Show simple item record

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMora Huertas, Claudia Elizabeth
dc.contributor.advisorPinal, Rodolfo
dc.contributor.authorMora Guerrero, Carolina del Pilar
dc.date.accessioned2022-08-24T16:21:28Z
dc.date.available2022-08-24T16:21:28Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82069
dc.descriptionilustraciones, fotografías, gráficas,
dc.description.abstractLa búsqueda de nuevas alternativas de emulsificación es un tema relevante en la investigación farmacéutica dadas las restricciones de seguridad para algunos materiales y el interés por aprovechar los recursos naturales disponibles en países como Colombia. En este sentido, la presente investigación estudia el desempeño como emulsificantes de cinco almidones de maíz céreo modificados con anhídrido octenil succínico (Hi-Cap® 100, Purity Gum® 2000, Capsul®, N-Creamer® 46 y Purity Gum® Ultra), empleando triglicérido caprílico/cáprico y agua como fases oleosa y acuosa, respectivamente. El desarrollo metodológico incluye la caracterización morfológica, fisicoquímica, estructural y reológica de los almidones, la preparación de las emulsiones a diferentes concentraciones de almidón modificado y su caracterización, la realización de estudios de estabilidad y el estudio de la microestructura. El grado de sustitución (DS: 0.017 – 0.032), el grado de ramificación (DB: 2.27 – 2.93 %), la longitud media de las cadenas lineales (H alfa -(1-4): 70.12 – 97.60 %), la masa molecular media en peso (Mw: 0.68 – 157.75 x 105 g/mol), el radio de giro medio (Rz: 41.30 – 78.45 nm) y la densidad molecular dispersa (0.64 – 42.58 g/mol.nm3) de los almidones investigados son los parámetros que más influyen en la estabilidad de las emulsiones. Así, los sistemas preparados con N-Creamer® 46 (1.8 g almidón/g CCT), Purity Gum® Ultra (2.2 g almidón/g CCT) o Purity Gum® 2000 (3.5 g almidón/g CCT), permiten las emulsiones más estables durante 180 d a 20 y 40 °C ± 0.1 °C. Hi-Cap® 100 y Capsul® no favorecen la estabilidad de las emulsiones, probablemente debido a sus menores valores de Mw, Rz y densidad molecular dispersa. De otro lado, el tipo y la concentración de almidón modificado influencian el índice de cremado, el tamaño de gota y el comportamiento reológico de las emulsiones en función del DS, el DB, la Mw, el Rz y la densidad molecular dispersa. El estudio de la microestructura de las emulsiones evidencia la formación de una red tridimensional, sugiriendo que el principal mecanismo de estabilización empleando estos biopolímeros es el efecto estérico, lo que fue corroborado con la evaluación del potencial zeta y el ensayo de agregación inducida por electrolitos. En conjunto, estos resultados proveen información fundamental acerca de la caracterización de los almidones hidrofóbicos, útil para el desarrollo de sistemas emulsificados novedosos en los campos farmacéutico y cosmético.
dc.description.abstractTo search for new alternatives for emulsification is a relevant topic of pharmaceutical research because of the safety restrictions of some materials and the interest of taking advantage of natural resources of countries as Colombia. In this sense, this research work studies the performance as emulsifiers of five waxy corn starches modified with octenyl succinic anhydride (Hi-Cap® 100, Purity Gum® 2000, Capsul®, N-Creamer® 46, and Purity Gum® Ultra), employing caprylic/capric triglyceride and water as the oily and aqueous phases, respectively. The methodology of this work includes the morphological, physicochemical, structural, and rheological characterization of the starches, the preparation of the emulsions at different modified starches concentrations and their characterization, stability assessment, and microstructure investigation. The stability of the emulsions strongly depends on the degree of substitution (DS: 0.017 – 0.032), branching degree (DB: 2.27 – 2.93 %), mean length of the linear chains (H alpha-(1-4): 70.12 – 97.60 %), weight-average molecular weight (Mw: 0.68 – 157.75 x 105 g/mol), z-average radius of gyration (Rz: 41.30 – 78.45 nm), and dispersed molecular density (0.64 – 42.58 g/mol.nm3) of the starches. The systems prepared with N-Creamer® 46 (1.8 g starch/g CCT), Purity Gum® Ultra (2.2 g starch/g CCT), or Purity Gum® 2000 (3.5 g starch/g CCT), allow the most stable emulsions during 180 d at 20 and 40 °C ± 0.1 °C. The Hi-Cap® 100 and Capsul® starches do not favor the emulsions´ stability, probably due to their lower values of Mw, Rz, and dispersed molecular density. On the other hand, the type and concentration of modified starch influence the creaming index, droplet size, and rheological behavior of the emulsions as a function of DS, DB, Mw, Rz, and dispersed molecular density. The investigation of the emulsions´ microstructure provides evidence of a three-dimensional starch network, suggesting the steric effect as the primary mechanism of stabilization when these biopolymers are used. This was corroborated by the zeta-potential evaluation and the test of electrolyte-induced aggregation. All these results about the characterization of the hydrophobic starches are helpful and fundamental to developing novel emulsified systems for innovative pharmaceutic and cosmetic products.
dc.description.sponsorshipUniversidad Nacional de Colombia
dc.format.extent329 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2022
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industriales
dc.titleInfluencia de la naturaleza del almidón modificado en su desempeño como emulsificante de sistemas triglicérido caprílico/cáprico – agua
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticas
dc.contributor.researchgroupGrupo de Investigación en Desarrollo y Calidad de Productos Farmacéuticos y Cosméticos - GIDECA
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias Farmacéuticas
dc.description.methodsMétodo científico, experimentación en el laboratorio.
dc.description.researchareaFarmacotecnia – Desarrollo de formas farmacéuticas y cosméticas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentDepartamento de Farmacia
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbbas, S., Bashari, M., Akhtar, W., Li, W. W., y Zhang, X. (2014). Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrasonics Sonochemistry, 21(4), 1265–1274.
dc.relation.referencesAdetola, O. A., Olukunle, O. J., y Adedeji, A. A. (2019). Acid and hydrothermal modification of different types of cassava (Manihot esculenta) starch. ASABE Meeting Presentation, 1–9.
dc.relation.referencesAl-Jubory, F. K., Mujtaba, I. M., y Abbas, A. S. (2020). Preparation and characterization of biodegradable crosslinked starch ester as adsorbent. AIP Conference Proceedings, 2213, 020165–1–020165–020169.
dc.relation.referencesAnanthapadmanabhan, K. P., Mukherjee, S., y Chandar, P. (2013a). Stratum corneum fatty acids: Their critical role in preserving barrier integrity during cleansing. International Journal of Cosmetic Science, 35(4), 337–345.
dc.relation.referencesAnanthapadmanabhan, K. P., Subramanyan, K., y Nole, G. (2013b). A global perspective on caring for healthy stratum corneum by mitigating the effects of daily cleansing: Report from an expert dermatology symposium. British Journal of Dermatology, 168(Suppl. 1), 1–9.
dc.relation.referencesAndresen, M., y Stenius, P. (2007). Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. Journal of Dispersion Science and Technology, 28(6), 837–844.
dc.relation.referencesAnwar, S. H., Safriani, N., Asmawati, Zainal Abiddin, N. F., y Yusoff, A. (2017). Application of modified breadfruit (Artocarpus altillis) starch by octenyl succinic anhydride (OSA) to stabilize fish and microalgae oil emulsions. International Food Research Journal, 24(6), 2330–2339.
dc.relation.referencesAranberri, I., Binks, B. P., Clint, J. H., y Fletcher, P. D. I. (2006). Elaboración y caracterización de emulsiones estabilizadas por polímeros y agentes tensioactivos. Revista Iberoamericana de Polímeros, 7(3), 211–231.
dc.relation.referencesBai, Y., Shi, Y.-C., Herrera, A., y Prakash, O. (2011). Study of octenyl succinic anhydride-modified waxy maize starch by nuclear magnetic resonance spectroscopy. Carbohydrate Polymers, 83(2), 407–413.
