Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorBotero Botero, Sergio
dc.contributor.advisorOlaya, Yris
dc.contributor.authorGarcía Mazo, Claudia María
dc.date.accessioned2022-08-22T20:20:02Z
dc.date.available2022-08-22T20:20:02Z
dc.date.issued2022-08-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81996
dc.descriptionilustraciones, diagramas, tablas
dc.description.abstractEste trabajo muestra un modelo de decisiones estratégicas de inversión en energía renovable para generadores en un mercado eléctrico competitivo, desde la perspectiva de la complementariedad de los recursos, la diversificación y la inversión estratégica en un mercado energético con dos fuentes de energía: Hidráulica y Eólica. Esta propuesta desarrolla un modelo de apoyo a la toma de decisiones, para que un inversionista de proyectos de electricidad pueda elegir en que tecnología debe invertir en su expansión, teniendo en cuenta la flexibilidad e incertidumbre en la toma de decisiones y el comportamiento estratégico de los competidores. Esta investigación utiliza el Juego de Opciones que combina las Opciones Reales y la Teoría de Juegos para considerar plenamente el problema de la inversión. El modelo usa información de los caudales con alta correlación negativa con el viento del mercado eléctrico colombiano. Algunas contribuciones se presentan a continuación: • Los beneficios individuales dependen de la disponibilidad de recursos caudal y viento y la interacción estratégica entre los competidores. • La diversificación tiene un valor estratégico para los individuos y para la seguridad del suministro. • El factor de planta es la variable más apropiada para representar la incertidumbre del clima, dado que permite una simulación realista de la volatilidad, y además ayuda a correlacionar el riesgo operativo y el financiero en el análisis de flujos de caja. • El Juego de Opciones ayuda a los generadores de electricidad a tomar una decisión óptima para obtener altos beneficios de acuerdo con su perfil de riesgo y maximizar los beneficios. (Texto tomado de la fuente)
dc.description.abstractThis proposal presents a strategic investment decisions model in renewable energy for generators in a competitive electricity market, from the perspective of resource complementarity, diversification, and strategic investment in an energy market with two energy resources: Hydro and Wind power. The proposal develops a decision support model so that an investor in electricity projects can choose in which technologies to invest in its expansion, considering flexibility and uncertainty in the decision-making and strategic competitor behavior. This proposal uses the Option Games that combines the Real Option and Game Theory to fully consider the investment problem. The model uses hydro flow information with a high negative correlation with the wind of the Colombian electricity market. Some contributions are presented next: • Individual benefits depend on the availability of flow and wind resources and strategic interactions between competitors. • Diversification has a strategic value to individuals and supply security. • The capacity factor is the most appropriate variable to represent the weather uncertainty, due to, it allows a realistic simulation of volatility, and also helps to correlate operational and financial risk in cash flow. • The Option Games helps the electricity generators optimal make decisions to obtain high benefits according to their risk profile and maximize profits.
dc.format.extentxvii, 155 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.subject.ddcFinanzas
dc.subject.ddcEconomía
dc.subject.ddcMercados de Energía
dc.titleDecisiones estratégicas de inversión en energía renovable para generadores en un mercado eléctrico competitivo
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Industria y Organizaciones
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaFinanzas – Mercado de Energía
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Ingeniería de la Organización
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAbapour, S., Nazari-Heris, M., Mohammadi-Ivatloo, B., & Tarafdar Hagh, M. (2018). Game Theory Approaches for the Solution of Power System Problems: A Comprehensive Review. Archives of Computational Methods in Engineering, 7. https://doi.org/10.1007/s11831-018-9299-7
dc.relation.referencesAmram, M., & Kulatilaka, N. (1999). Real Options Managing Strategic Investment in an Uncertain World. Harvard Business School Press.
dc.relation.referencesAslani, A., & Wong, K.-F. V. (2014). Analysis of renewable energy development to power generation in the United States. Renewable Energy, 63, 153–161. https://doi.org/10.1016/j.renene.2013.08.047
dc.relation.referencesAwan, S., Ali, M., Asif, M., & Amjad, U. (2012). Hydro and Wind Power Integration: A Case Study of Dargai Station in Pakistan. Energy and Power Engineering, 04(04), 203–209. https://doi.org/10.4236/epe.2012.44028
dc.relation.referencesAwerbuch, S., & Berger, M. (2003). Applying portfolio theory to EU electricity planning and policy-making. IEA/EET Working Paper, 3(February), 69. https://awerbuch.com/shimonpages/shimondocs/iea-portfolio.pdf
dc.relation.referencesBarría-Quezada, C. E. (2008). Inversiones Bajo Incertidumbre En Generación Eléctrica : Aplicación De Opciones Reales Y Generación Eléctrica : Aplicación De. Pontificia Universidad Catolica De Chile Escuela De Ingenieria.
