Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCastellanos Parra, Jaime Eduardo
dc.contributor.authorTrujillo Morales, Paula Camila
dc.date.accessioned2022-08-05T19:44:34Z
dc.date.available2022-08-05T19:44:34Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81796
dc.descriptionfotografías a color, gráficas, ilustraciones, tablas
dc.description.abstractStaphylococcus aureus es una bacteria gram positiva, patógeno oportunista con capacidad de generar infecciones potencialmente mortales en humanos por la producción de varios factores de virulencia, del mismo modo muchos procesos biológicos de esta bacteria no son completamente entendidos, como por ejemplo el procesamiento de su ARN. Recientemente, en nuestro laboratorio, se identificó la proteína Qrp/YheA la cual posee el dominio Com_YlbF, la deleción del gen qrp produce un aumento en la hemólisis de eritrocitos y disminución en la formación de biofilm, posiblemente asociada a la desregulación en la transcripción de algunos factores de virulencia de la bacteria. Otra proteína con dominio Com_YlbF es YmcA, cuya ausencia en Bacillus subtilis inhibe la formación de biofilm, a través de la alteración de la actividad de la RNasa Y, con quien también interactúa. En S. aureus no se conoce el rol de YmcA. Por lo cual el objetivo de este trabajo fue determinar la interacción de la proteína YmcA con RNasa Y y determinar su participación en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus. Para ello se realizó la mutación delecional del gen ymcA, que causó un descenso en la capacidad hemolítica de la bacteria y un incremento en la capacidad de formación de biofilm de esta. Por otro lado, con el ensayo de Far Western Blot se demostró la interacción de la proteína YmcA con la ribonucleasa RNasa Y. Concluyendo así que la proteína YmcA participa en la hemólisis y biofilm de S. aureus probablemente debido a la interacción de YmcA con la RNasa Y. (Texto tomado de la fuente)
dc.description.abstractStaphylococcus aureus is a gram-positive bacterium, an opportunistic pathogen with the capacity to generate life-threatening infections in humans due to the production of various virulence factors. Currently, many biological processes of this bacterium are not fully understood, such as the processing of its RNA. Recently, in our laboratory, the Qrp/YheA protein was identified, which has the Com_YlbF domain. The deletion of the qrp gene produces an increase in erythrocyte hemolysis and a decrease in biofilm formation, possibly associated with transcription deregulation. some bacterial virulence factors. Another protein with a Com_YlbF domain is YmcA, whose absence in Bacillus subtilis inhibits biofilm formation by altering the activity of RNase Y, with which it also interacts. In S. aureus the role of YmcA is not known. Therefore, the objective of this work is to determine the interaction of the YmcA protein with RNase Y and to determine its participation in the regulation of hemolysis and biofilm formation in Staphylococcus aureus. For this, the deletional mutation of the ymcA gene was carried out, obtaining a decrease in the hemolytic capacity of the bacteria and an increase in its biofilm formation capacity. The Far Western Blot assay also demonstrated the interaction of the YmcA protein with ribonuclease RNase Y. Concluding that the YmcA protein participates in the hemolysis and biofilm of S. aureus and this is possibly due to the interaction of YmcA with RNase Y (Text taken of source)
dc.format.extent79 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.titleDeterminación de la participación de la proteína YmcA en la regulación de la hemólisis y formación de biofilm en Staphylococcus aureus
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.description.degreelevelMaestría
dc.description.researchareaEstudio de factores de virulencia y elementos genéticos móviles bacterianos.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Química
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesCervantes-García, E., García-González, R., & Salazar-Schettino, P. M. (2014). General characteristics of Staphylococcus aureus. Revista latinoamericana de patología clínica y medicina de laboratorio, 61(1), 28-40
dc.relation.referencesVelázquez-Meza, Maria Elena. (2005). Surgimiento y diseminación de Staphylococcus aureus meticilinorresistente. Salud Pública de México, 47(5), 381- 387.
