colombia/natural_gas_prices/. [Último acceso: 15 Marzo 2022].
dc.relation.referencesGreenea, «Waste-based market performance,» 2022. [En línea]. Available: http://www.greenea.com/en/market-analysis/. [Último acceso: 20 Junio 2022].
dc.relation.referencesISO3657, 2020
dc.relation.referencesISO 660, 2020.
dc.relation.referencesISO 3961, 2018.
dc.relation.referencesISO 3960, Animal and vegetable fats and oils - Determination of peroxide value - Iodometric (visual) endpoint determination, 2017.
dc.relation.referencesK. Lazarick, «Cause of color component formation in oils during frying,» University of Lethbridge, 2012. P. S. y M. G. S., «Dynamics of Fat / Oil Degradation during Frying Based on Optical Properties,» Journal of Food Engineering, pp. 389-403, 1996.
dc.relation.referencesTesto, «Testo 270 - Medidor de aceite de fritura,» 15 12 2020. [En línea]. Available: https://www.testo.com/es-CO/testo-270/p/0563-2750.
dc.relation.referencesISO 662, Animal and vegetable fats and oils - Determination of moisture and volatile matter content, 2016
dc.relation.referencesG. Hoffman, The chemistry and Technology of Edible Oils and Fats and their high fat product, Academic Press, 1989.
dc.relation.referencesS. Divakar y B. Manohar, «Use of Lipases in the Industrial Production of Esters.,» de Industrial Enzymes, Dordrecht, Netherlands, Springer, 2007.
dc.relation.referencesC. Hansen, Hansen Solubility Parameters. A User's Handbook, Second Edition., Boca Ratón, USA. : CRC Press., 2007..
dc.relation.referencesA. C. C. S. C. P. M. S. L. Albuquerque, «Optimization of the extraction of free fatty acids applied to biodiesel production,» Braz. J. Chem. Eng., nº 35, pp. 327-340, 2018.
dc.relation.referencesA. V. G. T. S. G. Stankiewicz, The Fundamentals of Process Intensification, Wiley-VCH, 2019.
dc.relation.referencesNIST, «Ethanol - National Institute of Standards and Technology,» [En línea]. Available: https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Mask=2#Thermo-Condensed. [Último acceso: 16 02 2022].
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocDesacidificación
dc.subject.agrovocdeacidification
dc.subject.lembVegetable oils
dc.subject.lembAceites vegetales
dc.subject.lembOil reclamation
dc.subject.lembRecuperación de aceites usados
dc.subject.proposalAceite vegetal usado
dc.subject.proposalPretratamiento
dc.subject.proposalExtracción con solvente
dc.subject.proposalDesacidificación
dc.subject.proposalContactor de película líquida descendente
dc.subject.proposalUsed vegetable oil
dc.subject.proposalPre-treatment
dc.subject.proposalSolvent extraction
dc.subject.proposalDeacidification
dc.subject.proposalLiquid film contactor
dc.title.translatedDeacidification of used vegetable oils by extraction method with solvents
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleValorization of urban used cooking oils by transformation into value added chemicals. Study case
oaire.fundernameRoyal Academy of Engineering - grant IAPP18-19\65; Newton Fund, Institutional Links grants - Project 526061819
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Reconocimiento 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit