Show simple item record

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorBarreto Hernández, Emiliano
dc.contributor.authorTalero Osorio, Diego Camilo
dc.date.accessioned2022-08-08T19:50:57Z
dc.date.available2022-08-08T19:50:57Z
dc.date.issued2022-08-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81811
dc.descriptionilustraciones, gráficas, tablas
dc.description.abstractUno de los problemas frecuentes en salud pública son las Infecciones Asociadas a la Atención en Salud (IAAS), La Organización Mundial de la Salud (WHO) ha publicado una lista de microorganismos de prioridad clínica (WHO, 2017), entre los cuales a nivel crítico están todas las Enterobacterias que presentan resistencia a antibióticos carbapenémicos como Klebsiella pneumoniae que suele contar con múltiples mecanismos de resistencia frente a dichos antibióticos (Schroeder, Brooks, & Brooks, 2017). El desarrollo de tecnologías de secuenciación de nueva generación (NGS) ha permitido el estudio del “comportamiento” y /o “composición” de los genomas de microorganismos de interés clínico; así mismo también se han diseñado y desarrollado algoritmos y flujos de trabajo bioinformáticos para el almacenamiento, anotación y análisis de estos datos, que han facilitado identificar y caracterizar, un gran número de elementos genómicos involucrados en los mecanismos de resistencia. En este trabajo se propone una herramienta de clasificación de contigs pertenecientes a plásmidos, obtenidos por secuenciación de genoma completo (WGS), que implementa varias de las herramientas, que a través de un método experimental iterativo fueron configuradas para obtener un rendimiento maximizado para las cepas de trabajo de K. pneumoniae. (Texto tomado de la fuente)
dc.description.abstractOne of the frequent problems in public health is the Infections Associated with Health Care (IAAS). The World Health Organization (WHO) published a list of microorganisms of clinical priority (WHO, 2017), among which at the critical level are all Entero-bacteria with resistance to carbapenems like Klebsiella pneumoniae, which usually has several mechanisms of resistance (González Rocha et al., 2017), frequently associated with the genetic information (Schroeder et al., 2017). The development of New Generation Sequencing technologies (NGS) allows the study of the "behavior" and/or "composition" of the microorganism genomes of clinical interest. Likewise, algorithms and bioinformatics workflows have been designed and developed for the storage, annotation, and analysis of these data, to the point of identifying and characterizing a large number of genomic elements involved in resistance mechanisms. This work shows the implementation of a contig classification pipeline designed to choose which of them are part of a plasmid. It uses contigs obtained by NGS technologies and implements several programs to carry out this task, which, thanks to an iterative experimental method, were configured to obtain a maximized yield for the working strains of K. pneumoniae. (text taken of the source)
dc.description.sponsorshipcolciencias
dc.format.extentxx, 83 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.titleIdentificación de contigs asociados a plásmidos obtenidos a partir de secuenciación de genoma completo de aislamientos de Klebsiella pneumoniae
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.contributor.refereePinzón Velasco, Andrés Mauricio
dc.contributor.researchgroupCentro de Bioinformática del Instituto de Biotecnología (CBIB)
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Bioinformática
dc.description.researchareaDiagnóstico molecular
dc.description.technicalinfoEl diseño de la herramienta esta basado en la teoria de Multiclasificador, implementando metodos de inteligencia artificial.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrial
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAguilar-Bultet, L., & Falquet, L. (2015). Secuenciación y Ensamble de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos. Revista de Salud Animal, 37(2), 125–132.
dc.relation.referencesAlimolaei, M., & Golchin, M. (2017). A comparison of methods for extracting plasmids from a difficult to lyse bacterium: Lactobacillus casei. Biologicals, 45, 47–51. https://doi.org/10.1016/j.biologicals.2016.10.001
dc.relation.referencesAntipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016a). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493
dc.relation.referencesAntipov, D., Hartwick, N., Shen, M., Raiko, M., Lapidus, A., & Pevzner, P. A. (2016b). PlasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics, 32(22), 3380–3387. https://doi.org/10.1093/bioinformatics/btw493
dc.relation.referencesAntipov, D., Korobeynikov, A., McLean, J. S., & Pevzner, P. A. (2016). HybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics, 32(7), 1009–1015. https://doi.org/10.1093/bioinformatics/btv688
dc.relation.referencesArgemi, X., Martin, V., Loux, V., Dahyot, S., Lebeurre, J., Guffroy, A., … Prevost, G. (2017). Whole-Genome Sequencing of Seven Strains of Staphylococcus lugdunensis Allows Identification of Mobile Genetic Elements. Genome Biology and Evolution, 9(5), 1183–1189. https://doi.org/10.1093/gbe/evx077
dc.relation.referencesBenchmarking of de novo assembly tools: SPAdes 3.9 vs Velvet 1.2. (n.d.). Retrieved from https://cge.cbs.dtu.dk/services/cge/
dc.relation.referencesBlair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380
dc.relation.referencesBootsma, H. J., & Schouls, L. M. (2015, March 1). Next-generation sequencing of carbapenem-resistant Gram-negative microorganisms: A key tool for surveillance and infection control. Future Microbiology, 10(3), 299–302.
dc.relation.referencesBousquet, A., Henquet, S., Compain, F., Genel, N., Arlet, G., & Decré, D. (2015). SC. Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2015.01.019
dc.relation.referencesBryson, K., Loux, V., Bossy, R., Nicolas, P., Chaillou, S., Guchte, M. Van De, … Lactique, F. (2006). AGMIAL : implementing an annotation strategy for prokaryote genomes as a distributed system. 34(12), 3533–3545. https://doi.org/10.1093/nar/gkl471
dc.relation.referencesC., L., N., G., S., L., C., G., & G., M. M. (2017). Multi-clasificador para predecir interacción de proteínas usando optimización basada en colonia de hormigas. Revista Cubana de Ciencias Informáticas, 11, 195–210. Retrieved from https://www.redalyc.org/articulo.oa?id=378349711014
dc.relation.referencesCabrera-Hernández, L., Morales-Hernández, A., & Casas-Cardoso, G. M. (2016). Medidas de diversidad para la construcción de sistemas multi-clasificadores usando algoritmos genéticos. Computacion y Sistemas, 20(4), 729–747. https://doi.org/10.13053/CyS-20-4-2513
dc.relation.referencesCarattoli, A., Zankari, E., Garciá-Fernández, A., Larsen, M. V., Lund, O., Villa, L., … Hasman, H. (2014). In Silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrobial Agents and Chemotherapy, 58(7), 3895–3903. https://doi.org/10.1128/AAC.02412-14
dc.relation.referencesChaisson, M., Pevzner, P., & Tang, H. (2004). Fragment assembly with short reads. Bioinformatics, 20(13), 2067–2074. https://doi.org/10.1093/bioinformatics/bth205
dc.relation.referencesChikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1), 31–37. https://doi.org/10.1093/bioinformatics/btt310
dc.relation.referencesDurai, D. A., & Schulz, M. H. (2016). Informed kmer selection for de novo transcriptome assembly. Bioinformatics, 32(11), 1670–1677. https://doi.org/10.1093/bioinformatics/btw217
dc.relation.referencesFang, Z. C., Tan, J., Wu, S. F., Li, M., Xu, C. M., Xie, Z. J., & Zhu, H. Q. (2019). PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Gigascience, 8(6). https://doi.org/10.1093/gigascience/giz066
dc.relation.referencesFounou, R. C., Founou, L. L., & Essack, S. Y. (2018). Extended spectrum beta-lactamase mediated resistance in carriage and clinical gram-negative ESKAPE bacteria: a comparative study between a district and tertiary hospital in South Africa. Antimicrobial Resistance and Infection Control, 7. https://doi.org/10.1186/s13756-018-0423-0
dc.relation.referencesKim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26(12), 1721–1729. https://doi.org/10.1101/gr.210641.116
dc.relation.referencesKotsianti, S. B., & Kanellopoulos, D. (2007). Combining Bagging, Boosting and Dagging for Classification Problems. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4693 LNAI(PART 2), 493–500. https://doi.org/10.1007/978-3-540-74827-4_62
dc.relation.referencesKrawczyk, P S, Lipinski, L., & Dziembowski, A. (2018a). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321
dc.relation.referencesKrawczyk, P S, Lipinski, L., & Dziembowski, A. (2018b). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6). https://doi.org/10.1093/nar/gkx1321
dc.relation.referencesKrawczyk, Pawel S, Lipinski, L., & Dziembowski, A. (2018). PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Research, 46(6), e35–e35. https://doi.org/10.1093/nar/gkx1321
dc.relation.referencesLe Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., … Deslandes, L. (2015). A Receptor Pair with an Integrated Decoy Converts Pathogen Disabling of Transcription Factors to Immunity. Cell, 161(5), 1074–1088. https://doi.org/10.1016/j.cell.2015.04.025
dc.relation.referencesLi, D., Liu, C. M., Luo, R., Sadakane, K., & Lam, T. W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033
dc.relation.referencesLi, X. Z., Plesiat, P., & Nikaido, H. (2015). The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/cmr.00117-14
dc.relation.referencesLiu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., … Shen, J. Z. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/s1473-3099(15)00424-7
dc.relation.referencesLowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Research, 25(5), 955–964. https://doi.org/10.1093/nar/25.5.955
dc.relation.referencesMarçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics, 27(6), 764–770. https://doi.org/10.1093/bioinformatics/btr011