dc.relation.referencesPaganini, Hugo R., Della Latta, Paula, Soto, Adriana, Casimir, Lidia, Mónaco, Andrea, Verdaguer, Virginia, Berberian, Griselda, Rosanova, María T., González, Fernando, & Sarkis, Claudia. (2010). Bacteriemias por Staphylococcus aureus adquiridas en la comunidad: 17 años de experiencia en niños de la Argentina. Archivos argentinos de pediatría, 108(4), 311-317
dc.relation.referencesCalderini, M., Sanabria, B. G., Taboada, A., Samaniego, S., Irala, B. J., & Estigarribia, G. B. (2015). Colonización nasal de Staphylococcus aureus y su relación con afectación sistémica en pacientes adultos intearndos en el Instituto de Medicina Tropical. de Medicina Tropical, 13.
dc.relation.referencesDalla Serra, M., Coraiola, M., Viero, G., Comai, M., Potrich, C., Ferreras, M., ... & Prévost, G. (2005). Staphylococcus aureus bicomponent γ-hemolysins, HlgA, HlgB, and HlgC, can form mixed pores containing all components. Jouarnl of chemical information and modeling, 45(6), 1539-1545.
dc.relation.referencesArcher, N. K., Mazaitis, M. J., Costerton, J. W., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence, 2(5), 445-459.
dc.relation.referencesBeenken, K. E., Dunman, P. M., McAleese, F., Macapagal, D., Murphy, E., Projan, S. J., ... & Smeltzer, M. S. (2004). Global gene expression in Staphylococcus aureus biofilms. Jouarnl of bacteriology, 186(14), 4665-4684.
dc.relation.referencesOtto, M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 322, 207–228 (2008).
dc.relation.referencesGauliard, E., Ouellette, S. P., Rueden, K. J., & Ladant, D. (2015). Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis. Frontiers in cellular and infection microbiology, 5, 13.
dc.relation.referencesOtto, M. (2013). Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual review of medicine, 64, 175- 188.
dc.relation.referencesAbee T, Kovács ÁT, Kuipers OP, van der Veen S. (2011) Biofilm formation and dispersal in Gram-positive bacteria. Current Opinion in Biotechnology.
dc.relation.referencesValle, J., Toledo‐Arana, A., Berasain, C., Ghigo, J. M., Amorena, B., Penadés, J. R., & Lasa, I. (2003). SarA and not σB is essential for biofilm development by Staphylococcus aureus. Molecular microbiology, 48(4), 1075-1087.
dc.relation.referencesBeenken, K. E., Blevins, J. S., & Smeltzer, M. S. (2003). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infection and immunity, 71(7), 4206-4211.
dc.relation.referencesChan, W. C., Coyle, B. J., & Williams, P. (2004). Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. Jouarnl of medicinal chemistry, 47(19), 4633-4641.
dc.relation.referencesBeenken, K. E., Mrak, L. N., Griffin, L. M., Zielinska, A. K., Shaw, L. N., Rice, K. C., ... & Smeltzer, M. S. (2010). Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PloS one, 5(5).
dc.relation.referencesKong, K. F., Vuong, C., & Otto, M. (2006). Staphylococcus quorum sensing in biofilm formation and infection. Intearntional Jouarnl of Medical Microbiology, 296(2-3), 133-139.
dc.relation.referencesLiu, Q., Yeo, W. S., & Bae, T. (2016). The SaeRS two‐component system of Staphylococcus aureus. Genes, 7(10), 81.
dc.relation.referencesNicholas, R. O., Li, T., McDevitt, D., Marra, A., Sucoloski, S., Demarsh, P. L., & Gentry, D. R. (1999). Isolation and Characterization of a sigBDeletion Mutant of Staphylococcus aureus. Infection and immunity, 67(7), 3667-3669.
dc.relation.referencesRachid, S., Ohlsen, K., Wallner, U., Hacker, J., Hecker, M., & Ziebuhr, W. (2000). Altearntive Transcription Factor ςB Is Involved in Regulation of Biofilm Expression in a Staphylococcus aureus Mucosal Isolate. Jouarnl of bacteriology, 182(23), 6824-6826.
dc.relation.referencesKennedy, A. D., Wardenburg, J. B., Gardner, D. J., Long, D., Whitney, A. R., Braughton, K. R., ... & DeLeo, F. R. (2010). Targeting of alpha-hemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. The Jouarnl of infectious diseases, 202(7), 1050-1058.
dc.relation.referencesBerube, B. J., & Wardenburg, J. B. (2013). Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins, 5(6), 1140-1166.
dc.relation.referencesCamussone, C. M., & Calvinho, L. F. (2013). Factores de virulencia de Staphylococcus aureus asociados con infecciones mamarias en bovinos: relevanciay rol como agentes inmunógenos. 11.Revista Argentina de Microbiología, 45(2), 119–130. https://doi.org/10.1016/S0325-7541(13)70011-7
dc.relation.referencesVandenesch, F., Lina, G., & Henry, T. (2012). Staphylococcus aureus Hemolysins, bicomponent Leukocidins, and Cytolytic Peptides: ¿A Redundant Arsenal of MembraneDamaging Virulence Factors? Frontiers in Cellular and Infection Microbiology, 2, 12. https://doi.org/10.3389/fcimb.2012.00012
dc.relation.referencesOtto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17, 32– 37. https://doi.org/10.1016/j.mib.2013.11.004.
dc.relation.referencesVerdon, J., Girardin, N., Lacombe, C., Berjeaud, J. M., & Héchard, Y. (2009). δHemolysin, an update on a membrane-interacting peptide. Peptides, 30(4), 817-823.
dc.relation.referencesSpaan, A. N., Vrieling, M., Wallet, P., Badiou, C., Reyes-Robles, T., Ohneck, E. A., ... & Lina, G. (2014). The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nature communications, 5(1), 1- 11
dc.relation.referencesKessel, C. (2017). molecular subtyping of Staphylococcus aureus isolates from the u.p. community for the presence of toxin-encoding genes. All NMU Master’s Theses. Retrieved from https://commons.nmu.edu/theses/133
dc.relation.referencesCarabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular microbiology, 88(2), 283-300.
dc.relation.referencesTanner, A. W., Carabetta, V. J., Martinie, R. J., Mashruwala, A. A., Boyd, J. M., Krebs, C., & Dubnau, D. (2017). The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S] 2+ clusters and may respond to redox changes. Molecular Microbiology, 104(5), 837– 850.
dc.relation.referencesKearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular microbiology, 55(3), 739-749.
dc.relation.referencesDubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, Dubnau D. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Microbiol. 2016;101(4):606–24. Epub 2016/08/09. pmid:27501195; PubMed Central PMCID: PMCPMC4978174.
dc.relation.referencesDeLoughery A, Dengler V, Chai Y, Losick R. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mARN levels for the matrix gene repressor SinR. Mol Microbiol 2016; 99(2): 425- 37.[http://dx.doi.org/10.1111/mmi.13240] [PMID: 26434553]
dc.relation.referencesDeLoughery, A., Lalanne, J. B., Losick, R., & Li, G. W. (2018). Maturation of polycistronic mARNs by the endoribonuclease ARNse Y and its associated Y- complex in Bacillus subtilis. Proceedings of the National Academy of Sciences, 115(24), E5585-E5594.
dc.relation.referencesHamouche, L., Billaudeau, C., Rocca, A., Chastanet, A., Ngo, S., Laalami, S., & Putzer, H. (2020). Dynamic membrane localization of RNase Y in Bacillus subtilis. MBio, 11(1), e03337-19.
dc.relation.referencesEscobar-Perez, J., Ospina-Garcia, K., Rozo, Z. L. C., Marquez-Ortiz, R. A., Castellanos, J. E., & Gomez, N. V. (2019). Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus aureus. The Open Bioinformatics Jouarnl, 12(1).
dc.relation.referencesAdusei-Danso, F., Khaja, F. T., DeSantis, M., Jeffrey, P. D., Dubnau, E., Demeler, B., ... & Dubnau, D. (2019). Structure-Function Studies of the Bacillus subtilis RicProteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and ARN Processing. mBio, 10(5), e01841-19.
dc.relation.referencesReverdy, A., Chen, Y., Hunter, E., Gozzi, K., & Chai, Y. (2018). Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity. PloS one, 13(9), e0204687.
dc.relation.referencesKaito, C., Kurokawa, K., Matsumoto, Y., Terao, Y., Kawabata, S., Hamada, S., & Sekimizu, K. (2005). Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Molecular microbiology, 56(4), 934-944.
dc.relation.referencesNumata, S., Nagata, M., Mao, H., Sekimizu, K., & Kaito, C. (2014). CvfA protein and polynucleotide phosphorylase act in an opposing manner to regulate Staphylococcus aureus virulence. Jouarnl of Biological Chemistry, 289(12), 8420- 8431.
dc.relation.referencesKaito, C., Morishita, D., Matsumoto, Y., Kurokawa, K., & Sekimizu, K. (2006). Novel ADN binding protein SarZ contributes to virulence in Staphylococcus aureus. Molecular microbiology, 62(6), 1601-1617.
dc.relation.referencesNagata, M., Kaito, C., & Sekimizu, K. (2008). Phosphodiesterase activity of CvfA is required for virulence in Staphylococcus aureus. Jouarnl of Biological Chemistry, 283(4), 2176-2184.
dc.relation.referencesMarincola, G., Schäfer, T., Behler, J., Bernhardt, J., Ohlsen, K., Goerke, C., & Wolz, C. (2012). ARNse Y of Staphylococcus aureus and its role in the activation of virulence genes. Molecular microbiology, 85(5), 817-832
dc.relation.referencesArnaud, M., Chastanet, A., & Débarbouillé, M. (2004). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Applied and environmental microbiology, 70(11), 6887-6891.
dc.relation.referencesCharpentier E, Anton AI, Barry P, Alfonso B, Fang Y, Novick RP. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl Environ Microbiol 2004; 70: 6076-85.
dc.relation.referencesChristensen, G. D. et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006 (1985).
dc.relation.referencesMoreno-González, P. A., Diaz, G. J., & Ramírez-Hernández, M. H. (2013). Producción y purificación de anticuerpos aviares (IgYs) a partir de cuerpos de inclusión de una proteína recombinante central en el metabolismo del NAD+.Revista colombiana de quimica, 42(2), 12-20.
dc.relation.referencesWalsh, B. W., Lenhart, J. S., Schroeder, J. W., & Simmons, L. A. (2012). Far Western Blotting as a rapid and efficient method for detecting interactions between ADN replication and ADN repair proteins. In Single-Stranded ADN Binding Proteins (pp. 161-168). Humana Press, Totowa, NJ.
dc.relation.referencesRodríguez Tamayo, E. A., & Jiménez Quiceno, J. N. (2015). Factors related with colonization by Staphylococcus aureus. Iatreia, 28(1), 66-77.
dc.relation.referencesDeinhardt-Emmer, S., Sachse, S., Geraci, J., Fischer, C., Kwetkat, A., Dawczynski, K., ... & Löffler, B. (2018). Virulence patterns of Staphylococcus aureus strains from nasopharyngeal colonization. Jouarnl of Hospital Infection, 100(3), 309-315.
dc.relation.referencesVan Hal, S. J., Jensen, S. O., Vaska, V. L., Espedido, B. A., Paterson, D. L., & Gosbell, I. B. (2012). Predictors of mortality in Staphylococcus aureus bacteremia. Clinical microbiology reviews, 25(2), 362-386.
dc.relation.referencesCramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 1999; 67:5427-33.
dc.relation.referencesSingh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010; 65:1955- 8.
dc.relation.referencesEscobar Pérez, J. (2018). Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureus
dc.relation.referencesOhniwa, R. L., Ushijima, Y., Saito, S. & Morikawa, K. Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLoS One 6, e19172 (2011).
dc.relation.referencesVergara-Irigaray, M. et al. Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections †.Infect. Immun. 77, 3978–3991 (2009).
dc.relation.referencesO’Neill, E. et al. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 190, 3835–3850 (2008).
dc.relation.referencesCarabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular microbiology, 88(2), 283-300.
dc.relation.referencesRamos, J.L., Martinez-Bueno, M., Molina-Henares, A.J., Teran, W., Watanabe, K., Zhang, X., Gallegos, M.T., Brennan, R., Tobes, R., 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69, 326–356.
dc.relation.referencesSeidl, K., Goerke, C., Wolz, C., Mack, D., Berger-Bachi, B., Bischoff, M., 2008. Staphylococcus aureus CcpA affects biofilm formation. Infect. Immun. 76, 2044–2050.
dc.relation.referencesO’Neill, E.; Pozzi, C.; Houston, P.; Smyth, D.; Humphreys, H.; Robinson, D.A.; O’Gara, J.P. Association between Methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. J. Clin. Microbiol. 2007, 45, 1379–1388.
dc.relation.referencesRegassa, L.B.; Novick, R.P.; Betley, M.J. Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect. Immun. 1992, 60, 3381–3388
dc.relation.referencesBoles, B.R.; Horswill, A.R. Staphylococcal biofilm disassembly. Trends Microbiol. 2011, 19, 449–455.
dc.relation.referencesFoulston, L.; Elsholz, A.K.W.; DeFrancesco, A.S.; Losick, R. The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio 2014, 5, e01667-14.
dc.relation.referencesDengler, V.; Foulston, L.; DeFrancesco, A.S.; Losick, R. An electrostatic net model for the role of extracellular DNA in biofilm formation by Staphylococcus aureus. J. Bacteriol. 2015, 197, 3779–3787.
dc.relation.referencesWang, B., & Muir, T. W. (2016). Regulation of Virulence in Staphylococcus aureus: Molecular Mechanisms and Remaining Puzzles. Cell Chemical Biology, 23(2), 214– 224. https://doi.org/10.1016/j.chembiol.2016.01.004
dc.relation.referencesLi, T., He, L., Song, Y., Villaruz, A. E., Joo, H.-S., Liu, Q., … Li, M. (2015). AraC-Type Regulator Rsp Adapts Staphylococcus aureus Gene Expression to Acute Infection. Infection and Immunity, 84(3), 723–734. https://doi.org/10.1128/IAI.01088-15
dc.relation.referencesTsompanidou, E., Sibbald, M. J. J. B., Chlebowicz, M. A., Dreisbach, A., Back, J. W., van Dijl, J. M., … Denham, E. L. (2011). Requirement of the agr Locus for Colony 54 Spreading of Staphylococcus aureus. JouARNl of Bacteriology, 193(5), 1267–1272. https://doi.org/10.1128/JB.01276-10
dc.relation.referencesHanada, Y., Sekimizu, K., & Kaito, C. (2011). Silkworm apolipophorin protein inhibits Staphylococcus aureus virulence. The JouARNl of Biological Chemistry, 286(45), 39360–39369. https://doi.org/10.1074/jbc.M111.278416
dc.relation.referencesOmae, Y., Hanada, Y., Sekimizu, K., & Kaito, C. (2013). Silkworm apolipophorin protein inhibits hemolysin gene expression of Staphylococcus aureus via binding to cell surface lipoteichoic acids. The JouARNl of Biological Chemistry, 288(35), 25542–25550. https://doi.org/10.1074/jbc.M113.495051
dc.relation.referencesRogasch, K., Ruhmling, V., Pane-Farre, J., Hoper, D., Weinberg, C., Fuchs, S., … Engelmann, S. (2006). Influence of the Two-Component System SaeRS on Global Gene Expression in Two Different Staphylococcus aureus Strains. Journal of Bacteriology, 188(22), 7742–7758. https://doi.org/10.1128/JB.00555-06
dc.relation.referencesNguyen, H. T., Nguyen, T. H., & Otto, M. (2020). The staphylococcal exopolysaccharide PIA–Biosynthesis and role in biofilm formation, colonization, and infection. Computational and Structural Biotechnology Journal, 18, 3324-3334.
dc.relation.referencesLee, S., Kim, S., Lee, H., Ha, J., Lee, J., Choi, Y., ... & Choi, K. H. (2018). icaA gene of Staphylococcus aureus responds to NaCl, leading to increased biofilm formation. Journal of food protection, 81(3), 412-416.
dc.relation.referencesJenul, C., & Horswill, A. R. (2019). Regulation of Staphylococcus aureus virulence. Microbiology spectrum, 7(2), 7-2.