dc.relation.referencesBai, Y., y Shi, Y. C. (2016). Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy. Carbohydrate Polymers, 151, 426–433.
dc.relation.referencesBarnes, H. A. (2000). A handbook of elementary rheology (Vol. 1). Aberystwyth: University of Wales Institute of Non-Newtonian Fluid Mechanics.
dc.relation.referencesBasilio-Cortés, U. A., González-Cruz, L., Velazquez, G., Teniente-Martínez, G., Gómez-Aldapa, C. A., Castro-Rosas, J., y Bernardino-Nicanor, A. (2019). Effect of dual modification on the spectroscopic, calorimetric, viscosimetric and morphological characteristics of corn starch. Polymers, 11(2), 1–14.
dc.relation.referencesBello-Flores, C. A., Nuñez-Santiago, M. C., San Martín-Gonzalez, M. F., BeMiller, J. N., y Bello-Pérez, L. A. (2014). Preparation and characterization of octenylsuccinylated plantain starch. International Journal of Biological Macromolecules, 70, 334–339.
dc.relation.referencesBello-Pérez, L. A., Bello-Flores, C. A., Nuñez-Santiago, M. D. C., Coronel-Aguilera, C. P., y Alvarez-Ramirez, J. (2015). Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability. Carbohydrate Polymers, 132, 17–24.
dc.relation.referencesBello-Pérez, L. A., Rodriguez-Ambriz, S. L., y Lozano-Grande, M. A. (2017). Molecular characterization of starches by AF4-MALS-RI: An alternative procedure. Journal of Cereal Science, 75, 132–134.
dc.relation.referencesBeMiller, J. N. (2019). Corn starch modification. En S. Serna-Saldivar (Ed.), Corn: Chemistry and Technology (pp. 537–549). Duxford: Elsevier Inc.
dc.relation.referencesBeMiller, J. N., y Whistler, R. L. (1996). Carbohydrates. En O. R. Fennema (Ed.), Food Chemistry (3rd ed., pp. 191–195). New York: Marcel Dekker, Inc.
dc.relation.referencesBenchabane, A., y Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10), 1173–1180.
dc.relation.referencesBertoft, E. (2013). On the building block and backbone concepts of amylopectin structure. Cereal Chemistry, 90(4), 294–311.
dc.relation.referencesBertoft, E. (2017). Understanding starch structure: recent progress. Agronomy, 7(3), 56.
dc.relation.referencesBhandari, P. N., Singhal, R. S., y Kale, D. D. (2002). Effect of succinylation on the rheological profile of starch pastes. Carbohydrate Polymers, 47(4), 365–371.
dc.relation.referencesBhosale, R., y Singhal, R. (2006). Process optimization for the synthesis of octenyl succinyl derivative of waxy corn and amaranth starches. Carbohydrate Polymers, 66(4), 521–527.
dc.relation.referencesBinks, B. P., Desforges, A., y Duff, D. G. (2007a). Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant. Langmuir, 23(3), 1098–1106.
dc.relation.referencesBinks, B. P., Fletcher, P. D. I., Thompson, M. A., y Elliott, R. P. (2013). Influence of propylene glycol on aqueous silica dispersions and particle-stabilized emulsions. Langmuir, 29(19), 5723–5733.
dc.relation.referencesBinks, B. P., y Lumsdon, S. O. (2000). Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir, 16(23), 8622–8631.
dc.relation.referencesBinks, B. P., y Rocher, A. (2009). Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles. Journal of Colloid and Interface Science, 335(1), 94–104.
dc.relation.referencesBinks, B. P., Rodrigues, J. A., y Frith, W. J. (2007b). Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant. Langmuir, 23(7), 3626–3636.
dc.relation.referencesBlock, L. H. (2008). Pharmaceutical emulsions and microemulsions. En H. A. Lieberman, M. M. Rieger, & G. S. Banker (Eds.), Pharmaceutical dosage forms. Disperse systems. Vol. 2 (2nd ed., p. 47). New York: Informa Healthcare USA, Inc.
dc.relation.referencesBonacucina, G., Martino, P. Di, Piombetti, M., Colombo, A., Roversi, F., y Palmieri, G. F. (2006). Effect of plasticizers on properties of pregelatinised starch acetate (Amprac 01) free films. International Journal of Pharmaceutics, 313(1–2), 72–77.
dc.relation.referencesBortnowska, G., Balejko, J., Tokarczyk, G., Romanowska-Osuch, A., y Krzemińska, N. (2014). Effects of pregelatinized waxy maize starch on the physicochemical properties and stability of model low-fat oil-in-water food emulsions. Food Hydrocolloids, 36, 229–237.
dc.relation.referencesChanamai, R., y McClements, D. J. (2002). Comparison of Gum Arabic, Modified Starch, and Whey Protein Isolate as Emulsifiers: Influence of pH, CaCl2 and Temperature. Journal of Food Science, 67(1), 120–125.
dc.relation.referencesChang, R., Yang, J., Ge, S., Zhao, M., Liang, C., Xiong, L., y Sun, Q. (2017). Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release. Food Hydrocolloids, 67, 14–26.
dc.relation.referencesCharoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., Decker, E. A., y McClements, D. J. (2012). Influence of interfacial composition on oxidative stability of oil-in-water emulsions stabilized by biopolymer emulsifiers. Food Chemistry, 131(4), 1340–1346.
dc.relation.referencesCharoen, R., Jangchud, A., Jangchud, K., Harnsilawat, T., Naivikul, O., y McClements, D. J. (2011). Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: Whey protein, gum arabic, and modified starch. Journal of Food Science, 76(1), E165–E172.
dc.relation.referencesChaudhari, A., Pan, Y., y Nitin, N. (2015). Beverage emulsions: Comparison among nanoparticle stabilized emulsion with starch and surfactant stabilized emulsions. Food Research International, 69, 156–163.
dc.relation.referencesCheng, F., Ai, Y., y Ghosh, S. (2021). Utilization of octenyl succinic anhydride-modified pea and corn starches for stabilizing oil-in-water emulsions. Food Hydrocolloids, 118, 106773.
dc.relation.referencesCheuk, S. Y., Shih, F. F., Champagne, E. T., Daigle, K. W., Patindol, J. A., Mattison, C. P., y Boue, S. M. (2015). Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch. Food Chemistry, 174, 585–590.
dc.relation.referencesChevalier, Y., y Bolzinger, M.-A. (2013). Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 23–34.
dc.relation.referencesChivero, P., Gohtani, S., Yoshii, H., y Nakamura, A. (2016). Assessment of soy soluble polysaccharide, gum arabic and OSA-Starch as emulsifiers for mayonnaise-like emulsions. LWT - Food Science and Technology, 69, 59–66.
dc.relation.referencesChong, W. T., Tan, C. P., Cheah, Y. K., Lajis, A. F. B., Dian, N. L. H. M., Kanagaratnam, S., y Lai, O. M. (2018). Optimization of process parameters in preparation of tocotrienol-rich red palm oil-based nanoemulsion stabilized by Tween 80 - Span 80 using response surface methodology. PLOS ONE, 13(8), 1–22.
dc.relation.referencesClaesson, P. M., Blomberg, E., y Poptoshev, E. (2004). Surface forces and emulsion stability. En S. E. Friberg, K. Larsson, & J. Sjöblom (Eds.), Food Emulsions (4th ed., pp. 257–297). New York: Marcel Dekker, Inc.
dc.relation.referencesDavarpanah, L., y Vahabzadeh, F. (2012). Formation of oil-in-water (O/W) pickering emulsions via complexation between β-cyclodextrin and selected organic solvents. Starch/Stärke, 64, 898–913.
dc.relation.referencesDavies, R., Graham, D. E., y Vincent, B. (1987). Water-cyclohexane-"Span 80"-"Tween 80" systems: Solution properties and water/oil emulsion formation. Journal of Colloid and Interface Science, 116(1), 88–99.
dc.relation.referencesde Folter, J. W. J., van Ruijven, M. W. M., y Velikov, K. P. (2012). Oil-in-water pickering emulsions stabilized by colloidal particles from the water-insoluble protein zein. Soft Matter, 8(25), 6807–6815.