dc.relation.referencesMartinez, J. L., Coque, T. M., & Baquero, F. (2015). What is a resistance gene? Ranking risk in resistomes. Nature Reviews Microbiology, 13(2), 116–123. https://doi.org/10.1038/nrmicro3399
dc.relation.referencesNishida, H. (2012). Comparative Analyses of Base Compositions, DNA Sizes, and Dinucleotide Frequency Profiles in Archaeal and Bacterial Chromosomes and Plasmids. International Journal of Evolutionary Biology, 2012, 1–5. https://doi.org/10.1155/2012/342482
dc.relation.referencesOlsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34(5), 877–886. https://doi.org/10.1007/s10096-015-2323-z
dc.relation.referencesOtzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio. International Journal of Morphology, 35(1), 227–232. https://doi.org/10.4067/S0717-95022017000100037
dc.relation.referencesRen, J., Ahlgren, N. A., Lu, Y. Y., Fuhrman, J. A., & Sun, F. (2017). VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome, 5(1), 69. https://doi.org/10.1186/s40168-017-0283-5
dc.relation.referencesRoss, D. L., & Schultz, R. K. (1996). Effect of inhalation flow rate on the dosing characteristics of dry powder inhaler (DPI) and metered dose inhaler (MDI) products. Journal of Aerosol Medicine: Deposition, Clearance, and Effects in the Lung, 9(2), 215–226. https://doi.org/10.1089/jam.1996.9.215
dc.relation.referencesRoyer, G., Decousser, J. W., Branger, C., Dubois, M., Médigue, C., Denamur, E., & Vallenet, D. (2018). PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microbial Genomics, 4(9), 1–8. https://doi.org/10.1099/mgen.0.000211
dc.relation.referencesRubio, S., Pacheco-Orozco, R. A., Gómez, A. M., Perdomo, S., & García-Robles, R. (2020). Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. Universitas Médica, 61(2). https://doi.org/10.11144/javeriana.umed61-2.sngs
dc.relation.referencesSchroeder, M., Brooks, B. D., & Brooks, A. E. (2017, January 18). The complex relationship between virulence and antibiotic resistance. Genes, Vol. 8. https://doi.org/10.3390/genes8010039
dc.relation.referencesTorres Manno, M. A., Pizarro, M. D., Prunello, M., Magni, C., Daurelio, L. D., & Espariz, M. (2019). GeM-Pro: a tool for genome functional mining and microbial profiling. Applied Microbiology and Biotechnology, 103(7), 3123–3134. https://doi.org/10.1007/s00253-019-09648-8
dc.relation.referencesVan Horn, C., Wu, F. N., Zheng, Z., Dai, Z. H., & Chen, J. C. (2019). Detection of a Single-Copy Plasmid, pXFSL21, in Xylella fastidiosa Strain Stag’s Leap with Two Toxin-Antitoxin Systems Using Next-Generation Sequencing. Phytopathology, 109(2), 240–247. https://doi.org/10.1094/phyto-07-18-0249-fi
dc.relation.referencesWHO. (2017). Global priority list of antibiotic-resistant batceria to guide research, discovery, and development of new antibiotics. Who, 7. Retrieved from https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
dc.relation.referencesWootton, J. C. (1994). Non-globular domains in protein sequences: Automated segmentation using complexity measures. Computers and Chemistry, 18(3), 269–285. https://doi.org/10.1016/0097-8485(94)85023-2
dc.relation.referencesXavier, B. B., Sabirova, J., Pieter, M., Hernalsteens, J. P., De Greve, H., Goossens, H., & Malhotra-Kumar, S. (2014). Employing whole genome mapping for optimal de novo assembly of bacterial genomes. BMC Research Notes, 7(1), 1–4. https://doi.org/10.1186/1756-0500-7-484
dc.relation.referencesZhou, F., & Xu, Y. (2010). cBar: A computer program to distinguish plasmid-derived from chromosome-derived sequence fragments in metagenomics data. Bioinformatics, 26(16), 2051–2052. https://doi.org/10.1093/bioinformatics/btq299
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPipeLine
dc.subject.proposalAlgoritmo de Clasificación
dc.subject.proposalKlebsiella pneumoniae
dc.subject.proposalPlásmidos
dc.subject.proposalSecuenciación de Nueva Generación
dc.title.translatedIdentification of plasmid-associated contigs obtained from whole genome sequencing of Klebsiella pneumoniae isolates
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitle“Diagnóstico molecular de resistencia y virulencia, y seguimiento epidemiológico de bacterias Gram negativas multirresistentes causantes de IAAS, basado en secuenciación de genoma completo (WGS) y datos sociodemográficos y clínicos
oaire.fundernamecolciencias
dcterms.audience.professionaldevelopmentInvestigadores


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit