dc.rights.license | Atribución-NoComercial 4.0 Internacional |
dc.contributor.advisor | Barreto Hernández, Emiliano |
dc.contributor.author | Talero Osorio, Diego Camilo |
dc.date.accessioned | 2022-08-08T19:50:57Z |
dc.date.available | 2022-08-08T19:50:57Z |
dc.date.issued | 2022-08-08 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81811 |
dc.description | ilustraciones, gráficas, tablas |
dc.description.abstract | Uno de los problemas frecuentes en salud pública son las Infecciones Asociadas a la
Atención en Salud (IAAS), La Organización Mundial de la Salud (WHO) ha publicado una
lista de microorganismos de prioridad clínica (WHO, 2017), entre los cuales a nivel crítico
están todas las Enterobacterias que presentan resistencia a antibióticos carbapenémicos
como Klebsiella pneumoniae que suele contar con múltiples mecanismos de resistencia
frente a dichos antibióticos (Schroeder, Brooks, & Brooks, 2017). El desarrollo de
tecnologías de secuenciación de nueva generación (NGS) ha permitido el estudio del
“comportamiento” y /o “composición” de los genomas de microorganismos de interés
clínico; así mismo también se han diseñado y desarrollado algoritmos y flujos de trabajo
bioinformáticos para el almacenamiento, anotación y análisis de estos datos, que han
facilitado identificar y caracterizar, un gran número de elementos genómicos involucrados
en los mecanismos de resistencia. En este trabajo se propone una herramienta de
clasificación de contigs pertenecientes a plásmidos, obtenidos por secuenciación de
genoma completo (WGS), que implementa varias de las herramientas, que a través de un
método experimental iterativo fueron configuradas para obtener un rendimiento
maximizado para las cepas de trabajo de K. pneumoniae. (Texto tomado de la fuente) |
dc.description.abstract | One of the frequent problems in public health is the Infections Associated with Health Care
(IAAS). The World Health Organization (WHO) published a list of microorganisms of clinical
priority (WHO, 2017), among which at the critical level are all Entero-bacteria with
resistance to carbapenems like Klebsiella pneumoniae, which usually has several
mechanisms of resistance (González Rocha et al., 2017), frequently associated with the
genetic information (Schroeder et al., 2017). The development of New Generation
Sequencing technologies (NGS) allows the study of the "behavior" and/or "composition" of
the microorganism genomes of clinical interest. Likewise, algorithms and bioinformatics
workflows have been designed and developed for the storage, annotation, and analysis of
these data, to the point of identifying and characterizing a large number of genomic
elements involved in resistance mechanisms. This work shows the implementation of a
contig classification pipeline designed to choose which of them are part of a plasmid. It
uses contigs obtained by NGS technologies and implements several programs to carry out
this task, which, thanks to an iterative experimental method, were configured to obtain a
maximized yield for the working strains of K. pneumoniae. (text taken of the source) |
dc.description.sponsorship | colciencias |
dc.format.extent | xx, 83 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades |
dc.subject.ddc | 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación |
dc.title | Identificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae |
dc.type | Trabajo de grado - Maestría |
dc.type.driver | info:eu-repo/semantics/masterThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.contributor.referee | Pinzón Velasco, Andrés Mauricio |
dc.contributor.researchgroup | Centro de Bioinformática del Instituto de Biotecnología (CBIB) |
dc.description.degreelevel | Maestría |
dc.description.degreename | Magister en Bioinformática |
dc.description.researcharea | Diagnóstico molecular |
dc.description.technicalinfo | El diseño de la herramienta esta basado en la teoria de Multiclasificador, implementando metodos de inteligencia artificial. |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Ingeniería de Sistemas e Industrial |
dc.publisher.faculty | Facultad de Ingeniería |
dc.publisher.place | Bogotá, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá |
dc.relation.references | Aguilar-Bultet, L., & Falquet, L. (2015). Secuenciación y Ensamble de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Revista de Salud Animal, 37(2), 125–132. |
dc.relation.references | Alimolaei, M., & Golchin, M. (2017). A comparison of methods for extracting plasmids from a difficult to lyse bacterium: Lactobacillus casei. Biologicals, 45, 47–51. https://doi.org/10.1016/j.biologicals.2016.10.001 |
dc.relation.references | Antipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016a). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493 |