dc.relation.referencesBarroso, L., Rudrick, H., Sensfuss, F., & Linares, P. (2010). The green effect. IEEE Power and Energy Magazine, 8(5), 22–35. https://doi.org/10.1109/MPE.2010.937595
dc.relation.referencesBauknecht, D., Brunekreeft, G., & Meyer, R. (2013). From Niche to Mainstream: The Evolution of Renewable Energy in the German Electricity Market. In F. P. Sioshansi (Ed.), Evolution of Global Electricity Markets: New Paradigms, New Challenges, New Approaches (1St ed., pp. 169–198). Academic Pres. https://doi.org/https://doi.org/10.1016/B978-0-12-397891-2.00007-9
dc.relation.referencesBélanger, C., & Gagnon, L. (2002). Adding wind energy to hydropower. Energy Policy, 30(14), 1279–1284. https://doi.org/10.1016/S0301-4215(02)00089-7
dc.relation.referencesBeluco, A., Risso, A., & Canales, F. A. (2019). Simplified evaluation of energetic complementarity based on monthly average data. MethodsX, 6(February), 1194–1198. https://doi.org/10.1016/j.mex.2019.05.019
dc.relation.referencesBøckman, T., Fleten, S. E., Juliussen, E., Langhammer, H. J., & Revdal, I. (2008). Investment timing and optimal capacity choice for small hydropower projects. European Journal of Operational Research, 190(1), 255–267. https://doi.org/10.1016/j.ejor.2007.05.044
dc.relation.referencesBranson, J. (2008). Exploring wind-hydro correlation. Report to New Zealand Steel and the Major Electricity Users’ Group. https://nzier.org.nz/static/media/filer_public/0f/00/0f00dc1a-56ee-4528-8c27-8ab4637b8620/0810_exploring_wind-hydro_correlation_final.pdf
dc.relation.referencesBruno, S., Ahmed, S., Shapiro, A., & Street, A. (2014). Risk neutral and risk averse approaches to multistage renewable investment planning under uncertainty. In European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2015.10.013
dc.relation.referencesBublitz, A., Keles, D., Zimmermann, F., Fraunholz, C., & Fichtner, W. (2019). A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms. Energy Economics, 80, 1059–1078. https://doi.org/10.1016/j.eneco.2019.01.030
dc.relation.referencesBunn, D. W., & Oliveira, F. S. (2007). Agent-based analysis of technological diversification and specialization in electricity markets. European Journal of Operational Research, 181(3), 1265–1278. https://doi.org/10.1016/j.ejor.2005.11.056
dc.relation.referencesCAISO Operations and Maintenance Cost Report. (2018). Externally-Authored Report Variable Operations and Maintenance Cost (pp. 1–21).
dc.relation.referencesCarrión, M., & Arroyo, J. M. (2006). A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3), 1371–1378. https://doi.org/10.1109/TPWRS.2006.876672
dc.relation.referencesChade Ricosti, J. F., & Sauer, I. L. (2013). An assessment of wind power prospects in the Brazilian hydrothermal system. Renewable and Sustainable Energy Reviews, 19, 742–753. https://doi.org/10.1016/j.rser.2012.11.010
dc.relation.referencesChattopadhyay, D. (2010). Modeling greenhouse gas reduction from the australian electricity sector. IEEE Transactions on Power Systems, 25(2), 729–740. https://doi.org/10.1109/TPWRS.2009.2038021
dc.relation.referencesChawda, S., Bhakar, R., & Mathuria, P. (2017). Uncertainty and risk management in electricity market: Challenges and opportunities. 2016 National Power Systems Conference, NPSC 2016. https://doi.org/10.1109/NPSC.2016.7858971
dc.relation.referencesChinmoy, L., Iniyan, S., & Goic, R. (2019). Modeling wind power investments, policies and social benefits for deregulated electricity market – A review. Applied Energy, 242(March), 364–377. https://doi.org/10.1016/j.apenergy.2019.03.088
dc.relation.referencesChristensen, J. L., & Hain, D. S. (2017). Knowing where to go: The knowledge foundation for investments in renewable energy. Energy Research and Social Science, 25, 124–133. https://doi.org/10.1016/j.erss.2016.12.025
dc.relation.referencesChuang, A., Wu, F., & Varaiya, P. (2001). A game-theoretic model for generation expansion planning: problem formulation and numerical comparisons. IEEE Transactions on Power Systems, 16(4), 885–891. https://doi.org/10.1109/59.962441
dc.relation.referencesChun, K. S. (2003). Game Theory and Real Options: Analysis of Land Value and Strategic Decisions. Massachusetts Institute of Technology.
dc.relation.referencesConsejo Nacional de Operación. (2018). Acuerdo 1046 Por el cual se aprueba la incorporación de un cambio en el factor de conversión de las plantas de generación Guadalupe III y IV y La Tasajera (pp. 1–2). Consejo Nacional de Operación.
dc.relation.referencesCopeland, T. E., & Antikarov, V. (2001). Real Options: A Practitioner’s Guide (2001 Texere (ed.)). Cengage Learning. https://books.google.com.co/books?id=fnhPAAAAMAAJ
dc.relation.referencesCostello, K. (2007). Diversity of Generation Technologies : Implications. The Electricity Journal, 20(5), 10–21.
dc.relation.referencesde Jong, P., Sánchez, A. S., Esquerre, K., Kalid, R. A., & Torres, E. A. (2013). Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil. Renewable and Sustainable Energy Reviews, 23, 526–535. http://www.sciencedirect.com/science/article/pii/S1364032113000981
dc.relation.referencesDenault, M., Dupuis, D., & Couture-Cardinal, S. (2009). Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12), 5376–5384. https://doi.org/10.1016/j.enpol.2009.07.064
dc.relation.referencesDixit, A. K., & Nalebuff, B. j. (1991). Thinking Strategically: The competitive edge in business, politics and every life. Castle House.
dc.relation.referencesDixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton University Press.
dc.relation.referencesEnardata. (2020). Cuota de energías renovables en la producción de electricidad. Anuario Estadístico Mundial de Energía 2020. https://datos.enerdata.net/energias-renovables/produccion-electricidad-renovable.html
dc.relation.referencesEscribano Francés, G., Marín-Quemada, J. M., & San Martín González, E. (2013). RES and risk: Renewable energy’s contribution to energy security. A portfolio-based approach. Renewable and Sustainable Energy Reviews, 26, 549–559. https://doi.org/10.1016/j.rser.2013.06.015
dc.relation.referencesEsmaieli, M., & Ahmadian, M. (2018). The effect of research and development incentive on wind power investment, a system dynamics approach. Renewable Energy, 126, 765–773. https://doi.org/10.1016/j.renene.2018.04.009
dc.relation.referencesEuroelectric. (2011). Flexible generation: Backing up renewables. In Renewable Action Plan.
dc.relation.referencesFabra, N., & Fabra, J. (2010). Competencia y poder de mercado en los mercados eléctricos. Cuadernos Económicos de ICE, No 79, 17–43.
dc.relation.referencesFang, R., Shang, R., Wang, Y., & Guo, X. (2017). Identification of vulnerable lines in power grids with wind power integration based on a weighted entropy analysis method. International Journal of Hydrogen Energy, 42(31), 20269–20276. https://doi.org/10.1016/j.ijhydene.2017.06.039
dc.relation.referencesFilomena, T. P., Campos-Náñez, E., & Duffey, M. R. (2014). Technology selection and capacity investment under uncertainty. European Journal of Operational Research, 232(1), 125–136. https://doi.org/10.1016/j.ejor.2013.07.019
dc.relation.referencesGaudard, L., & Romerio, F. (2014). Reprint of “The future of hydropower in Europe: Interconnecting climate, markets and policies.” Environmental Science and Policy, 43, 5–14. https://doi.org/10.1016/j.envsci.2014.05.00
dc.relation.referencesGenc, T. S., & Sen, S. (2008). An analysis of capacity and price trajectories for the Ontario electricity market using dynamic Nash equilibrium under uncertainty. Energy Economics, 30(1), 173–191. https://doi.org/10.1016/j.eneco.2007.02.005
dc.relation.referencesGong, P., & Li, X. (2016). Study on the investment value and investment opportunity of renewable energies under the carbon trading system. Chinese Journal of Population Resources and Environment, 14(4), 271–281. https://doi.org/10.1080/10042857.2016.1258796
dc.relation.referencesGonzález, C. (2012). Definición de la composición en las fuentes hidráulica y eólica para la generación de energía eléctrica en el contexto colombiano aplicando la teoría de portafolio. 1–83. https://doi.org/7033
dc.relation.referencesGraabak, I., & Korpås, M. (2016). Variability Characteristics of European Wind and Solar Power Resources—A Review. Energies, 9(6), 449. https://doi.org/10.3390/en9060449
dc.relation.referencesGrenadier, S. R. (2000). Option exercise games: the intersection of real options and game theory. Journal of Applied Corporate Finance, 13(2), 99–107. http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6622.2000.tb00057.x/abstract
dc.relation.referencesGude, V. G. (2018). Geothermal Source for Water Desalination-Challenges and Opportunities. In Renewable Energy Powered Desalination Handbook: Application and Thermodynamics (Vol. 1, pp. 141–176). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815244-7.00004-0
dc.relation.referencesGugler, K., Haxhimusa, A., Liebensteiner, M., & Schindler, N. (2020). Investment opportunities, uncertainty, and renewables in European electricity markets. Energy Economics, 85, 104575. https://doi.org/10.1016/j.eneco.2019.104575
dc.relation.referencesHu, J., Harmsen, R., Crijns-Graus, W., Worrell, E., & van den Broek, M. (2018). Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design. Renewable and Sustainable Energy Reviews, 81(September 2016), 2181–2195. https://doi.org/10.1016/j.rser.2017.06.028
dc.relation.referencesHuisman, K. J. M. (2001). Technology investment: a game theoretic real options approach. In Technovation. Springer Science and Business Media, LLC. https://doi.org/10.1007/978-1-4757-323-2
dc.relation.referencesHumphreys, H. B., & Mcclain, K. T. (1998). Reducing the Impacts of Energy Price Volatility Through Dynamic Portfolio Selection. International Association for Energy Economics Stable U, 19(3), 107–131. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol19-No3-6
dc.relation.referencesHyland, M. (2016). Restructuring European electricity markets - A panel data analysis. Utilities Policy, 38, 33–42. https://doi.org/10.1016/j.jup.2015.11.004
dc.relation.referencesInternational Renewable Energy Agency. (2020). Renewable Power Generation Costs in 2019. In Irena. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf
dc.relation.referencesIRENA. (2018). Power generation costs in 2017. In International Renewable Energy Agency.
dc.relation.referencesIsaza, C. F., & Botero, B. S. (2016). Wind power reliability valuation in a Hydro-Dominated power market: The Colombian case. Renewable and Sustainable Energy Reviews, 57, 1359–1372. https://doi.org/10.1016/j.rser.2015.12.159
dc.relation.referencesJansen, J. C., Beurskens, L. W. M., & van Tilburg, X. (2006). Application of portfolio analysis to the Dutch generating mix Reference case and two renewables cases : year 2030 - SE and GE scenario. Energy Research Centre of the Netherlands, February, 5–67. https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C--05-100
dc.relation.referencesJaramillo, O. A., Borja, M. A., & Huacuz, J. M. (2004). Using hydropower to complement wind energy: A hybrid system to provide firm power. Renewable Energy, 29(11), 1887–1909. https://doi.org/10.1016/j.renene.2004.02.010
dc.relation.referencesKhare, V., Nema, S., & Baredar, P. (2016). Solar-wind hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews, 58, 23–33. https://doi.org/10.1016/j.rser.2015.12.223
dc.relation.referencesKolokathis, C. (2020). Limpio , asequible y fiable : Acertar con la transformación del sistema eléctrico en España. https://fundacionrenovables.org/documento/limpio-asequible-y-fiable-acertar-con-la-transformacion-del-sistema-electrico-en-espana/
dc.relation.referencesKoltsaklis, N. E., Dagoumas, A. S., Kopanos, G. M., Pistikopoulos, E. N., & Georgiadis, M. C. (2014). A spatial multi-period long-term energy planning model: A case study of the Greek power system. Applied Energy, 115, 456–482. https://doi.org/10.1016/J.APENERGY.2013.10.042
dc.relation.referencesLändner, E. M., Märtz, A., Schöpf, M., & Weibelzahl, M. (2019). From energy legislation to investment determination: Shaping future electricity markets with different flexibility options. Energy Policy, 129(May 2018), 1100–1110. https://doi.org/10.1016/j.enpol.2019.02.012
dc.relation.referencesLangary, D., Sadati, N., & Ranjbar, A. M. (2014). Direct approach in computing robust Nash strategies for generating companies in electricity markets. International Journal of Electrical Power and Energy Systems, 54, 442–453. https://doi.org/10.1016/j.ijepes.2013.07.031
dc.relation.referencesLave, M., & Ellis, A. (2016). Comparison of solar and wind power generation impact on net load across a utility balancing area. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 1837–1842. https://doi.org/10.1109/PVSC.2016.7749939
dc.relation.referencesLee, S.-C. (2011). Using real option analysis for highly uncertain technology investments: The case of wind energy technology. Renewable and Sustainable Energy Reviews, 15(9), 4443–4450. https://doi.org/http://dx.doi.org/10.1016/j.rser.2011.07.107
dc.relation.referencesLo Prete, C., & Hobbs, B. F. (2016). A cooperative game theoretic analysis of incentives for microgrids in regulated electricity markets. Applied Energy, 169, 524–541. https://doi.org/10.1016/j.apenergy.2016.01.099
dc.relation.referencesLocatelli, G., Invernizzi, D. C., & Mancini, M. (2016). Investment and risk appraisal in energy storage systems: A real options approach. Energy, 104, 114–131. https://doi.org/10.1016/j.energy.2016.03.098
dc.relation.referencesLopes, V. S., & Borges, C. L. T. (2014). Impact of the Combined Integration of Wind Generation and Small Hydropower Plants on the System Reliability. IEEE Transactions on Sustainable Energy, PP(99), 1–9. https://doi.org/10.1109/TSTE.2014.2335895
dc.relation.referencesLopez, S., Baum, G. F., Olsina, F. G., Blanco, G. A., & Rehtanz, C. (2017). Option games applied for investment in power generation capacity. 2017 IEEE Manchester PowerTech, Powertech 2017, 1–6. https://doi.org/10.1109/PTC.2017.7981085
dc.relation.referencesLysen, E. H. (1983). Introduction to Wind Energy. In Consultancy Services Wind Energy Developing Countries
dc.relation.referencesMartínez-Ceseña, E. A., & Mutale, J. (2011). Application of an advanced real options approach for renewable energy generation projects planning. Renewable and Sustainable Energy Reviews, 15(4), 2087–2094. https://doi.org/10.1016/j.rser.2011.01.016
dc.relation.referencesMartinez Romero, S., & Hughes, W. (2015). Bringing variable renewable energy up to scale : options for grid integration using natural gas and energy storage. (pp. 1–96). http://documents.worldbank.org/curated/en/2015/02/24141471/bringing-variable-renewable-energy-up-scale-options-grid-integration-using-natural-gas-energy-storage
dc.relation.referencesMascareñas, J. (2018). Opciones reales en la valoración de proyectos de inversión. In Monografías de Juan Mascareñas sobre Finanzas Corporativas (pp. 1–48).
dc.relation.referencesMei, S., Wei, W., & Liu, F. (2017). On engineering game theory with its application in power systems. Control Theory and Technology, 15(1), 1–12. https://doi.org/10.1007/s11768-017-6186-y
dc.relation.referencesMenniti, D., Musmanno, R., Scoroino, N., Sorrentino, N., & Violi, A. (2007). Managing price risk while bidding in a multimarket environment. 2007 IEEE Power Engineering Society General Meeting, PES, 1–10. https://doi.org/10.1109/PES.2007.385968
dc.relation.referencesMilanesi, G. S. (2014). Valoración probabilística versus borrosa, opciones reales y el modelo binomial. Aplicación para proyectos de inversión en condiciones de ambigüedad. Estudios Gerenciales, 30(132), 211–219. https://doi.org/10.1016/j.estger.2014.01.018
dc.relation.referencesMokate, karen M. (2004). Evaluación Financiera de proyectos de inversión. In Angewandte Chemie International Edition, 6(11), 951–952.
dc.relation.referencesMoreno, R. L. (2015). Evaluación de un proyecto de generación de energía eólica en Colombia mediante opciones reales [Universidad Naciona de Colombia]. http://bdigital.unal.edu.co/51430/1/1037597453.2015.pdf
dc.relation.referencesMulder, M. (2015). Competition in the Dutch Electricity Market : An Empirical Analysis over 2006 – 2011. Energy Journal, 36(2), 1–28.
dc.relation.referencesMurphy, F. H., & Smeers, Y. (2003). Generation Capacity Expansion in Imperfectly Competitive Restructured Electricity Markets. May 2002, 1–56.
dc.relation.referencesMurto, P., & Keppo, J. (2002). a Game Model of Irreversible Investment Under Uncertainty. In International Game Theory Review (Vol. 04, Issue 02). https://doi.org/10.1142/s0219198902000604
dc.relation.referencesOLADE. (2019). Generación eléctrica mundial y para América Latina y el Caribe (ALC) y su impacto en el sector energético por la pandemia producida por el COVID – 19. In Olade (Issue 1). http://www.olade.org/wp-content/uploads/2021/01/Generacion-electrica-mundial-y-para-America-Latina-y-el-Caribe-ALC_01-12-2020.pdf
dc.relation.referencesOliveira, F. S., & Costa, M. L. G. (2018). Capacity expansion under uncertainty in an oligopoly using indirect reinforcement-learning. European Journal of Operational Research, 267(3), 1039–1050. https://doi.org/10.1016/j.ejor.2017.11.013
dc.relation.referencesPereira, E., Nunes, A. C., Sousa, J. C., & Mendes, V. (2015). Hydrological risk integration in a hydro power plant real options analysis. International Conference on the European Energy Market, EEM, 1–5. https://doi.org/10.1109/EEM.2015.7216633
dc.relation.referencesPindyck, R. S., & Rubinfeld, D. L. (2013). Microeconomía. PEARSON EDUCACIÓN, S.A.
dc.relation.referencesPineau, P. O., Rasata, H., & Zaccour, G. (2011). Impact of some parameters on investments in oligopolistic electricity markets. European Journal of Operational Research, 213(1), 180–195. https://doi.org/10.1016/j.ejor.2011.02.033
dc.relation.referencesPinheiro, D., Geraldo, E., Paulo, A., Traça, A., & Almeida, D. (2017). Portfolio optimization of renewable energy assets : Hydro , wind , and photovoltaic energy in the regulated market in Brazil. 64, 238–250.
dc.relation.referencesPringles, R., Olsina, F., & Garces, F. (2015). Real Option Valuation of Power Transmission Investments by Stochastic Simulation. Energy Economics, 47, 215–226. http://www.sciencedirect.com/science/journal/01409883%5Cnhttp://ezproxy.lib.ucalgary.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ecn&AN=1483171&site=ehost-live%5Cnhttp://dx.doi.org/10.1016/j.eneco.2014.11.011
dc.relation.referencesRamírez C., J. J. . (2015). MERRA-based study of the wind / solar resource and their complementarity to the hydro resource for power generation in Colombia External Advisor : Contents Motivation and Research question Methodology Results and analysis Main conclusions (Issue September, pp. 1–170).
dc.relation.referencesREN21. (2020). Renewables 2020 Global Status Report. In REN21 Renewables Now. https://www.ren21.net/wp-content/uploads/2019/05/GSR_2020_Press_Release_ES.pdf
dc.relation.referencesReuter, W. H., Fuss, S., Szolgayová, J., & Obersteiner, M. (2012). Investment in wind power and pumped storage in a real options model. Renewable and Sustainable Energy Reviews, 16(4), 2242–2248. https://doi.org/10.1016/j.rser.2012.01.025
dc.relation.referencesRodriguez, C. P., & Anders, G. J. (2004). Energy Price Forecasting in the Ontario Competitive Power System Market. IEEE Transactions on Power Systems, 19(1), 366–374. https://doi.org/10.1109/TPWRS.2003.821470
dc.relation.referencesRodríguez, C. P., & Andrers, G. J. (2004). Bidding Strategy Design for Different Types of Electric Power Market Participants. IEEE Transactions on Power Systems, 19(2), 964–971.
dc.relation.referencesRoques, F., Hiroux, C., & Saguan, M. (2010). Optimal wind power deployment in Europe-A portfolio approach. Energy Policy, 38(7), 3245–3256. https://doi.org/10.1016/j.enpol.2009.07.048
dc.relation.referencesSchwartz, E. (2013). The real options approach to valuation: Challenges and opportunities. Latin American Journal of Economics, 50(2), 163–177. https://doi.org/10.7764/LAJE.50.2.163
dc.relation.referencesShah, S. A. A., Solangi, Y. A., & Ikram, M. (2019). Analysis of barriers to the adoption of cleaner energy technologies in Pakistan using Modified Delphi and Fuzzy Analytical Hierarchy Process. Journal of Cleaner Production, 235, 1037–1050. https://doi.org/10.1016/j.jclepro.2019.07.020
dc.relation.referencesSmit, H. T. J., & Trigeorgis, L. (2004). Strategic investment: Real options and games. In Strategic Investment: Real Options and Games. Princeton University Press.
dc.relation.referencesSmit, H. T. J., Trigeorgis, L., Baldwin, C., Dixit, A., Kester, C., McGrath, R., Myers, S. C., Perotti, E., Salinger, M., & Triantis, A. (2004). Quantifying the strategic options value of technology investmments (pp. 1–59).
dc.relation.referencesSrivastava, A. K., Kamalasadan, S., Patel, D., Sankar, S., & Al-Omit, K. S. (2011). Electricity markets: an overview and comparative study. International Journal of Energy Sector Management, 5(2), 169–200. https://doi.org/http://dx.doi.org.ezproxy.lib.ryerson.ca/10.1108/17506221111145977
dc.relation.referencesStreimikiene, D., & Siksnelyte, I. (2014). Electricity market opening impact on investments in electricity sector. Renewable and Sustainable Energy Reviews, 29, 891–904. https://doi.org/10.1016/j.rser.2013.08.093
dc.relation.referencesSu, W., & Huang, A. Q. (2014). A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers. Applied Energy, 119, 341–350. https://doi.org/10.1016/j.apenergy.2014.01.003
dc.relation.referencesSunderkötter, M., & Weber, C. (2012). Valuing fuel diversification in power generation capacity planning. Energy Economics, 34(5), 1664–1674. https://doi.org/10.1016/j.eneco.2012.02.003
dc.relation.referencesSuomalainen, K., Pritchard, G., Sharp, B., Yuan, Z., & Zakeri, G. (2015). Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand. Applied Energy, 137, 445–462. https://doi.org/10.1016/j.apenergy.2014.10.015
dc.relation.referencesTámara Ayús, A. L., Forero Corrales, J., Gil Osorio, I., & Almonacid Hurtado, P. M. (2019). Las opciones reales como metodología de evaluación de un proyecto en el sector de energía. Ecos de Economía, 23(48), 61–79. https://doi.org/10.17230/ecos.2019.48.4
dc.relation.referencesTande, J. O. G., & Vogstad, K.-O. (1999). OPERATIONAL IMPLICATIONS OF WIND. In E. Petersen, P. H. Hensen, K. Rave, P. Helm, & H. Ehmann (Eds.), 1999 European Wind Energy Conference: Wind Energy for the Next Millennium (Issue March, pp. 425–429). James & James (Science Publishers) Ltd.
dc.relation.referencesThe Wind Power. (2020). The Wind Power: Wind Energy Market Intelligence. Manufacturers and Turbines. https://www.thewindpower.net/turbine_en_12_nordex_n60-1300.php
dc.relation.referencesTrigeorgis, L. (1993). The Nature of Option Interactions and the Valuation of Investments with Multiple Real Options. The Journal of Financial and Quantitative Analysis, 28(1), 1–20. https://doi.org/10.2307/2331148
dc.relation.referencesU.S. Energy Information Administration. (2019). Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2019. Annual Energy Outlook 2018, 2019(January), 1–3.
dc.relation.referencesUnidad de planeación Minero Energética (UPME). (2006). Atlas de Viento y Energía Eólica de Colombia (pp. 1–168). Ministerio de Minas y Energía de Colombia. http://www.minambiente.gov.co/images/cambioclimatico/pdf/colombia_hacia_la_COP21/ABC_de_los_Compromisos_de_Colombia_para_la_COP21_VF.pdf
dc.relation.referencesUnidad Nacional para la Gestión del Riesgo de Desastres. (2016). Fenómeno El Niño, Análisis Comparativo 1997-1998 / 2014-2016. Unidad Nacional para la Gestión del Riesgo de Desastres. http://cedir.gestiondelriesgo.gov.co/index.php/42-%0Apublicaciones/161-fenomeno-el-nino-analisis-comparativo-1997-1998-2014-2016
dc.relation.referencesUPME. (2016). Boletín Estadístico: Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200. http://www1.upme.gov.co/simco/Documents/Boletin_Estadistico_2012_2016.pdf
dc.relation.referencesValdés-Lucas, J. N., Escribano-Francés, G., & San Martín-González, E. (2016). Energy security and renewable energy deployment in the EU: Liaisons Dangereuses or Virtuous Circle? Renewable and Sustainable Energy Reviews, 62, 1032–1046. https://doi.org/10.1016/j.rser.2016.04.069
dc.relation.referencesVarian, H. R. (2010). Intermediate Microeconomics: A Modern Approach. In J. Repcheck (Ed.), University of California (Eighth Edi, Issue 8). W. W. Norton & Company. https://doi.org/10.1017/CBO9781107415324.004
dc.relation.referencesVentosa, M., Baíllo, Á. ́, Ramos, A., & Rivier, M. (2005). Electricity market modeling trends. Energy Policy, 33(7), 897–913. https://doi.org/10.1016/j.enpol.2003.10.013
dc.relation.referencesVogstad, K. (2000). Utilising the complementary characteristics of wind power and hydropower through coordinated hydro production scheduling using the EMPS model. Wind Power for the 21st Century, December, 1–5.
dc.relation.referencesVoropai, N. I., & Ivanova, E. Y. (2006). Shapley game for expansion planning of generating companies at many non-coincident criteria. IEEE Transactions on Power Systems, 21(4), 1630–1637. https://doi.org/10.1109/TPWRS.2006.873053
dc.relation.referencesWaldman, D. E., & Jensen, E. J. (2013). Industrial organization : theory and practice (4th ed.).
dc.relation.referencesWang, J., Shahidehpour, M., Li, Z., & Botterud, A. (2009). Strategic generation capacity expansion planning with incomplete information. IEEE Transactions on Power Systems, 24(2), 1002–1010. https://doi.org/10.1109/TPWRS.2009.2017435
dc.relation.referencesWeibel, S., & Madlener, R. (2015). Cost-effective design of ringwall storage hybrid power plants: A real options analysis. Energy Conversion and Management, 103, 871–885. https://doi.org/10.1016/j.enconman.2015.06.043
dc.relation.referencesWitzler, L. T., Ramos, D. S., Camargo, L. A. S., & Guarnier, E. (2016). Reconstruction of wind generation historical series aiming at the analysis of energy complementarity: Methodology and applications. International Conference on the European Energy Market, EEM, 2016-July. https://doi.org/10.1109/EEM.2016.7521324
dc.relation.referencesWogrin, S., Hobbs, B. F., Ralph, D., Centeno, E., & Barquín, J. (2013). Open versus closed loop capacity equilibria in electricity markets under perfect and oligopolistic competition. Mathematical Programming, 140(2), 295–322. https://doi.org/https://doi.org/10.1007/s10107-013-0696-2
dc.relation.referencesXM. (2017). Histórico Oferta. Portal Bi.
dc.relation.referencesYang, M., Blyth, W., Bradley, R., Bunn, D., Clarke, C., & Wilson, T. (2008). Evaluating the power investment options with uncertainty in climate policy. Energy Economics, 30(4), 1933–1950. https://doi.org/10.1016/j.eneco.2007.06.004
dc.relation.referencesYi, Z., Xin-gang, Z., Yu-zhuo, Z., & Ying, Z. (2019). From feed-in tariff to renewable portfolio standards: An evolutionary game theory perspective. Journal of Cleaner Production, 213, 1274–1289. https://doi.org/10.1016/j.jclepro.2018.12.170
dc.relation.referencesYu, W., Sheblé, G. B., Peças-Lopes, J. A., & Matos, M. A. (2006). Valuation of switchable tariff for wind energy. Electric Power Systems Research, 76(5), 382–388. https://doi.org/10.1016/j.epsr.2005.09.004
dc.relation.referencesZapata, S., Castaneda, M., Jimenez, M., Julian Aristizabal, A., Franco, C. J., & Dyner, I. (2018). Long-term effects of 100% renewable generation on the Colombian power market. Sustainable Energy Technologies and Assessments, 30(February), 183–191. https://doi.org/10.1016/j.seta.2018.10.008
dc.relation.referencesZhang, N., Yan, Y., & Su, W. (2015). A game-theoretic economic operation of residential distribution system with high participation of distributed electricity prosumers. Applied Energy, 154, 471–479. https://doi.org/10.1016/j.apenergy.2015.05.011
dc.relation.referencesZon, A. van, & Fuss, S. (2008). Risk, Embodied Technical Change and Irreversible Investment Decisions in UK Electricity Production. In M. Bazilian & F. Roques (Eds.), Analytical Methods for Energy Diversity and Security (1St ed., pp. 275–303). Elsevier Ltd.
dc.relation.referencesRuíz-Murcia, J. F., Serna-Cuenca, J., & Zapata-Lesmes, H. J. (2017). Atlas de viento de Colombia (pp. 1–158). IDEAM - UPME. www.imprenta.gov.co
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccess
dc.subject.lembGeneradores termoelectricos
dc.subject.lembThermoelectric generators
dc.subject.proposalIncertidumbre
dc.subject.proposalUncertainty
dc.subject.proposalComplementariedad
dc.subject.proposalComplementarity
dc.subject.proposalDiversificación
dc.subject.proposalDiversification
dc.subject.proposalEnergía Hidráulica
dc.subject.proposalHydro-power
dc.subject.proposalEnergía Eólica
dc.subject.proposalWind-Power
dc.subject.proposalOpciones Reales
dc.subject.proposalReal Options
dc.subject.proposalTeoría de Juegos
dc.subject.proposalGame Theory
dc.subject.proposalJuego de Opciones
dc.subject.proposalOption Game
dc.title.translatedStrategic investment decisions in renewable energy for generators in a competitive electricity market
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_14cb
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaÁrea Curricular de Ingeniería Administrativa e Ingeniería Industrial


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record