dc.relation.referencesMorales L, Velandia M, Calderón M. Anticuerpos policlonales contra la proteína recombinante NS3 del virus del dengue. Biomédica [Internet]. 2017;37:131–40. Available from: http://www.scielo.org.co/pdf/bio/v37n1/0120-4157-bio-37-01-00131.pdf
dc.relation.referencesCossio-Bolaños M, Campos RG, Vitoria RV, Hochmuller Fogaça RT, de Arruda M. Reference curves for assessing the physical growth of male Wistar rats. Nutr Hosp. 2013;28:2151–6.
dc.relation.referencesTortosa P, Albano M, Dubnau D. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol Microbiol. 2000;35(5).
dc.relation.referencesBerka RM, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, et al. Microarray analysis of the Bacillus subtilis K-state: Genome-wide expression changes dependent on ComK. Mol Microbiol. 2002;43(5).
dc.relation.referencesHamoen LW, Smits WK, de Jong A, Holsappel S, Kuipers OP. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Vol. 30, Nucleic Acids Research. 2002.
dc.relation.referencesOgura M, Yamaguchi H, Kobayashi K, Ogasawara N, Fujita Y, Tanaka T. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol. 2002;184(9).
dc.relation.referencesKhemici V, Prados J, Linder P, Redder P. Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLoS Genet. 2015;11(10).
dc.relation.referencesCho KH. The structure and function of the gram-positive bacterial RNA degradosome. Vol. 8, Frontiers in Microbiology. 2017.
dc.relation.referencesTucker AT, Bobay BG, Banse A V., Olson AL, Soderblom EJ, Moseley MA, et al. A DNA mimic: The structure and mechanism of action for the anti-repressor protein AbbA. J Mol Biol. 2014;426(9).
dc.relation.referencesDeutscher MP. The metabolic role of RNases. Trends Biochem Sci. 1988;13(4).
dc.relation.referencesDurand S, Gilet L, Bessières P, Nicolas P, Condon C. Three essential ribonucleases-RNase Y, J1, and III-control the abundance of a majority of bacillus subtilis mRNAs. PLoS Genet. 2012;8(3).
dc.relation.referencesRichards J, Liu Q, Pellegrini O, Celesnik H, Yao S, Bechhofer DH, et al. An RNA
dc.relation.referencesBonnin RA, Bouloc P. RNA degradation in Staphylococcus aureus: Diversity of ribonucleases and their impact. Vol.2015, International Journal of Genomics. 2015
dc.relation.referencesMarincola G, Wolz C. Downstream element determines RNase y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Res. 2017;45(10).
dc.relation.referencesGeiger T, Goerke C, Mainiero M, Kraus D, Wolz C. The virulence regulator sae of Staphylococcus aureus: Promoter activities and response to phagocytosis-related signals. J Bacteriol. 2008;190(10).
dc.relation.referencesAdhikari RP, Novick RP. Regulatory organization of the staphylococcal sae locus. Microbiology. 2008;154(3).
dc.relation.referencesSteinhuber A, Goerke C, Bayer MG, Döring G, Wolz C. Molecular Architecture of the Regulatory Locus sae of Staphylococcus aureus and Its Impact on Expression of Virulence Factors. J Bacteriol. 2003;185(21).
dc.relation.referencesBoles, B. R., & Horswill, A. R. (2008). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens, 4(4), e1000052.
dc.relation.referencesO'Neill, E., Pozzi, C., Houston, P., Smyth, D., Humphreys, H., Robinson, D. A., & O'Gara, J. P. (2007). Association between methicillin susceptibility and biofilm regulation in Staphylococcus aureus isolates from device-related infections. Journal of clinical microbiology, 45(5), 1379-1388.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalStaphylococcus aureus
dc.subject.proposalhemólisis
dc.subject.proposalbiofilm
dc.subject.proposalCom_YlbF
dc.subject.proposalYmcA
dc.title.translatedDETERMINATION OF THE PARTICIPATION OF THE YmcA PROTEIN IN THE REGULATION OF HEMOLYSIS AND BIOFILM FORMATION IN Staphylococcus aureus
dc.title.translatedDetermination of the participation of the YmcA protein in the regulation of hemolysis and biofilm formation in Staphylococcus aureus
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit