dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.contributor.advisor | Botero Botero, Sergio |
dc.contributor.advisor | Olaya, Yris |
dc.contributor.author | García Mazo, Claudia María |
dc.date.accessioned | 2022-08-22T20:20:02Z |
dc.date.available | 2022-08-22T20:20:02Z |
dc.date.issued | 2022-08-18 |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81996 |
dc.description | ilustraciones, diagramas, tablas |
dc.description.abstract | Este trabajo muestra un modelo de decisiones estratégicas de inversión en energía renovable para generadores en un mercado eléctrico competitivo, desde la perspectiva de la complementariedad de los recursos, la diversificación y la inversión estratégica en un mercado energético con dos fuentes de energía: Hidráulica y Eólica. Esta propuesta desarrolla un modelo de apoyo a la toma de decisiones, para que un inversionista de proyectos de electricidad pueda elegir en que tecnología debe invertir en su expansión, teniendo en cuenta la flexibilidad e incertidumbre en la toma de decisiones y el comportamiento estratégico de los competidores. Esta investigación utiliza el Juego de Opciones que combina las Opciones Reales y la Teoría de Juegos para considerar plenamente el problema de la inversión. El modelo usa información de los caudales con alta correlación negativa con el viento del mercado eléctrico colombiano. Algunas contribuciones se presentan a continuación: • Los beneficios individuales dependen de la disponibilidad de recursos caudal y viento y la interacción estratégica entre los competidores. • La diversificación tiene un valor estratégico para los individuos y para la seguridad del suministro. • El factor de planta es la variable más apropiada para representar la incertidumbre del clima, dado que permite una simulación realista de la volatilidad, y además ayuda a correlacionar el riesgo operativo y el financiero en el análisis de flujos de caja. • El Juego de Opciones ayuda a los generadores de electricidad a tomar una decisión óptima para obtener altos beneficios de acuerdo con su perfil de riesgo y maximizar los beneficios. (Texto tomado de la fuente) |
dc.description.abstract | This proposal presents a strategic investment decisions model in renewable energy for generators in a competitive electricity market, from the perspective of resource complementarity, diversification, and strategic investment in an energy market with two energy resources: Hydro and Wind power. The proposal develops a decision support model so that an investor in electricity projects can choose in which technologies to invest in its expansion, considering flexibility and uncertainty in the decision-making and strategic competitor behavior. This proposal uses the Option Games that combines the Real Option and Game Theory to fully consider the investment problem. The model uses hydro flow information with a high negative correlation with the wind of the Colombian electricity market. Some contributions are presented next: • Individual benefits depend on the availability of flow and wind resources and strategic interactions between competitors. • Diversification has a strategic value to individuals and supply security. • The capacity factor is the most appropriate variable to represent the weather uncertainty, due to, it allows a realistic simulation of volatility, and also helps to correlate operational and financial risk in cash flow. • The Option Games helps the electricity generators optimal make decisions to obtain high benefits according to their risk profile and maximize profits. |
dc.format.extent | xvii, 155 páginas |
dc.format.mimetype | application/pdf |
dc.language.iso | spa |
dc.publisher | Universidad Nacional de Colombia |
dc.subject.ddc | Finanzas |
dc.subject.ddc | Economía |
dc.subject.ddc | Mercados de Energía |
dc.title | Decisiones estratégicas de inversión en energía renovable para generadores en un mercado eléctrico competitivo |
dc.type | Trabajo de grado - Doctorado |
dc.type.driver | info:eu-repo/semantics/doctoralThesis |
dc.type.version | info:eu-repo/semantics/acceptedVersion |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Industria y Organizaciones |
dc.description.degreelevel | Doctorado |
dc.description.degreename | Doctor en Ingeniería |
dc.description.researcharea | Finanzas – Mercado de Energía |
dc.identifier.instname | Universidad Nacional de Colombia |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl | https://repositorio.unal.edu.co/ |
dc.publisher.department | Departamento de Ingeniería de la Organización |
dc.publisher.faculty | Facultad de Minas |
dc.publisher.place | Medellín, Colombia |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín |
dc.relation.references | Abapour, S., Nazari-Heris, M., Mohammadi-Ivatloo, B., & Tarafdar Hagh, M. (2018). Game Theory Approaches for the Solution of Power System Problems: A Comprehensive Review. Archives of Computational Methods in Engineering, 7. https://doi.org/10.1007/s11831-018-9299-7 |
dc.relation.references | Amram, M., & Kulatilaka, N. (1999). Real Options Managing Strategic Investment in an Uncertain World. Harvard Business School Press. |
dc.relation.references | Aslani, A., & Wong, K.-F. V. (2014). Analysis of renewable energy development to power generation in the United States. Renewable Energy, 63, 153–161. https://doi.org/10.1016/j.renene.2013.08.047 |
dc.relation.references | Awan, S., Ali, M., Asif, M., & Amjad, U. (2012). Hydro and Wind Power Integration: A Case Study of Dargai Station in Pakistan. Energy and Power Engineering, 04(04), 203–209. https://doi.org/10.4236/epe.2012.44028 |
dc.relation.references | Awerbuch, S., & Berger, M. (2003). Applying portfolio theory to EU electricity planning and policy-making. IEA/EET Working Paper, 3(February), 69. https://awerbuch.com/shimonpages/shimondocs/iea-portfolio.pdf |
dc.relation.references | Barría-Quezada, C. E. (2008). Inversiones Bajo Incertidumbre En Generación Eléctrica : Aplicación De Opciones Reales Y Generación Eléctrica : Aplicación De. Pontificia Universidad Catolica De Chile Escuela De Ingenieria. |
dc.relation.references | Barroso, L., Rudrick, H., Sensfuss, F., & Linares, P. (2010). The green effect. IEEE Power and Energy Magazine, 8(5), 22–35. https://doi.org/10.1109/MPE.2010.937595 |
dc.relation.references | Bauknecht, D., Brunekreeft, G., & Meyer, R. (2013). From Niche to Mainstream: The Evolution of Renewable Energy in the German Electricity Market. In F. P. Sioshansi (Ed.), Evolution of Global Electricity Markets: New Paradigms, New Challenges, New Approaches (1St ed., pp. 169–198). Academic Pres. https://doi.org/https://doi.org/10.1016/B978-0-12-397891-2.00007-9 |
dc.relation.references | Bélanger, C., & Gagnon, L. (2002). Adding wind energy to hydropower. Energy Policy, 30(14), 1279–1284. https://doi.org/10.1016/S0301-4215(02)00089-7 |
dc.relation.references | Beluco, A., Risso, A., & Canales, F. A. (2019). Simplified evaluation of energetic complementarity based on monthly average data. MethodsX, 6(February), 1194–1198. https://doi.org/10.1016/j.mex.2019.05.019 |
dc.relation.references | Bøckman, T., Fleten, S. E., Juliussen, E., Langhammer, H. J., & Revdal, I. (2008). Investment timing and optimal capacity choice for small hydropower projects. European Journal of Operational Research, 190(1), 255–267. https://doi.org/10.1016/j.ejor.2007.05.044 |
dc.relation.references | Branson, J. (2008). Exploring wind-hydro correlation. Report to New Zealand Steel and the Major Electricity Users’ Group. https://nzier.org.nz/static/media/filer_public/0f/00/0f00dc1a-56ee-4528-8c27-8ab4637b8620/0810_exploring_wind-hydro_correlation_final.pdf |
dc.relation.references | Bruno, S., Ahmed, S., Shapiro, A., & Street, A. (2014). Risk neutral and risk averse approaches to multistage renewable investment planning under uncertainty. In European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2015.10.013 |
dc.relation.references | Bublitz, A., Keles, D., Zimmermann, F., Fraunholz, C., & Fichtner, W. (2019). A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms. Energy Economics, 80, 1059–1078. https://doi.org/10.1016/j.eneco.2019.01.030 |
dc.relation.references | Bunn, D. W., & Oliveira, F. S. (2007). Agent-based analysis of technological diversification and specialization in electricity markets. European Journal of Operational Research, 181(3), 1265–1278. https://doi.org/10.1016/j.ejor.2005.11.056 |
dc.relation.references | CAISO Operations and Maintenance Cost Report. (2018). Externally-Authored Report Variable Operations and Maintenance Cost (pp. 1–21). |
dc.relation.references | Carrión, M., & Arroyo, J. M. (2006). A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3), 1371–1378. https://doi.org/10.1109/TPWRS.2006.876672 |
dc.relation.references | Chade Ricosti, J. F., & Sauer, I. L. (2013). An assessment of wind power prospects in the Brazilian hydrothermal system. Renewable and Sustainable Energy Reviews, 19, 742–753. https://doi.org/10.1016/j.rser.2012.11.010 |
dc.relation.references | Chattopadhyay, D. (2010). Modeling greenhouse gas reduction from the australian electricity sector. IEEE Transactions on Power Systems, 25(2), 729–740. https://doi.org/10.1109/TPWRS.2009.2038021 |
dc.relation.references | Chawda, S., Bhakar, R., & Mathuria, P. (2017). Uncertainty and risk management in electricity market: Challenges and opportunities. 2016 National Power Systems Conference, NPSC 2016. https://doi.org/10.1109/NPSC.2016.7858971 |
dc.relation.references | Chinmoy, L., Iniyan, S., & Goic, R. (2019). Modeling wind power investments, policies and social benefits for deregulated electricity market – A review. Applied Energy, 242(March), 364–377. https://doi.org/10.1016/j.apenergy.2019.03.088 |
dc.relation.references | Christensen, J. L., & Hain, D. S. (2017). Knowing where to go: The knowledge foundation for investments in renewable energy. Energy Research and Social Science, 25, 124–133. https://doi.org/10.1016/j.erss.2016.12.025 |
dc.relation.references | Chuang, A., Wu, F., & Varaiya, P. (2001). A game-theoretic model for generation expansion planning: problem formulation and numerical comparisons. IEEE Transactions on Power Systems, 16(4), 885–891. https://doi.org/10.1109/59.962441 |
dc.relation.references | Chun, K. S. (2003). Game Theory and Real Options: Analysis of Land Value and Strategic Decisions. Massachusetts Institute of Technology. |
dc.relation.references | Consejo Nacional de Operación. (2018). Acuerdo 1046 Por el cual se aprueba la incorporación de un cambio en el factor de conversión de las plantas de generación Guadalupe III y IV y La Tasajera (pp. 1–2). Consejo Nacional de Operación. |
dc.relation.references | Copeland, T. E., & Antikarov, V. (2001). Real Options: A Practitioner’s Guide (2001 Texere (ed.)). Cengage Learning. https://books.google.com.co/books?id=fnhPAAAAMAAJ |
dc.relation.references | Costello, K. (2007). Diversity of Generation Technologies : Implications. The Electricity Journal, 20(5), 10–21. |
dc.relation.references | de Jong, P., Sánchez, A. S., Esquerre, K., Kalid, R. A., & Torres, E. A. (2013). Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil. Renewable and Sustainable Energy Reviews, 23, 526–535. http://www.sciencedirect.com/science/article/pii/S1364032113000981 |
dc.relation.references | Denault, M., Dupuis, D., & Couture-Cardinal, S. (2009). Complementarity of hydro and wind power: Improving the risk profile of energy inflows. Energy Policy, 37(12), 5376–5384. https://doi.org/10.1016/j.enpol.2009.07.064 |
dc.relation.references | Dixit, A. K., & Nalebuff, B. j. (1991). Thinking Strategically: The competitive edge in business, politics and every life. Castle House. |
dc.relation.references | Dixit, A. K., & Pindyck, R. S. (1994). Investment under uncertainty. Princeton University Press. |
dc.relation.references | Enardata. (2020). Cuota de energías renovables en la producción de electricidad. Anuario Estadístico Mundial de Energía 2020. https://datos.enerdata.net/energias-renovables/produccion-electricidad-renovable.html |
dc.relation.references | Escribano Francés, G., Marín-Quemada, J. M., & San Martín González, E. (2013). RES and risk: Renewable energy’s contribution to energy security. A portfolio-based approach. Renewable and Sustainable Energy Reviews, 26, 549–559. https://doi.org/10.1016/j.rser.2013.06.015 |
dc.relation.references | Esmaieli, M., & Ahmadian, M. (2018). The effect of research and development incentive on wind power investment, a system dynamics approach. Renewable Energy, 126, 765–773. https://doi.org/10.1016/j.renene.2018.04.009 |
dc.relation.references | Euroelectric. (2011). Flexible generation: Backing up renewables. In Renewable Action Plan. |
dc.relation.references | Fabra, N., & Fabra, J. (2010). Competencia y poder de mercado en los mercados eléctricos. Cuadernos Económicos de ICE, No 79, 17–43. |
dc.relation.references | Fang, R., Shang, R., Wang, Y., & Guo, X. (2017). Identification of vulnerable lines in power grids with wind power integration based on a weighted entropy analysis method. International Journal of Hydrogen Energy, 42(31), 20269–20276. https://doi.org/10.1016/j.ijhydene.2017.06.039 |
dc.relation.references | Filomena, T. P., Campos-Náñez, E., & Duffey, M. R. (2014). Technology selection and capacity investment under uncertainty. European Journal of Operational Research, 232(1), 125–136. https://doi.org/10.1016/j.ejor.2013.07.019 |
dc.relation.references | Gaudard, L., & Romerio, F. (2014). Reprint of “The future of hydropower in Europe: Interconnecting climate, markets and policies.” Environmental Science and Policy, 43, 5–14. https://doi.org/10.1016/j.envsci.2014.05.00 |
dc.relation.references | Genc, T. S., & Sen, S. (2008). An analysis of capacity and price trajectories for the Ontario electricity market using dynamic Nash equilibrium under uncertainty. Energy Economics, 30(1), 173–191. https://doi.org/10.1016/j.eneco.2007.02.005 |
dc.relation.references | Gong, P., & Li, X. (2016). Study on the investment value and investment opportunity of renewable energies under the carbon trading system. Chinese Journal of Population Resources and Environment, 14(4), 271–281. https://doi.org/10.1080/10042857.2016.1258796 |
dc.relation.references | González, C. (2012). Definición de la composición en las fuentes hidráulica y eólica para la generación de energía eléctrica en el contexto colombiano aplicando la teoría de portafolio. 1–83. https://doi.org/7033 |
dc.relation.references | Graabak, I., & Korpås, M. (2016). Variability Characteristics of European Wind and Solar Power Resources—A Review. Energies, 9(6), 449. https://doi.org/10.3390/en9060449 |
dc.relation.references | Grenadier, S. R. (2000). Option exercise games: the intersection of real options and game theory. Journal of Applied Corporate Finance, 13(2), 99–107. http://onlinelibrary.wiley.com/doi/10.1111/j.1745-6622.2000.tb00057.x/abstract |
dc.relation.references | Gude, V. G. (2018). Geothermal Source for Water Desalination-Challenges and Opportunities. In Renewable Energy Powered Desalination Handbook: Application and Thermodynamics (Vol. 1, pp. 141–176). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815244-7.00004-0 |
dc.relation.references | Gugler, K., Haxhimusa, A., Liebensteiner, M., & Schindler, N. (2020). Investment opportunities, uncertainty, and renewables in European electricity markets. Energy Economics, 85, 104575. https://doi.org/10.1016/j.eneco.2019.104575 |
dc.relation.references | Hu, J., Harmsen, R., Crijns-Graus, W., Worrell, E., & van den Broek, M. (2018). Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design. Renewable and Sustainable Energy Reviews, 81(September 2016), 2181–2195. https://doi.org/10.1016/j.rser.2017.06.028 |
dc.relation.references | Huisman, K. J. M. (2001). Technology investment: a game theoretic real options approach. In Technovation. Springer Science and Business Media, LLC. https://doi.org/10.1007/978-1-4757-323-2 |
dc.relation.references | Humphreys, H. B., & Mcclain, K. T. (1998). Reducing the Impacts of Energy Price Volatility Through Dynamic Portfolio Selection. International Association for Energy Economics Stable U, 19(3), 107–131. https://doi.org/10.5547/ISSN0195-6574-EJ-Vol19-No3-6 |
dc.relation.references | Hyland, M. (2016). Restructuring European electricity markets - A panel data analysis. Utilities Policy, 38, 33–42. https://doi.org/10.1016/j.jup.2015.11.004 |
dc.relation.references | International Renewable Energy Agency. (2020). Renewable Power Generation Costs in 2019. In Irena. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf |
dc.relation.references | IRENA. (2018). Power generation costs in 2017. In International Renewable Energy Agency. |
dc.relation.references | Isaza, C. F., & Botero, B. S. (2016). Wind power reliability valuation in a Hydro-Dominated power market: The Colombian case. Renewable and Sustainable Energy Reviews, 57, 1359–1372. https://doi.org/10.1016/j.rser.2015.12.159 |
dc.relation.references | Jansen, J. C., Beurskens, L. W. M., & van Tilburg, X. (2006). Application of portfolio analysis to the Dutch generating mix Reference case and two renewables cases : year 2030 - SE and GE scenario. Energy Research Centre of the Netherlands, February, 5–67. https://publicaties.ecn.nl/PdfFetch.aspx?nr=ECN-C--05-100 |
dc.relation.references | Jaramillo, O. A., Borja, M. A., & Huacuz, J. M. (2004). Using hydropower to complement wind energy: A hybrid system to provide firm power. Renewable Energy, 29(11), 1887–1909. https://doi.org/10.1016/j.renene.2004.02.010 |
dc.relation.references | Khare, V., Nema, S., & Baredar, P. (2016). Solar-wind hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews, 58, 23–33. https://doi.org/10.1016/j.rser.2015.12.223 |
dc.relation.references | Kolokathis, C. (2020). Limpio , asequible y fiable : Acertar con la transformación del sistema eléctrico en España. https://fundacionrenovables.org/documento/limpio-asequible-y-fiable-acertar-con-la-transformacion-del-sistema-electrico-en-espana/ |
dc.relation.references | Koltsaklis, N. E., Dagoumas, A. S., Kopanos, G. M., Pistikopoulos, E. N., & Georgiadis, M. C. (2014). A spatial multi-period long-term energy planning model: A case study of the Greek power system. Applied Energy, 115, 456–482. https://doi.org/10.1016/J.APENERGY.2013.10.042 |
dc.relation.references | Ländner, E. M., Märtz, A., Schöpf, M., & Weibelzahl, M. (2019). From energy legislation to investment determination: Shaping future electricity markets with different flexibility options. Energy Policy, 129(May 2018), 1100–1110. https://doi.org/10.1016/j.enpol.2019.02.012 |
dc.relation.references | Langary, D., Sadati, N., & Ranjbar, A. M. (2014). Direct approach in computing robust Nash strategies for generating companies in electricity markets. International Journal of Electrical Power and Energy Systems, 54, 442–453. https://doi.org/10.1016/j.ijepes.2013.07.031 |
dc.relation.references | Lave, M., & Ellis, A. (2016). Comparison of solar and wind power generation impact on net load across a utility balancing area. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 1837–1842. https://doi.org/10.1109/PVSC.2016.7749939 |
dc.relation.references | Lee, S.-C. (2011). Using real option analysis for highly uncertain technology investments: The case of wind energy technology. Renewable and Sustainable Energy Reviews, 15(9), 4443–4450. https://doi.org/http://dx.doi.org/10.1016/j.rser.2011.07.107 |
dc.relation.references | Lo Prete, C., & Hobbs, B. F. (2016). A cooperative game theoretic analysis of incentives for microgrids in regulated electricity markets. Applied Energy, 169, 524–541. https://doi.org/10.1016/j.apenergy.2016.01.099 |
dc.relation.references | Locatelli, G., Invernizzi, D. C., & Mancini, M. (2016). Investment and risk appraisal in energy storage systems: A real options approach. Energy, 104, 114–131. https://doi.org/10.1016/j.energy.2016.03.098 |
dc.relation.references | Lopes, V. S., & Borges, C. L. T. (2014). Impact of the Combined Integration of Wind Generation and Small Hydropower Plants on the System Reliability. IEEE Transactions on Sustainable Energy, PP(99), 1–9. https://doi.org/10.1109/TSTE.2014.2335895 |
dc.relation.references | Lopez, S., Baum, G. F., Olsina, F. G., Blanco, G. A., & Rehtanz, C. (2017). Option games applied for investment in power generation capacity. 2017 IEEE Manchester PowerTech, Powertech 2017, 1–6. https://doi.org/10.1109/PTC.2017.7981085 |
dc.relation.references | Lysen, E. H. (1983). Introduction to Wind Energy. In Consultancy Services Wind Energy Developing Countries |
dc.relation.references | Martínez-Ceseña, E. A., & Mutale, J. (2011). Application of an advanced real options approach for renewable energy generation projects planning. Renewable and Sustainable Energy Reviews, 15(4), 2087–2094. https://doi.org/10.1016/j.rser.2011.01.016 |
dc.relation.references | Martinez Romero, S., & Hughes, W. (2015). Bringing variable renewable energy up to scale : options for grid integration using natural gas and energy storage. (pp. 1–96). http://documents.worldbank.org/curated/en/2015/02/24141471/bringing-variable-renewable-energy-up-scale-options-grid-integration-using-natural-gas-energy-storage |
dc.relation.references | Mascareñas, J. (2018). Opciones reales en la valoración de proyectos de inversión. In Monografías de Juan Mascareñas sobre Finanzas Corporativas (pp. 1–48). |
dc.relation.references | Mei, S., Wei, W., & Liu, F. (2017). On engineering game theory with its application in power systems. Control Theory and Technology, 15(1), 1–12. https://doi.org/10.1007/s11768-017-6186-y |
dc.relation.references | Menniti, D., Musmanno, R., Scoroino, N., Sorrentino, N., & Violi, A. (2007). Managing price risk while bidding in a multimarket environment. 2007 IEEE Power Engineering Society General Meeting, PES, 1–10. https://doi.org/10.1109/PES.2007.385968 |
dc.relation.references | Milanesi, G. S. (2014). Valoración probabilística versus borrosa, opciones reales y el modelo binomial. Aplicación para proyectos de inversión en condiciones de ambigüedad. Estudios Gerenciales, 30(132), 211–219. https://doi.org/10.1016/j.estger.2014.01.018 |
dc.relation.references | Mokate, karen M. (2004). Evaluación Financiera de proyectos de inversión. In Angewandte Chemie International Edition, 6(11), 951–952. |
dc.relation.references | Moreno, R. L. (2015). Evaluación de un proyecto de generación de energía eólica en Colombia mediante opciones reales [Universidad Naciona de Colombia]. http://bdigital.unal.edu.co/51430/1/1037597453.2015.pdf |
dc.relation.references | Mulder, M. (2015). Competition in the Dutch Electricity Market : An Empirical Analysis over 2006 – 2011. Energy Journal, 36(2), 1–28. |
dc.relation.references | Murphy, F. H., & Smeers, Y. (2003). Generation Capacity Expansion in Imperfectly Competitive Restructured Electricity Markets. May 2002, 1–56. |
dc.relation.references | Murto, P., & Keppo, J. (2002). a Game Model of Irreversible Investment Under Uncertainty. In International Game Theory Review (Vol. 04, Issue 02). https://doi.org/10.1142/s0219198902000604 |
dc.relation.references | OLADE. (2019). Generación eléctrica mundial y para América Latina y el Caribe (ALC) y su impacto en el sector energético por la pandemia producida por el COVID – 19. In Olade (Issue 1). http://www.olade.org/wp-content/uploads/2021/01/Generacion-electrica-mundial-y-para-America-Latina-y-el-Caribe-ALC_01-12-2020.pdf |
dc.relation.references | Oliveira, F. S., & Costa, M. L. G. (2018). Capacity expansion under uncertainty in an oligopoly using indirect reinforcement-learning. European Journal of Operational Research, 267(3), 1039–1050. https://doi.org/10.1016/j.ejor.2017.11.013 |
dc.relation.references | Pereira, E., Nunes, A. C., Sousa, J. C., & Mendes, V. (2015). Hydrological risk integration in a hydro power plant real options analysis. International Conference on the European Energy Market, EEM, 1–5. https://doi.org/10.1109/EEM.2015.7216633 |
dc.relation.references | Pindyck, R. S., & Rubinfeld, D. L. (2013). Microeconomía. PEARSON EDUCACIÓN, S.A. |
dc.relation.references | Pineau, P. O., Rasata, H., & Zaccour, G. (2011). Impact of some parameters on investments in oligopolistic electricity markets. European Journal of Operational Research, 213(1), 180–195. https://doi.org/10.1016/j.ejor.2011.02.033 |
dc.relation.references | Pinheiro, D., Geraldo, E., Paulo, A., Traça, A., & Almeida, D. (2017). Portfolio optimization of renewable energy assets : Hydro , wind , and photovoltaic energy in the regulated market in Brazil. 64, 238–250. |
dc.relation.references | Pringles, R., Olsina, F., & Garces, F. (2015). Real Option Valuation of Power Transmission Investments by Stochastic Simulation. Energy Economics, 47, 215–226. http://www.sciencedirect.com/science/journal/01409883%5Cnhttp://ezproxy.lib.ucalgary.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=ecn&AN=1483171&site=ehost-live%5Cnhttp://dx.doi.org/10.1016/j.eneco.2014.11.011 |
dc.relation.references | Ramírez C., J. J. . (2015). MERRA-based study of the wind / solar resource and their complementarity to the hydro resource for power generation in Colombia External Advisor : Contents Motivation and Research question Methodology Results and analysis Main conclusions (Issue September, pp. 1–170). |
dc.relation.references | REN21. (2020). Renewables 2020 Global Status Report. In REN21 Renewables Now. https://www.ren21.net/wp-content/uploads/2019/05/GSR_2020_Press_Release_ES.pdf |
dc.relation.references | Reuter, W. H., Fuss, S., Szolgayová, J., & Obersteiner, M. (2012). Investment in wind power and pumped storage in a real options model. Renewable and Sustainable Energy Reviews, 16(4), 2242–2248. https://doi.org/10.1016/j.rser.2012.01.025 |
dc.relation.references | Rodriguez, C. P., & Anders, G. J. (2004). Energy Price Forecasting in the Ontario Competitive Power System Market. IEEE Transactions on Power Systems, 19(1), 366–374. https://doi.org/10.1109/TPWRS.2003.821470 |
dc.relation.references | Rodríguez, C. P., & Andrers, G. J. (2004). Bidding Strategy Design for Different Types of Electric Power Market Participants. IEEE Transactions on Power Systems, 19(2), 964–971. |
dc.relation.references | Roques, F., Hiroux, C., & Saguan, M. (2010). Optimal wind power deployment in Europe-A portfolio approach. Energy Policy, 38(7), 3245–3256. https://doi.org/10.1016/j.enpol.2009.07.048 |
dc.relation.references | Schwartz, E. (2013). The real options approach to valuation: Challenges and opportunities. Latin American Journal of Economics, 50(2), 163–177. https://doi.org/10.7764/LAJE.50.2.163 |
dc.relation.references | Shah, S. A. A., Solangi, Y. A., & Ikram, M. (2019). Analysis of barriers to the adoption of cleaner energy technologies in Pakistan using Modified Delphi and Fuzzy Analytical Hierarchy Process. Journal of Cleaner Production, 235, 1037–1050. https://doi.org/10.1016/j.jclepro.2019.07.020 |
dc.relation.references | Smit, H. T. J., & Trigeorgis, L. (2004). Strategic investment: Real options and games. In Strategic Investment: Real Options and Games. Princeton University Press. |
dc.relation.references | Smit, H. T. J., Trigeorgis, L., Baldwin, C., Dixit, A., Kester, C., McGrath, R., Myers, S. C., Perotti, E., Salinger, M., & Triantis, A. (2004). Quantifying the strategic options value of technology investmments (pp. 1–59). |
dc.relation.references | Srivastava, A. K., Kamalasadan, S., Patel, D., Sankar, S., & Al-Omit, K. S. (2011). Electricity markets: an overview and comparative study. International Journal of Energy Sector Management, 5(2), 169–200. https://doi.org/http://dx.doi.org.ezproxy.lib.ryerson.ca/10.1108/17506221111145977 |
dc.relation.references | Streimikiene, D., & Siksnelyte, I. (2014). Electricity market opening impact on investments in electricity sector. Renewable and Sustainable Energy Reviews, 29, 891–904. https://doi.org/10.1016/j.rser.2013.08.093 |
dc.relation.references | Su, W., & Huang, A. Q. (2014). A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers. Applied Energy, 119, 341–350. https://doi.org/10.1016/j.apenergy.2014.01.003 |
dc.relation.references | Sunderkötter, M., & Weber, C. (2012). Valuing fuel diversification in power generation capacity planning. Energy Economics, 34(5), 1664–1674. https://doi.org/10.1016/j.eneco.2012.02.003 |
dc.relation.references | Suomalainen, K., Pritchard, G., Sharp, B., Yuan, Z., & Zakeri, G. (2015). Correlation analysis on wind and hydro resources with electricity demand and prices in New Zealand. Applied Energy, 137, 445–462. https://doi.org/10.1016/j.apenergy.2014.10.015 |
dc.relation.references | Támara Ayús, A. L., Forero Corrales, J., Gil Osorio, I., & Almonacid Hurtado, P. M. (2019). Las opciones reales como metodología de evaluación de un proyecto en el sector de energía. Ecos de Economía, 23(48), 61–79. https://doi.org/10.17230/ecos.2019.48.4 |
dc.relation.references | Tande, J. O. G., & Vogstad, K.-O. (1999). OPERATIONAL IMPLICATIONS OF WIND. In E. Petersen, P. H. Hensen, K. Rave, P. Helm, & H. Ehmann (Eds.), 1999 European Wind Energy Conference: Wind Energy for the Next Millennium (Issue March, pp. 425–429). James & James (Science Publishers) Ltd. |
dc.relation.references | The Wind Power. (2020). The Wind Power: Wind Energy Market Intelligence. Manufacturers and Turbines. https://www.thewindpower.net/turbine_en_12_nordex_n60-1300.php |
dc.relation.references | Trigeorgis, L. (1993). The Nature of Option Interactions and the Valuation of Investments with Multiple Real Options. The Journal of Financial and Quantitative Analysis, 28(1), 1–20. https://doi.org/10.2307/2331148 |
dc.relation.references | U.S. Energy Information Administration. (2019). Cost and Performance Characteristics of New Generating Technologies, Annual Energy Outlook 2019. Annual Energy Outlook 2018, 2019(January), 1–3. |
dc.relation.references | Unidad de planeación Minero Energética (UPME). (2006). Atlas de Viento y Energía Eólica de Colombia (pp. 1–168). Ministerio de Minas y Energía de Colombia. http://www.minambiente.gov.co/images/cambioclimatico/pdf/colombia_hacia_la_COP21/ABC_de_los_Compromisos_de_Colombia_para_la_COP21_VF.pdf |
dc.relation.references | Unidad Nacional para la Gestión del Riesgo de Desastres. (2016). Fenómeno El Niño, Análisis Comparativo 1997-1998 / 2014-2016. Unidad Nacional para la Gestión del Riesgo de Desastres. http://cedir.gestiondelriesgo.gov.co/index.php/42-%0Apublicaciones/161-fenomeno-el-nino-analisis-comparativo-1997-1998-2014-2016 |
dc.relation.references | UPME. (2016). Boletín Estadístico: Minas y energía 2012 – 2016. Ministerio de Minas y Energía, 200. http://www1.upme.gov.co/simco/Documents/Boletin_Estadistico_2012_2016.pdf |
dc.relation.references | Valdés-Lucas, J. N., Escribano-Francés, G., & San Martín-González, E. (2016). Energy security and renewable energy deployment in the EU: Liaisons Dangereuses or Virtuous Circle? Renewable and Sustainable Energy Reviews, 62, 1032–1046. https://doi.org/10.1016/j.rser.2016.04.069 |
dc.relation.references | Varian, H. R. (2010). Intermediate Microeconomics: A Modern Approach. In J. Repcheck (Ed.), University of California (Eighth Edi, Issue 8). W. W. Norton & Company. https://doi.org/10.1017/CBO9781107415324.004 |
dc.relation.references | Ventosa, M., Baíllo, Á. ́, Ramos, A., & Rivier, M. (2005). Electricity market modeling trends. Energy Policy, 33(7), 897–913. https://doi.org/10.1016/j.enpol.2003.10.013 |
dc.relation.references | Vogstad, K. (2000). Utilising the complementary characteristics of wind power and hydropower through coordinated hydro production scheduling using the EMPS model. Wind Power for the 21st Century, December, 1–5. |
dc.relation.references | Voropai, N. I., & Ivanova, E. Y. (2006). Shapley game for expansion planning of generating companies at many non-coincident criteria. IEEE Transactions on Power Systems, 21(4), 1630–1637. https://doi.org/10.1109/TPWRS.2006.873053 |
dc.relation.references | Waldman, D. E., & Jensen, E. J. (2013). Industrial organization : theory and practice (4th ed.). |
dc.relation.references | Wang, J., Shahidehpour, M., Li, Z., & Botterud, A. (2009). Strategic generation capacity expansion planning with incomplete information. IEEE Transactions on Power Systems, 24(2), 1002–1010. https://doi.org/10.1109/TPWRS.2009.2017435 |
dc.relation.references | Weibel, S., & Madlener, R. (2015). Cost-effective design of ringwall storage hybrid power plants: A real options analysis. Energy Conversion and Management, 103, 871–885. https://doi.org/10.1016/j.enconman.2015.06.043 |
dc.relation.references | Witzler, L. T., Ramos, D. S., Camargo, L. A. S., & Guarnier, E. (2016). Reconstruction of wind generation historical series aiming at the analysis of energy complementarity: Methodology and applications. International Conference on the European Energy Market, EEM, 2016-July. https://doi.org/10.1109/EEM.2016.7521324 |
dc.relation.references | Wogrin, S., Hobbs, B. F., Ralph, D., Centeno, E., & Barquín, J. (2013). Open versus closed loop capacity equilibria in electricity markets under perfect and oligopolistic competition. Mathematical Programming, 140(2), 295–322. https://doi.org/https://doi.org/10.1007/s10107-013-0696-2 |
dc.relation.references | XM. (2017). Histórico Oferta. Portal Bi. |
dc.relation.references | Yang, M., Blyth, W., Bradley, R., Bunn, D., Clarke, C., & Wilson, T. (2008). Evaluating the power investment options with uncertainty in climate policy. Energy Economics, 30(4), 1933–1950. https://doi.org/10.1016/j.eneco.2007.06.004 |
dc.relation.references | Yi, Z., Xin-gang, Z., Yu-zhuo, Z., & Ying, Z. (2019). From feed-in tariff to renewable portfolio standards: An evolutionary game theory perspective. Journal of Cleaner Production, 213, 1274–1289. https://doi.org/10.1016/j.jclepro.2018.12.170 |
dc.relation.references | Yu, W., Sheblé, G. B., Peças-Lopes, J. A., & Matos, M. A. (2006). Valuation of switchable tariff for wind energy. Electric Power Systems Research, 76(5), 382–388. https://doi.org/10.1016/j.epsr.2005.09.004 |
dc.relation.references | Zapata, S., Castaneda, M., Jimenez, M., Julian Aristizabal, A., Franco, C. J., & Dyner, I. (2018). Long-term effects of 100% renewable generation on the Colombian power market. Sustainable Energy Technologies and Assessments, 30(February), 183–191. https://doi.org/10.1016/j.seta.2018.10.008 |
dc.relation.references | Zhang, N., Yan, Y., & Su, W. (2015). A game-theoretic economic operation of residential distribution system with high participation of distributed electricity prosumers. Applied Energy, 154, 471–479. https://doi.org/10.1016/j.apenergy.2015.05.011 |
dc.relation.references | Zon, A. van, & Fuss, S. (2008). Risk, Embodied Technical Change and Irreversible Investment Decisions in UK Electricity Production. In M. Bazilian & F. Roques (Eds.), Analytical Methods for Energy Diversity and Security (1St ed., pp. 275–303). Elsevier Ltd. |
dc.relation.references | Ruíz-Murcia, J. F., Serna-Cuenca, J., & Zapata-Lesmes, H. J. (2017). Atlas de viento de Colombia (pp. 1–158). IDEAM - UPME. www.imprenta.gov.co |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess |
dc.subject.lemb | Generadores termoelectricos |
dc.subject.lemb | Thermoelectric generators |
dc.subject.proposal | Incertidumbre |
dc.subject.proposal | Uncertainty |
dc.subject.proposal | Complementariedad |
dc.subject.proposal | Complementarity |
dc.subject.proposal | Diversificación |
dc.subject.proposal | Diversification |
dc.subject.proposal | Energía Hidráulica |
dc.subject.proposal | Hydro-power |
dc.subject.proposal | Energía Eólica |
dc.subject.proposal | Wind-Power |
dc.subject.proposal | Opciones Reales |
dc.subject.proposal | Real Options |
dc.subject.proposal | Teoría de Juegos |
dc.subject.proposal | Game Theory |
dc.subject.proposal | Juego de Opciones |
dc.subject.proposal | Option Game |
dc.title.translated | Strategic investment decisions in renewable energy for generators in a competitive electricity market |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa |
dc.type.content | Text |
dc.type.redcol | http://purl.org/redcol/resource_type/TD |
oaire.accessrights | http://purl.org/coar/access_right/c_14cb |
dcterms.audience.professionaldevelopment | Estudiantes |
dcterms.audience.professionaldevelopment | Investigadores |
dcterms.audience.professionaldevelopment | Maestros |
dcterms.audience.professionaldevelopment | Público general |
dcterms.audience.professionaldevelopment | Responsables políticos |
dc.description.curriculararea | Área Curricular de Ingeniería Administrativa e Ingeniería Industrial |