dc.relation.references | Antipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016b). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493 |
dc.relation.references | Antipov, D., Korobeynikov, A., McLean, J. S., & Pevzner, P. A. (2016). HybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics, 32(7), 1009–1015. https://doi.org/10.1093/bioinformatics/btv688 |
dc.relation.references | Argemi, X., Martin, V., Loux, V., Dahyot, S., Lebeurre, J., Guffroy, A., … Prevost, G. (2017). Whole-Genome Sequencing of Seven Strains of Staphylococcus lugdunensis Allows Identification of Mobile Genetic Elements. Genome Biology and Evolution, 9(5), 1183–1189. https://doi.org/10.1093/gbe/evx077 |
dc.relation.references | Benchmarking of de novo assembly tools: SPAdes 3.9 vs Velvet 1.2. (n.d.). Retrieved from https://cge.cbs.dtu.dk/services/cge/ |
dc.relation.references | Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380 |
dc.relation.references | Bootsma, H. J., & Schouls, L. M. (2015, March 1). Next-generation sequencing of carbapenem-resistant Gram-negative microorganisms: A key tool for surveillance and infection control. Future Microbiology, 10(3), 299–302. |
dc.relation.references | Bousquet, A., Henquet, S., Compain, F., Genel, N., Arlet, G., & Decré, D. (2015). SC. Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2015.01.019 |
dc.relation.references | Bryson, K., Loux, V., Bossy, R., Nicolas, P., Chaillou, S., Guchte, M. Van De, … Lactique, F. (2006). AGMIAL : implementing an annotation strategy for prokaryote genomes as a distributed system. 34(12), 3533–3545. https://doi.org/10.1093/nar/gkl471 |
dc.relation.references | C., L., N., G., S., L., C., G., & G., M. M. (2017). Multi-clasificador para predecir interacción de proteínas usando optimización basada en colonia de hormigas. Revista Cubana de Ciencias Informáticas, 11, 195–210. Retrieved from https://www.redalyc.org/articulo.oa?id=378349711014 |
dc.relation.references | Cabrera-Hernández, L., Morales-Hernández, A., & Casas-Cardoso, G. M. (2016). Medidas de diversidad para la construcción de sistemas multi-clasificadores usando algoritmos genéticos. Computacion y Sistemas, 20(4), 729–747. https://doi.org/10.13053/CyS-20-4-2513 |
dc.relation.references | Carattoli, A., Zankari, E., Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., … Hasman, H. (2014). In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14 |
dc.relation.references | Chaisson, M., Pevzner, P., & Tang, H. (2004). Fragment assembly with short reads. Bioinformatics, 20(13), 2067–2074. https://doi.org/10.1093/bioinformatics/bth205 |
dc.relation.references | Chikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1), 31–37. https://doi.org/10.1093/bioinformatics/btt310 |
dc.relation.references | Durai, D. A., & Schulz, M. H. (2016). Informed kmer selection for de novo transcriptome assembly. Bioinformatics, 32(11), 1670–1677. https://doi.org/10.1093/bioinformatics/btw217 |
dc.relation.references | Fang, Z. C., Tan, J., Wu, S. F., Li, M., Xu, C. M., Xie, Z. J., & Zhu, H. Q. (2019). PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Gigascience, 8(6). https://doi.org/10.1093/gigascience/giz066 |
dc.relation.references | Founou, R. C., Founou, L. L., & Essack, S. Y. (2018). Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa. Antimicrobial Resistance and Infection Control, 7. https://doi.org/10.1186/s13756-018-0423-0 |
dc.relation.references | Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721–1729. https://doi.org/10.1101/gr.210641.116 |
dc.relation.references | Kotsianti, S. B., & Kanellopoulos, D. (2007). Combining Bagging, Boosting and Dagging for Classification Problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4693 LNAI(PART 2), 493–500. https://doi.org/10.1007/978-3-540-74827-4_62 |
dc.relation.references | Krawczyk, P S, Lipinski, L., & Dziembowski, A. (2018a). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321 |
dc.relation.references | Krawczyk, P S, Lipinski, L., & Dziembowski, A. (2018b). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321 |
dc.relation.references | Krawczyk, Pawel S, Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35–e35. https://doi.org/10.1093/nar/gkx1321 |
dc.relation.references | Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., … Deslandes, L. (2015). A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of Transcription Factors to Immunity. Cell, 161(5), 1074–1088. https://doi.org/10.1016/j.cell.2015.04.025 |
dc.relation.references | Li, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033 |
dc.relation.references | Li, X. Z., Plesiat, P., & Nikaido, H. (2015). The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/cmr.00117-14 |
dc.relation.references | Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., … Shen, J. Z. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/s1473-3099(15)00424-7 |
dc.relation.references | Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research, 25(5), 955–964. https://doi.org/10.1093/nar/25.5.955 |
dc.relation.references | Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764–770. https://doi.org/10.1093/bioinformatics/btr011 |
dc.relation.references | Martinez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13(2), 116–123. https://doi.org/10.1038/nrmicro3399 |
dc.relation.references | Nishida, H. (2012). Comparative Analyses of Base Compositions, DNA Sizes, and Dinucleotide Frequency Profiles in Archaeal and Bacterial Chromosomes and Plasmids. International Journal of Evolutionary Biology, 2012, 1–5. https://doi.org/10.1155/2012/342482 |
dc.relation.references | Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34(5), 877–886. https://doi.org/10.1007/s10096-015-2323-z |
dc.relation.references | Otzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology, 35(1), 227–232. https://doi.org/10.4067/S0717-95022017000100037 |
dc.relation.references | Ren, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2017). VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 5(1), 69. https://doi.org/10.1186/s40168-017-0283-5 |
dc.relation.references | Ross, D. L., & Schultz, R. K. (1996). Effect of inhalation flow rate on the dosing characteristics of dry powder inhaler (DPI) and metered dose inhaler (MDI) products. Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung, 9(2), 215–226. https://doi.org/10.1089/jam.1996.9.215 |
dc.relation.references | Royer, G., Decousser, J. W., Branger, C., Dubois, M., Médigue, C., Denamur, E., & Vallenet, D. (2018). PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microbial Genomics, 4(9), 1–8. https://doi.org/10.1099/mgen.0.000211 |
dc.relation.references | Rubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/javeriana.umed61-2.sngs |
dc.relation.references | Schroeder, M., Brooks, B. D., & Brooks, A. E. (2017, January 18). The complex relationship between virulence and antibiotic resistance. Genes, Vol. 8. https://doi.org/10.3390/genes8010039 |
dc.relation.references | Torres Manno, M. A., Pizarro, M. D., Prunello, M., Magni, C., Daurelio, L. D., & Espariz, M. (2019). GeM-Pro: a tool for genome functional mining and microbial profiling. Applied Microbiology and Biotechnology, 103(7), 3123–3134. https://doi.org/10.1007/s00253-019-09648-8 |
dc.relation.references | Van Horn, C., Wu, F. N., Zheng, Z., Dai, Z. H., & Chen, J. C. (2019). Detection of a Single-Copy Plasmid, pXFSL21, in Xylella fastidiosa Strain Stag’s Leap with Two Toxin-Antitoxin Systems Using Next-Generation Sequencing. Phytopathology, 109(2), 240–247. https://doi.org/10.1094/phyto-07-18-0249-fi |
dc.relation.references | WHO. (2017). Global priority list of antibiotic-resistant batceria to guide research, discovery, and development of new antibiotics. Who, 7. Retrieved from https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed |
dc.relation.references | Wootton, J. C. (1994). Non-globular domains in protein sequences: Automated segmentation using complexity measures. Computers and Chemistry, 18(3), 269–285. https://doi.org/10.1016/0097-8485(94)85023-2 |
dc.relation.references | Xavier, B. B., Sabirova, J., Pieter, M., Hernalsteens, J. P., De Greve, H., Goossens, H., & Malhotra-Kumar, S. (2014). Employing whole genome mapping for optimal de novo assembly of bacterial genomes. BMC Research Notes, 7(1), 1–4. https://doi.org/10.1186/1756-0500-7-484 |
dc.relation.references | Zhou, F., & Xu, Y. (2010). cBar: A computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics, 26(16), 2051–2052. https://doi.org/10.1093/bioinformatics/btq299 |
dc.rights.accessrights | info:eu-repo/semantics/openAccess |
dc.subject.proposal | PipeLine |
dc.subject.proposal | Algoritmo de Clasificación |
dc.subject.proposal | Klebsiella pneumoniae |
dc.subject.proposal | Plásmidos |
dc.subject.proposal | Secuenciación de Nueva Generación |
dc.title.translated | Identification of plasmid-associated contigs obtained from whole genome sequencing of Klebsiella pneumoniae isolates |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TM |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
oaire.awardtitle | “Diagnóstico molecular de resistencia y virulencia, y seguimiento epidemiológico de bacterias Gram negativas multirresistentes causantes de IAAS, basado en secuenciación de genoma completo (WGS) y datos sociodemográficos y clínicos |
oaire.fundername | colciencias |
dcterms.audience.professionaldevelopment | Investigadores |