dc.relation.referencesDesplanques, S., Renou, F., Grisel, M., y Malhiac, C. (2012). Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions. Food Hydrocolloids, 27(2), 401–410.
dc.relation.referencesDickinson, E. (2003). Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocolloids, 17(1), 25–39.
dc.relation.referencesDickinson, E. (2009a). Hydrocolloids and emulsion stability. En Handbook of Hydrocolloids (2nd ed., pp. 23–49). Sawston: Woodhead Publishing Limited.
dc.relation.referencesDickinson, E. (2009b). Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids, 23(6), 1473–1482.
dc.relation.referencesDickinson, E. (2017). Hydrocolloids acting as emulsifying agents – How do they do it? Food Hydrocolloids, 78, 2–14.
dc.relation.referencesDiftis, N. G., Biliaderis, C. G., y Kiosseoglou, V. D. (2005). Rheological properties and stability of model salad dressing emulsions prepared with a dry-heated soybean protein isolate-dextran mixture. Food Hydrocolloids, 19(6), 1025–1031.
dc.relation.referencesDokić, L., Krstonošić, V., y Nikolić, I. (2012). Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch. Food Hydrocolloids, 29(1), 185–192.
dc.relation.referencesDokić, P., Dokić, L., Dapčević, T., y Krstonošić, V. (2008). Colloid characteristics and emulsifying properties of OSA starches. Progress in Colloid and Polymer Science, 135, 48–56.
dc.relation.referencesEinarson, M. B., y Berg, J. C. (1993). Electrosteric stabilization of colloidal latex dispersions. Journal of Colloid and Interface Science, 155, 165–172.
dc.relation.referencesEskandar, N. G., Simovic, S., y Prestidge, C. A. (2007). Synergistic effect of silica nanoparticles and charged surfactants in the formation and stability of submicron oil-in-water emulsions. Physical Chemistry Chemical Physics, 9(48), 6426–6434.
dc.relation.referencesEstrada-Fernández, A. G., Dorantes-Bautista, G., Román-Guerrero, A., Campos-Montiel, R. G., Hernández-Uribe, J. P., y Jiménez-Alvarado, R. (2021). Modification of Oxalis tuberosa starch with OSA, characterization and application in food-grade Pickering emulsions. Journal of Food Science and Technology, 58(8), 2896–2905.
dc.relation.referencesFlorian Puello, T. I. (2013). Efecto de la lipofilización en los almidones nativos de ñame espino (Dioscorea rotundata Poir.), plátano topocho (Musa paradisiaca L.), arracacha (Arracacia xanthorrhiza Bancr.), maíz (Zea mays L.) y evaluación de su posible uso como agentes emulsificante. Universidad de Cartagena, Cartagena.
dc.relation.referencesFloury, J., Desrumaux, A., Axelos, M. A. V., y Legrand, J. (2003). Effect of high pressure homogenisation on methylcellulose as food emulsifier. Journal of Food Engineering, 58(3), 227–238.
dc.relation.referencesFloury, J., Desrumaux, A., y Legrand, J. (2002). Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions. JFS: Food Engineering and Physical Properties, 67(9), 3388–3395.
dc.relation.referencesFloury, J., Legrand, J., y Desrumaux, A. (2004). Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena. Chemical Engineering Science, 59(6), 1285–1294.
dc.relation.referencesFonseca-Florido, H. A., Vázquez-García, H. G., Méndez-Montealvo, G., Basilio-Cortés, U. A., Navarro-Cortés, R., Rodríguez-Marín, M. L., … Gómez-Aldapa, C. A. (2018). Effect of acid hydrolysis and OSA esterification of waxy cassava starch on emulsifying properties in pickering-type emulsions. LWT - Food Science and Technology, 91, 258–264.
dc.relation.referencesFu, Z. Q., Wang, L. J., Li, D., y Adhikari, B. (2012). Effects of partial gelatinization on structure and thermal properties of corn starch after spray drying. Carbohydrate Polymers, 88(4), 1319–1325.
dc.relation.referencesFujii, S., Aichi, A., Muraoka, M., Kishimoto, N., Iwahori, K., Nakamura, Y., y Yamashita, I. (2009). Ferritin as a bionano-particulate emulsifier. Journal of Colloid and Interface Science, 338(1), 222–228.
dc.relation.referencesFulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., … Goldberg, K. I. (2010). NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics, 29(9), 2176–2179.
dc.relation.referencesFuma, T., y Kawaguchi, M. (2015). Rheological responses of Pickering emulsions prepared using colloidal hydrophilic silica particles in the presence of NaCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 168–174.
dc.relation.referencesGamonpilas, C., Pongjaruvat, W., Fuongfuchat, A., Methacanon, P., Seetapan, N., y Thamjedsada, N. (2011). Physicochemical and rheological characteristics of commercial chili sauces as thickened by modified starch or modified starch/xanthan mixture. Journal of Food Engineering, 105(2), 233–240.
dc.relation.referencesGarcía-Tejeda, Y. V., Leal-Castañeda, E. J., Espinosa-Solis, V., y Barrera-Figueroa, V. (2018). Synthesis and characterization of rice starch laurate as food-grade emulsifier for canola oil-in-water emulsions. Carbohydrate Polymers, 194, 177–183.
dc.relation.referencesGattefossé. (2015). Ficha Técnica del triglicérido caprílico/cáprico. Saint-Priest.
dc.relation.referencesGayathri, V. G., Debnath, S., y Babu, M. N. (2013). Chemically modified starches and their applications in pharmacy. International Journal of Research in Pharmaceutical and Nano Sciences, 2(3), 332–344.
dc.relation.referencesGazolu-Rusanova, D., Lesov, I., Tcholakova, S., Denkov, N., y Ahtchi, B. (2020). Food grade nanoemulsions preparation by rotor-stator homogenization. Food Hydrocolloids, 102, 1–11.
dc.relation.referencesGenest, S., Schwarz, S., Petzold-Welcke, K., Heinze, T., y Voit, B. (2013). Characterization of highly substituted, cationic amphiphilic starch derivatives: Dynamic surface tension and intrinsic viscosity. Starch - StärkeStärke, 65(11–12), 999–1010.
dc.relation.referencesGidley, M. J. (1985). Quantification of the structural features of starch polysaccharides by N.M.R. spectroscopy. Carbohydrate Research, 139, 85–93.
dc.relation.referencesGonzález-Cardozo, L. M., Mora-Huertas, C. E., y Gutiérrez, L. F. (2021). Production of Sacha Inchi oil emulsions by high-shear and high-intensity ultrasound emulsification: Physical properties and stability. Journal of Food Processing and Preservation, 45(10), 1–15.
dc.relation.referencesGuarás, M. P., Ludueña, L. N., y Alvarez, V. A. (2017). Development of biodegradable products from modified starches. En M. A. Villar, S. E. Barbosa, G. M. Alejandra, L. A. Castillo, & O. V López (Eds.), Starch-Based Materials in Food Packaging: Processing, Characterization and Applications (pp. 77–124). Amsterdam: Elsevier Inc.
dc.relation.referencesGuo, L., Tao, H., Cui, B., y Janaswamy, S. (2019). The effects of sequential enzyme modifications on structural and physicochemical properties of sweet potato starch granules. Food Chemistry, 277, 504–514.
dc.relation.referencesHan, H., Zhang, H., Li, E., Li, C., y Wu, P. (2019). Structural and functional properties of OSA-starches made with wide-ranging hydrolysis approaches. Food Hydrocolloids, 90, 132–145.
dc.relation.referencesHarding, S. E., Adams, G. G., y Gillis, R. B. (2016). Molecular weight analysis of starches: Which technique? Starch - Stärke, 68(9–10), 846–853.
dc.relation.referencesHolmes M. J., y Povey, M. J. W. (2017). Ultrasonic particle sizing in emulsions. En M. Villamiel, J. V García-Pérez, A. Montilla, J. A. Cárcel, & J. Benedito (Eds.), Ultrasound in Food Processing: Recent Advances (1st ed., pp. 28–64). Hoboken: John Wiley & Sons Ltd.
dc.relation.referencesHong, L.-F., Cheng, L.-H., Gan, C.-Y., Lee, C. Y., y Peh, K. K. (2018). Evaluation of starch propionate as emulsion stabiliser in comparison with octenylsuccinate starch. LWT - Food Science and Technology, 91, 526–531.
dc.relation.referencesHug-Iten, S., Escher, F., y Conde-Petit, B. (2003). Staling of bread: Role of amylose and amylopectin and influence of starch-degrading enzymes. Cereal Chemistry, 80(6), 654–661.
dc.relation.referencesHui, R., Qi-he, C., Ming-liang, F., Qiong, X., y Guo-qing, H. (2009). Preparation and properties of octenyl succinic anhydride modified potato starch. Food Chemistry, 114(1), 81–86.
dc.relation.referencesHunter, T. N., Pugh, R. J., Franks, G. V., y Jameson, G. J. (2008). The role of particles in stabilising foams and emulsions. Advances in Colloid and Interface Science, 137(2), 57–81.
dc.relation.referencesICH. (2009). Guidance for industry. Q8(R2) Pharmaceutical development. Rockville: International Conference on Harmonisation.
dc.relation.referencesJafari, S. M., Assadpoor, E., He, Y., y Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids, 22(7), 1191–1202.
dc.relation.referencesJafari, S. M., He, Y., y Bhandari, B. (2007). Production of sub-micron emulsions by ultrasound and microfluidization techniques. Journal of Food Engineering, 82(4), 478–488.
dc.relation.referencesJain, D., Athawale, R., Bajaj, A., Shrikhande, S., Goel, P. N., y Gude, R. P. (2013). Studies on stabilization mechanism and stealth effect of poloxamer 188 onto PLGA nanoparticles. Colloids and Surfaces B: Biointerfaces, 109, 59–67.
dc.relation.referencesJain, S., Winuprasith, T., y Suphantharika, M. (2019). Design and synthesis of modified and resistant starch-based oil-in-water emulsions. Food Hydrocolloids, 89, 153–162.
dc.relation.referencesJane, J., y Chen, J.-F. (1992). Effect of amylose molecular size and amylopectin branch chain length on paste properties of starch. Cereal Chemistry, 69(1), 60–65.
dc.relation.referencesJin, Q., Cai, Z., Li, X., Yadav, M. P., y Zhang, H. (2017a). Comparative viscoelasticity studies: Corn fiber gum versus commercial polysaccharide emulsifiers in bulk and at air/liquid interfaces. Food Hydrocolloids, 64, 85–98.
dc.relation.referencesJin, Q., Li, X., Cai, Z., Zhang, F., Yadav, M. P., y Zhang, H. (2017b). A comparison of corn fiber gum, hydrophobically modified starch, gum arabic and soybean soluble polysaccharide: Interfacial dynamics, viscoelastic response at oil/water interfaces and emulsion stabilization mechanisms. Food Hydrocolloids, 70, 329–344.
dc.relation.referencesJutz, G., y Böker, A. (2010). Bio-inorganic microcapsules from templating protein- and bionanoparticle-stabilized pickering emulsions. Journal of Materials Chemistry, 20(21), 4299–4304.
dc.relation.referencesKankate, D., Panpalia, S. G., Kumar, K. J., y Kennedy, J. F. (2020). Studies to predict the effect of pregelatinization on excipient property of maize and potato starch blends. International Journal of Biological Macromolecules, 164, 1206–1214.
dc.relation.referencesKargar, M., Fayazmanesh, K., Alavi, M., Spyropoulos, F., y Norton, I. T. (2012). Investigation into the potential ability of pickering emulsions (food-grade particles) to enhance the oxidative stability of oil-in-water emulsions. Journal of Colloid and Interface Science, 366(1), 209–215.
dc.relation.referencesKim, Y. D., y Morr, C. V. (1996). Microencapsulation properties of gum Arabic and several food proteins: Spray-Dried orange oil emulsion particles. Journal of Agricultural and Food Chemistry, 44(5), 1314–1320.
dc.relation.referencesKim, Y. D., Morr, C. V., y Schenz, T. W. (1996). Microencapsulation properties of gum Arabic and several food proteins: Liquid orange oil emulsion particles. Journal of Agricultural and Food Chemistry, 44(5), 1308–1313.
dc.relation.referencesKolb, G., Viardot, K., Wagner, G., y Ulrich, J. (2001). Evaluation of a new high-pressure dispersion unit (HPN) for emulsification. Chemical Engineering and Technology, 24(3), 293–296.
dc.relation.referencesKorma, S. A., Alahmad, K., Niazi, S., Ammar Al-Farga, Zaaboul, F., y Zhang, T. (2016). Chemically modified starch and utilization in food stuffs. International Journal of Nutrition and Food Sciences, 5(4), 264–272.
dc.relation.referencesKrithika, P. L., y Ratnamala, K. V. (2019). Modifiction of starch: A review of various techniques. International Journal of Research and Analytical Reviews, 6(1), 32–45.
dc.relation.referencesKrstonosic, V., Dokic, L., Nikolic, I., Dapcevic, T., y Hadnadjev, M. (2012). Influence of sodium dodecyl sulphate (SDS) concentration on disperse and rheological characteristics of oil-in-water emulsions stabilized by octenyl succinic anhydride modifies starch-SDS mixtures. Journal of the Serbian Chemical Society, 77(1), 83–94.
dc.relation.referencesKrstonošić, V., Dokić, L., Nikolić, I., y Milanović, M. (2015). Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch. Food Hydrocolloids, 45, 9–17.
dc.relation.referencesLeal-Castañeda, E. J., García-Tejeda, Y., Hernández-Sánchez, H., Alamilla-Beltrán, L., Téllez-Medina, D. I., Calderón-Domínguez, G., … Gutiérrez-López, G. F. (2018). Pickering emulsions stabilized with native and lauroylated amaranth starch. Food Hydrocolloids, 80, 177–185.
dc.relation.referencesLi, Chao, Fu, X., Luo, F., y Huang, Q. (2013). Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocolloids, 32(1), 79–86.
dc.relation.referencesLi, Chen, Li, Y., Sun, P., y Yang, C. (2013). Pickering emulsions stabilized by native starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 431, 142–149.
dc.relation.referencesLi, L., Yuan, T. Z., y Ai, Y. (2020). Development, structure and in vitro digestibility of type 3 resistant starch from acid-thinned and debranched pea and normal maize starches. Food Chemistry, 318, 1–8.
dc.relation.referencesLi, W., Yu, Y., Peng, J., Dai, Z., Wu, J., y Wang, Z. (2021). Effects of the degree of substitution of OSA on the properties of starch microparticle-stabilized emulsions. Carbohydrate Polymers, 255, 117546.
dc.relation.referencesLi, Z., Hong, Y., Gu, Z., Tian, Y., Li, Z., y Cheng, L. (2014). Emulsification properties of enzymatically treated octenyl-succinic anhydride starch. Starch - Stärke, 66(11–12), 1089–1095.
dc.relation.referencesLim, S. S., Baik, M. Y., Decker, E. A., Henson, L., Popplewell, M. L., McClements, D. J., y Choi, S. J. (2011). Stabilization of orange oil-in-water emulsions: A new role for ester gum as an Ostwald ripening inhibitor. Food Chemistry, 128(4), 1023–1028.
dc.relation.referencesLin, Q., Liang, R., Zhong, F., Ye, A., y Singh, H. (2018a). Interactions between octenyl-succinic-anhydride-modified starches and calcium in oil-in-water emulsions. Food Hydrocolloids, 77, 30–39.
dc.relation.referencesLin, Q., Liang, R., Zhong, F., Ye, A., y Singh, H. (2018b). Physical properties and biological fate of OSA-modified-starch-stabilized emulsions containing β-carotene: Effect of calcium and pH. Food Hydrocolloids, 77, 549–556.
dc.relation.referencesLiu, F., y Tang, C.-H. (2013). Soy protein nanoparticle aggregates as Pickering stabilizers for oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 61(37), 8888–8898.
dc.relation.referencesLiu, F., y Tang, C.-H. (2015). Soy glycinin as food-grade Pickering stabilizers: Part . I . Structural characteristics, emulsifying properties and adsorption/arrangement at interface. Food hydrocolloids, 30, 1–14.
dc.relation.referencesLiu, Z., Li, Y., Cui, F., Ping, L., Song, J., Ravee, Y., … Zheng, Y. (2008). Production of octenyl succinic anhydride-modified waxy corn starch and its characterization. Journal of Agricultural and Food Chemistry, 56(23), 11499–11506.
dc.relation.referencesLovera, M., Castro, G. M. C. de, Pires, N. da R., Bastos, M. do S. R., Holanda-Araújo, M. L., Laurentin, A., … Oliveira, H. D. de. (2020). Pyrodextrinization of yam (Dioscorea sp.) starch isolated from tubers grown in Brazil and physicochemical characterization of yellow pyrodextrins. Carbohydrate Polymers, 242, 1–8.
dc.relation.referencesLu, G., y Moore, D. J. (2012). Study of surfactant-skin interactions by skin impedance measurements. International Journal of Cosmetic Science, 34(1), 74–80.
dc.relation.referencesLupi, F. R., Gabriele, D., De Cindio, B., Sánchez, M. C., y Gallegos, C. (2011). A rheological analysis of structured water-in-olive oil emulsions. Journal of Food Engineering, 107, 296–303.
dc.relation.referencesLuzardo Álvarez, A., Otero Espinar, F. J., y Blanco Méndez, J. (2016). Sistemas dispersos heterogéneos: emulsiones y suspensiones. En R. Martínez Pacheco (Ed.), Tratado de Tecnología Farmacéutica. Vol. I: Sistemas farmacéuticos (pp. 227–263). Madrid: Editorial Síntesis, S. A.
dc.relation.referencesMa, L., Zou, L., McClements, D. J., y Liu, W. (2020). One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocolloids, 100, 105381.
dc.relation.referencesMa, P., Zeng, Q., Tai, K., He, X., Yao, Y., Hong, X., y Yuan, F. (2017). Preparation of curcumin-loaded emulsion using high pressure homogenization: Impact of oil phase and concentration on physicochemical stability. LWT - Food Science and Technology, 84, 34–46.
dc.relation.referencesMacosko, C. W. (1994). Rheology: principles, measurements, and applications. Hoboken: John Wiley & Sons, Ltd.
dc.relation.referencesMajzoobi, M., Radi, M., Farahnaky, A., Jamalian, J., Tongdang, T., y Mesbahi, G. (2011). Physicochemical properties of pre-gelatinized wheat starch produced by a twin drum drier. Journal of Agricultural Science and Technology, 13(2), 193–202.
dc.relation.referencesManoi, K., y Rizvi, S. S. H. (2009). Emulsification mechanisms and characterizations of cold, gel-like emulsions produced from texturized whey protein concentrate. Food Hydrocolloids, 23(7), 1837–1847.
dc.relation.referencesMao, L., Xu, D., Yang, J., Yuan, F., Gao, Y., y Zhao, J. (2009). Effects of small and large molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technology and Biotechnology, 47(3), 336–342.
dc.relation.referencesMao, Y., y McClements, D. J. (2013). Modification of emulsion properties by heteroaggregation of oppositely charged starch-coated and protein-coated fat droplets. Food Hydrocolloids, 33(2), 320–326.
dc.relation.referencesMarefati, A., Wiege, B., Haase, N. U., Matos, M., y Rayner, M. (2017). Pickering emulsifiers based on hydrophobically modified small granular starches – Part I: Manufacturing and physico-chemical characterization. Carbohydrate Polymers, 175, 473–483.
dc.relation.referencesMarku, D., Wahlgren, M., Rayner, M., Sjöö, M., y Timgren, A. (2012). Characterization of starch Pickering emulsions for potential applications in topical formulations. International Journal of Pharmaceutics, 428, 1–7.
dc.relation.referencesMartinez, M. M., Li, C., Okoniewska, M., Mukherjee, I., Vellucci, D., y Hamaker, B. (2018). Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydrate Polymers, 197, 531–539.
dc.relation.referencesMarto, J., Gouveia, L., Jorge, I. M., Duarte, A., Gonçalves, L. M., Silva, S. M. C., … Ribeiro, H. M. (2015). Starch-based Pickering emulsions for topical drug delivery: A QbD approach. Colloids and Surfaces B: Biointerfaces, 135, 183–192.
dc.relation.referencesMatos, M., Laca, A., Rea, F., Iglesias, O., Rayner, M., y Gutiérrez, G. (2018). O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation. Journal of Food Engineering, 222, 207–217.
dc.relation.referencesMatos, María, Marefati, A., Gutiérrez, G., Wahlgren, M., y Rayner, M. (2016). Comparative emulsifying properties of octenyl succinic anhydride (OSA)-modified starch: Granular form vs dissolved state. PLOS ONE, 11(8), 1–16.
dc.relation.referencesMatos, María, Timgren, A., Sjöö, M., Dejmek, P., y Rayner, M. (2013). Preparation and encapsulation properties of double Pickering emulsions stabilized by quinoa starch granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423, 147–153.
dc.relation.referencesMcClements, D. J. (2012). Advances in fabrication of emulsions with enhanced functionality using structural design principles. Current Opinion in Colloid and Interface Science, 17(5), 235–245.
dc.relation.referencesMcClements, D. J. (2016). Food Emulsions Principles, Practices, and Techniques (3rd ed.). Boca Raton: CRC Press Taylor & Francis Group.
dc.relation.referencesMcMinn, W. A. M., y Magee, T. R. A. (1997). Moisture sorption characteristics of starch materials. Drying Technology, 15(5), 1527–1551.
dc.relation.referencesMeng, Z., Qi, K., Guo, Y., Wang, Y., y Liu, Y. (2017). Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocolloids, 77, 17–29.
dc.relation.referencesMeng, Z., Qi, K., Guo, Y., Wang, Y., y Liu, Y. (2018). Physical properties, microstructure, intermolecular forces, and oxidation stability of soybean oil oleogels structured by different cellulose ethers. European Journal of Lipid Science and Technology, 120(6), 1700287.
dc.relation.referencesMiao, M., Li, R., Jiang, B., Cui, S. W., Zhang, T., y Jin, Z. (2014). Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch. Food Chemistry, 151, 154–160.
dc.relation.referencesMikula, R. J., y Munoz, V. A. (2000). Characterization of emulsions and suspensions in the petroleum industry using cryo-SEM and CLSM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 174(1–2), 23–36.
dc.relation.referencesMiñana, M., y Goncalves, E. (2011). Aplicaciones cosméticas y farmacéuticas de los surfactantes. Módulo de enseñanza en fenómenos interfaciales. Mérida: Universidad de Los Andes.
dc.relation.referencesMoebus, K., Siepmann, J., y Bodmeier, R. (2009). Alginate-poloxamer microparticles for controlled drug delivery to mucosal tissue. European Journal of Pharmaceutics and Biopharmaceutics, 72(1), 42–53.
dc.relation.referencesMoncada, D. C. (2014). Nuevas alternativas tecnológicas para la emulsificación en productos cosméticos. Universidad Nacional de Colombia, Bogotá D.C.
dc.relation.referencesMora, C. P., Martinez-Alejo, J. M., Roman, L., Martinez, M. M., Carvajal, T., Pinal, R., y Mora-Huertas, C. E. (2020). Molecular and physical characterization of octenyl succinic anhydride-modified starches with potential applications in pharmaceutics. International Journal of Pharmaceutics, 579, 119163.
dc.relation.referencesMorrison, R. T., y Boyd, R. N. (1985). Química orgánica (2a ed). México: Fondo Educativo Interamericano.
dc.relation.referencesMoschakis, T., Murray, B. S., y Dickinson, E. (2006). Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide. Langmuir, 22(10), 4710–4719.
dc.relation.referencesMoss, G. (2017). Medium-chain triglycerides. En P. J. Sheskey, W. G. Cook, & C. G. Cable (Eds.), Handbook of pharmaceutical excipients (8th ed., pp. 590–593). London and Washington D.C.: Pharmaceutical Press and American Pharmacists Association.
dc.relation.referencesNakamura, A., Yoshida, R., Maeda, H., y Corredig, M. (2006). Soy soluble polysaccharide stabilization at oil-water interfaces. Food Hydrocolloids, 20, 277–283.
dc.relation.referencesNawaz, H., Waheed, R., Nawaz, M., y Shahwar, D. (2020). Physical and chemical modifications in starch structure and reactivity. En M. Emeje (Ed.), Chemical Properties of Starch (pp. 1–22). Multan: IntechOpen.
dc.relation.referencesNiazi, M. B. K., y Broekhuis, A. A. (2012). Production of amorphous starch powders by solution spray drying. Journal of Applied Polymer Science, 126, E143–E153.
dc.relation.referencesNilsson, L., y Bergenståhl, B. (2006). Adsorption of hydrophobically modified starch at oil/water interfaces during emulsification. Langmuir, 22(21), 8770–8776.
dc.relation.referencesNilsson, L., y Bergenståhl, B. (2007a). Adsorption of hydrophobically modified anionic starch at oppositely charged oil/water interfaces. Journal of Colloid and Interface Science, 308(2), 508–513.
dc.relation.referencesNilsson, L., y Bergenståhl, B. (2007b). Emulsification and adsorption properties of hydrophobically modified potato and barley starch. Journal of Agricultural and Food Chemistry, 55(4), 1469–1474.
dc.relation.referencesNuryawan, A., Ridwansyah, Mulya Alamsyah, E., y Widyorini, R. (2020). Starch based adhesives made from durian seed through dextrinization. IOP Conference Series: Materials Science and Engineering, 801(1), 012088.
dc.relation.referencesO’Neil, M. J., Heckelman, P. E., Dobbelaar, P. H., Roman, K. J., Kenny, C. M., y Karaffa, L. S. (2013). The Merck Index, An Encyclopedia of Chemicals, Drugs, and Biologicals (15th ed.). New Jersey: The Royal Society of Chemistry, Merck & Co., Inc.
dc.relation.referencesOlagunju, A. I., Omoba, O. S., Enujiugha, V. N., Wiens, R. A., Gough, K. M., y Aluko, R. E. (2020). Influence of acetylation on physicochemical and morphological characteristics of pigeon pea starch. Food Hydrocolloids, 100, 105424.
dc.relation.referencesOng, H. J., y Pinal, R. (2018). Drug solubilization by means of a surface-modified edible biopolymer enabled by hot melt extrusion. Journal of Pharmaceutical Sciences, 107(1), 402–411.
dc.relation.referencesOrmaza Zapata, A. M., Rodríguez-Barona, S., y Giraldo Gómez, G. I. (2015). Rheological characterization and stability study of an emulsion made with a dairy by-product enriched with omega-3 fatty acids. Brazilian Journal of Food Technology, 18(1), 23–30.
dc.relation.referencesOrtega-Ojeda, F. E., Larsson, H., y Eliasson, A. C. (2005). Gel formation in mixtures of hydrophobically modified potato and high amylopectin potato starch. Carbohydrate Polymers, 59(3), 313–327.
dc.relation.referencesOsorio, M. del R., Méndez, G. L., y Matiz, G. E. (2013). Lipofilización de almidones nativos como posibles agentes emulsificantes en cosméticos. Revista Arte y Ciencia Cosmética, 25(56), 25–39.
dc.relation.referencesOzturk, B., y McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1–6.
dc.relation.referencesPark, H. R., Kang, J., Rho, S. J., y Kim, Y. R. (2020). Structural and physicochemical properties of enzymatically modified rice starch as influenced by the degree of enzyme treatment. Journal of Carbohydrate Chemistry, 39(5–6), 250–266.
dc.relation.referencesPark, M. H., y Kim, M. (2020). Physicochemical properties of hydroxypropylated apios starches. PNF - Preventive Nutrition and Food Science, 25(3), 286–292.
dc.relation.referencesPark, S., Chung, M. G., y Yoo, B. (2004). Effect of octenylsuccinylation on rheological properties of corn starch pastes. Starch/Stärke, 56, 399–406.
dc.relation.referencesParra, A. P., Martínez Ramírez, J. A., y Mora Huertas, C. E. (2021). Preparation and characterization of native starch-ibuprofen molecular inclusion complexes. Journal of Drug Delivery Science and Technology, 63(October 2020), 102509.
dc.relation.referencesPatel, H. R., Patel, R. P., y Patel, M. M. (2009). Poloxamers: A pharmaceutical excipients with therapeutic behaviors. International Journal of PharmTech Research, 1(2), 299–303.
dc.relation.referencesPaunov, V. N., Cayre, O. J., Noble, P. F., Stoyanov, S. D., Velikov, K. P., y Golding, M. (2007). Emulsions stabilised by food colloid particles: Role of particle adsorption and wettability at the liquid interface. Journal of Colloid and Interface Science, 312(2), 381–389.
dc.relation.referencesPerrier-Cornet, J. M., Marie, P., y Gervais, P. (2005). Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. Journal of Food Engineering, 66(2), 211–217.
dc.relation.referencesPickering, S. U. (1907). Emulsions. Journal of the Chemical Society, 91, 2001–2021.
dc.relation.referencesPrasad Niraula, T., Chatterjee, S. K., y Bhattarai, A. (2018). Studies on the behavior of anionic surfactant sodiumdodecyl sulphate (SDS). Nepal: LAP LAMBERT Academic Publishing.
dc.relation.referencesPunia, S. (2020). Barley starch modifications: Physical, chemical and enzymatic - A review. International Journal of Biological Macromolecules, 144, 578–585.
dc.relation.referencesQian, C., Decker, E. A., Xiao, H., y McClements, D. J. (2011). Comparison of biopolymer emulsifier performance in formation and stabilization of orange oil-in-water emulsions. Journal of the American Oil Chemists’ Society, 88(1), 47–55.
dc.relation.referencesQian, S. Y., Tang, M. Q., Gao, Q., Wang, X. W., Zhang, J. W., Tanokura, M., y Xue, Y. L. (2019). Effects of different modification methods on the physicochemical and rheological properties of Chinese yam (Dioscorea opposita Thunb.) starch. LWT - Food Science and Technology, 116, 108513.
dc.relation.referencesQuinzio, C., Ayunta, C., López de Mishima, B., y Iturriaga, L. (2018). Stability and rheology properties of oil-in-water emulsions prepared with mucilage extracted from Opuntia ficus-indica (L). Miller. Food Hydrocolloids, 84, 154–165.
dc.relation.referencesRamsden, W. (1904). Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). - Preliminary account. Royal Society of London, 72, 156–164. Recuperado de https://doi.org/10.1098/rspl.1903.0034
dc.relation.referencesRao, M. A. (2014). Rheology of foods, semisolid, and solid foods. Principles and Aplications. En G. V. Barbosa-Cánovas (Ed.), Food Engineering Series (3a ed.). Washington DC: Springer US.
dc.relation.referencesRave, M. C., Echeverri, J. D., y Salamanca, C. H. (2020). Improvement of the physical stability of oil-in-water nanoemulsions elaborated with Sacha inchi oil employing ultra-high-pressure homogenization. Journal of Food Engineering, 273, 109801.
dc.relation.referencesRayner, M., Marku, D., Eriksson, M., Sjöö, M., Dejmek, P., y Wahlgren, M. (2014). Biomass-based particles for the formulation of Pickering type emulsions in food and topical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458, 48–62.
dc.relation.referencesRayner, M., Timgren, A., Sjöö, M., y Dejmek, P. (2012). Quinoa starch granules: A candidate for stabilising food-grade Pickering emulsions. Journal of the Science of Food and Agriculture, 92, 1841–1847.
dc.relation.referencesRieger, M. M. (2009). Emulsions. En L. Lachman & H. A. Lieberman (Eds.), The theory and practice of industrial pharmacy (Special in, p. 502). New Delhi: CBS Publishers & Distributors Pvt. Ltd.
dc.relation.referencesRodrigues dos Santos, T. P., Landi Franco, C. M., y Leonel, M. (2018). Gelatinized sweet potato starches obtained at different preheating temperatures in a spray dryer. International Journal of Biological Macromolecules, 149, 1–8.
dc.relation.referencesRojas Gallardo, J. (2012). Reología de una emulsión de aceite en agua. Universidad Nacional Autónoma de México, Ciudad de México.
dc.relation.referencesRoss, A. S. (2012). Starch in foods. En R. E. Wrolstad (Ed.), Food Carbohydrate Chemistry (1st ed., pp. 109–113). Oxford: Wiley-Blackwell, IFT Press.
dc.relation.referencesRousseau, D., Ghosh, S., y Park, H. (2009). Comparison of the dispersed phase coalescence mechanisms in different tablespreads. Journal of Food Science: Engineering and physical Properties, 74(1), E1–E7.
dc.relation.referencesRousseau, Dérick. (2013). Trends in structuring edible emulsions with Pickering fat crystals. Current Opinion in Colloid and Interface Science, 18, 283–291.
dc.relation.referencesSaari, H., Fuentes, C., Sjöö, M., Rayner, M., y Wahlgren, M. (2017). Production of starch nanoparticles by dissolution and non-solvent precipitation for use in food-grade Pickering emulsions. Carbohydrate Polymers, 157, 558–566.
dc.relation.referencesSaari, H., Wahlgren, M., Rayner, M., Sjöö, M., y Matos, M. (2019). A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates. PLOS ONE, 14(2), 0210690.
dc.relation.referencesSaha, D., y Bhattacharya, S. (2010). Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 47(6), 587–597.
dc.relation.referencesSalager, J.-L. (2002). Surfactants types and uses. Teaching aid in surfactants science & engineering. Mérida: Universidad de Los Andes.
dc.relation.referencesSandoval, E., Fernandez, A., & A. (2005). Modelos reológicos aplicados a masas de trigo y maíz. Revista de Ingeniería e Investigación, 58(2), 87–93.
dc.relation.referencesScheffler, S. L., Wang, X., Huang, L., San-Martin Gonzalez, F., y Yao, Y. (2010). Phytoglycogen octenyl succinate, an amphiphilic carbohydrate nanoparticle, and ε-polylysine to improve lipid oxidative stability of emulsions. Journal of Agricultural and Food Chemistry, 58, 660–667.
dc.relation.referencesSchmitt, M., Limage, S., Grigoriev, D. O., Krägel, J., Dutschk, V., Vincent-Bonnieu, S., … Antoni, M. (2014). Transition from spherical to irregular dispersed phase in water/oil emulsions. Langmuir, 30(16), 4599–4604.
dc.relation.referencesSchramm, L. L. (2014). Emulsions, foams, suspensions, and aerosols. Microscience and applications (2nd ed.). Weinheim: Wiley-VCH Verlag GmbH & Co.
dc.relation.referencesSchubert, H., Ax, K., y Behrend, O. (2003). Product engineering of dispersed systems. Trends in Food Science and Technology, 14, 9–16.
dc.relation.referencesSegura-Campos, M., Chel-Guerrero, L., y Betancur-Ancona, D. (2008). Synthesis and partial characterization of octenylsuccinic starch from Phaseolus lunatus. Food Hydrocolloids, 22, 1467–1474.
dc.relation.referencesSemenov, A. N., y Shvets, A. A. (2015). Theory of colloid depletion stabilization by unattached and adsorbed polymers. The Royal Society of Chemistry, 11(45), 8863–8878.
dc.relation.referencesShanmugam, A., y Ashokkumar, M. (2014). Functional properties of ultrasonically generated flaxseed oil-dairy emulsions. Ultrasonics Sonochemistry, 21, 1649–1657.
dc.relation.referencesSharif, H. R., Goff, H. D., Majeed, H., Shamoon, M., Liu, F., Nsor-Atindana, J., … Zhong, F. (2017a). Physicochemical properties of β-carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocolloids, 73, 274–283.
dc.relation.referencesSharif, H. R., Williams, P. A., Sharif, M. K., Khan, M. A., Majeed, H., Safdar, W., … Zhong, F. (2017b). Influence of OSA-starch on the physico chemical characteristics of flax seed oil-eugenol nanoemulsions. Food Hydrocolloids, 66, 365–377.
dc.relation.referencesSharoba, A. M., Senge, B., El-Mansy, H. A., Bahlol, H. E., y Blochwitz, R. (2005). Chemical, sensory and rheological properties of some commercial German and Egyptian tomato ketchups. European Food Research and Technology, 220, 142–151.
dc.relation.referencesShen, Y., Zhang, N., Xu, Y., Huang, J., Yuan, M., Wu, D., y Shu, X. (2019). Physicochemical properties of hydroxypropylated and cross-linked rice starches differential in amylose content. International Journal of Biological Macromolecules, 128, 775–781.
dc.relation.referencesSheskey, P. J., Cook, W. G., y Cable, C. G. (2017). Handbook of Pharmaceutical Excipients (8th ed.). London and Washington D.C.: Pharmaceutical Press and American Pharmacists Association.
dc.relation.referencesShimoni, G., Shani Levi, C., Levi Tal, S., y Lesmes, U. (2013). Emulsions stabilization by lactoferrin nano-particles under invitro digestion conditions. Food Hydrocolloids, 33, 264–272.
dc.relation.referencesShogren, R., y Biresaw, G. (2007). Surface properties of water soluble maltodextrin, starch acetates and starch acetates/alkenylsuccinates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298, 170–176.
dc.relation.referencesShweta, Kumar, Y., y Saxena, D. C. (2021). Valorization of unpopped Foxnut starch in stabilizing Pickering emulsion using OSA modification. International Journal of Biological Macromolecules, 191, 657–667.
dc.relation.referencesSilva, E. K., Gomes, M. T. M. S., Hubinger, M. D., Cunha, R. L., y Meireles, M. A. A. (2015). Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids, 47, 1–13.
dc.relation.referencesSilva, E. K., Rodrigues Costa, A. L., Gomes, A., Bargas, M. A., Cunha, R. L., y Meireles, M. A. A. (2018). Coupling of high-intensity ultrasound and mechanical stirring for producing food emulsions at low-energy densities. Ultrasonics Sonochemistry, 47, 114–121.
dc.relation.referencesSimsek, S., Ovando-Martinez, M., Marefati, A., Sjӧӧ, M., y Rayner, M. (2015). Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches. Food Research International, 75, 41–49.
dc.relation.referencesSingh, A. V., Nath, L. K., y Singh, A. (2010). Pharmaceutical, food and non-food applications of modified starches: A critical review. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(7), 1214–1221.
dc.relation.referencesSinko, P. J. (2011). Martin´s physical pharmacy and pharmaceutical sciences (6th ed.). Philadelphia: Editorial Lippincott Williams & Wilkins.
dc.relation.referencesSjöblom, J. (2006). Emulsions and emulsion stability: Surfactant science series (2nd ed.; A. T. Hubbard, Ed.). Boca Raton: CRC Press Taylor & Francis Group.
dc.relation.referencesSong, X., He, G., Ruan, H., y Chen, Q. (2006). Preparation and properties of octenyl succinic anhydride modified early indica rice starch. Starch/Stärke, 58, 109–117.
dc.relation.referencesSong, X., Pei, Y., Qiao, M., Ma, F., Ren, H., y Zhao, Q. (2015). Preparation and characterizations of Pickering emulsions stabilized by hydrophobic starch particles. Food Hydrocolloids, 45, 256–263.
dc.relation.referencesSong, X., Pei, Y., Zhu, W., Fu, D., y Ren, H. (2014). Particle-stabilizers modified from indica rice starches differing in amylose content. Food Chemistry, 153, 74–80.
dc.relation.referencesSong, X., Zhao, Q., Li, Z., Fu, D., y Dong, Z. (2013). Effects of amylose content on the paste properties and emulsification of octenyl succinic starch esters. Starch/Stärke, 65, 112–122.
dc.relation.referencesSopade, P. A. (1999). Flow behaviour of yams grown in Papua New Guinea. Journal of Tropical Agriculture and Food Science, 27(2), 219–224.
dc.relation.referencesSwaminathan, V., y Kildsig, D. O. (2001). An examination of the moisture sorption characteristics of commercial magnesium stearate. An Official Journal of the American Association of Pharmaceutical Scientists, 2(4), 73–79.
dc.relation.referencesSweedman, Michael C., Schäfer, C., y Gilbert, R. G. (2014). Aggregate and emulsion properties of enzymatically-modified octenylsuccinylated waxy starches. Carbohydrate Polymers, 111, 918–927.
dc.relation.referencesSweedman, Michael C., Tizzotti, M. J., Schäfer, C., y Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92, 905–920.
dc.relation.referencesSweedman, Michael Christopher. (2014). Octenylsuccinylated starches: Structure and function. University of Queensland, Queensland.
dc.relation.referencesTadros, T. F. (1994). Fundamental principles of emulsion rheology and their applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 91, 39–55.
dc.relation.referencesTadros, T. F. (2004). Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Advances in Colloid and Interface Science, 108–109, 227–258.
dc.relation.referencesTadros, T. F. (2005). Applied surfactants. Principles and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
dc.relation.referencesTadros, T. F. (2013a). Emulsion formation, stability, and rheology. En T. F. Tadros (Ed.), Emulsion formation and stability (1st ed., pp. 1–76). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
dc.relation.referencesTadros, T. F. (2013b). Emulsion science and technology: A general introduction. En T. F. Tadros (Ed.), Emulsion formation and stability (1st ed., pp. 1–8). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
dc.relation.referencesTaggart, P., y Mitchell, J. R. (2009). Starch. En G. O. Phillips & P. A. Williams (Eds.), Handbook of hydrocolloids (2nd ed., pp. 108–140). Boca Raton: Woodhead Publishing Limited.
dc.relation.referencesTaherian, A. R., Fustier, P., y Ramaswamy, H. S. (2006). Effect of added oil and modified starch on rheological properties, droplet size distribution, opacity and stability of beverage cloud emulsions. Journal of Food Engineering, 77, 687–696.
dc.relation.referencesTan, Y., Xu, K., Liu, C., Li, Y., Lu, C., y Wang, P. (2012). Fabrication of starch-based nanospheres to stabilize Pickering emulsion. Carbohydrate Polymers, 88, 1358–1363.
dc.relation.referencesTan, Y., Xu, K., Niu, C., Liu, C., Li, Y., Wang, P., y Binks, B. P. (2014). Triglyceride-water emulsions stabilised by starch-based nanoparticles. Food Hydrocolloids, 36, 70–75.
dc.relation.referencesTaylor, M. S. (2011). Stabilisation of water-in-oil emulsions to improve the emollient properties of lipstick. University of Birmingham, Birmingham.
dc.relation.referencesTesch, S., Gerhards, C., y Schubert, H. (2002). Stabilization of emulsions by OSA starches. Journal of Food Engineering, 54, 167–174.
dc.relation.referencesThommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., y Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069.
dc.relation.referencesTimgren, A., Rayner, M., Dejmek, P., Marku, D., y Sjöö, M. (2013). Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride. Food Science & Nutrition, 1(2), 157–171.
dc.relation.referencesTimgren, A., Rayner, M., Sjöö, M., y Dejmek, P. (2011). Starch particles for food based Pickering emulsions. Procedia Food Science, 1, 95–103.
dc.relation.referencesTizzotti, M. J., Sweedman, M. C., Schäfer, C., y Gilbert, R. G. (2013). The influence of macromolecular architecture on the critical aggregation concentration of large amphiphilic starch derivatives. Food Hydrocolloids, 31, 365–374.
dc.relation.referencesTizzotti, M. J., Sweedman, M. C., Tang, D., Schaefer, C., y Gilbert, R. G. (2011). New 1H NMR procedure for the characterization of native and modified food-grade starches. Journal of Agricultural and Food Chemistry, 59, 6913–6919.
dc.relation.referencesTorrenegra Alarcón, M. E., León Méndez, G., Matiz Melo, G. E., y Sastoque Gomez, J. D. (2015). Lipofilización del almidón de Dioscorea rotundata P. y su posible uso como agente emulsificante. Revista Cubana de Farmacia, 49(4), 605–617.
dc.relation.referencesTorres, L. G., Iturbe, R., Snowden, M. J., Chowdhry, B. Z., y Leharne, S. A. (2007). Preparation of o/w emulsions stabilized by solid particles and their characterization by oscillatory rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302, 439–448.
dc.relation.referencesTran, H. T. T., Park, J. B., Hong, K. H., Choi, H. G., Han, H. K., Lee, J., … Lee, B. J. (2011). Preparation and characterization of pH-independent sustained release tablet containing solid dispersion granules of a poorly water-soluble drug. International Journal of Pharmaceutics, 415(1–2), 83–88.
dc.relation.referencesTrujillo, C. C., y Wright, A. J. (2010). Properties and stability of solid lipid particle dispersions based on canola stearin and poloxamer 188. Journal of the American Oil Chemists’ Society, 87, 715–730.
dc.relation.referencesTzoumaki, M. V., Moschakis, T., Kiosseoglou, V., y Biliaderis, C. G. (2011). Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocolloids, 25, 1521–1529.
dc.relation.referencesTzoumaki, M. V., Moschakis, T., Scholten, E., y Biliaderis, C. G. (2013). In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions. Food & Function, 4, 121–129.
dc.relation.referencesUlbrich, M., Daler, J. M., y Flöter, E. (2019). Acid hydrolysis of corn starch genotypes. I. Impact on morphological and molecular properties. Carbohydrate Polymers, 219, 172–180.
dc.relation.referencesUlbrich, M., y Flöter, E. (2019). Functional properties of acid-thinned potato starch: Impact of modification, molecular starch characteristics, and solution preparation. Starch/Stärke, 71, 1–11.
dc.relation.referencesUSP. (2020). The United States Pharmacopeia and National Formulary USP 43 - NF 38 (43rd ed.). Rockville: The United States Pharmacopeial Convention.
dc.relation.referencesVarona, S., Martín, A., y Cocero, M. J. (2009). Formulation of a natural biocide based on lavandin essential oil by emulsification using modified starches. Chemical Engineering and Processing: Process Intensification, 48, 1121–1128.
dc.relation.referencesVashisth, C., Whitby, C. P., Fornasiero, D., y Ralston, J. (2010). Interfacial displacement of nanoparticles by surfactant molecules in emulsions. Journal of Colloid and Interface Science, 349(2), 537–543.
dc.relation.referencesVerbeken, D., Dierckx, S., y Dewettinck, K. (2003). Exudate gums: Occurrence, production, and applications. Applied Microbiology and Biotechnology, 63(1), 10–21.
dc.relation.referencesViswanathan, A. (1999). Effect of degree of substitution of octenyl succinate starch on the emulsification activity on different oil phases. Journal of Enviromental Polymer Degradation, 7, 191–196.
dc.relation.referencesWan, J., Ding, Y., Zhou, G., Luo, S., Liu, C., y Liu, F. (2018). Sorption isotherm and state diagram for indica rice starch with and without soluble dietary fiber. Journal of Cereal Science, 80, 44–49.
dc.relation.referencesWandrey, C., Bartkowiak, A., y Harding, S. E. (2010). Materials for encapsulation. En N. J. Zuidam & V. A. Nedovic (Eds.), Encapsulation Technologies for Active Food Ingredients and Food Processing (pp. 31–100). New York: Springer.
dc.relation.referencesWang, P. P., Luo, Z.-G., Chun-Chen, Xiong-Fu, y Tamer, T. M. (2020). Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of pickering emulsions formulated by modified rice starch. Carbohydrate Polymers, 228, 115389.
dc.relation.referencesWang, S., He, Y., y Zou, Y. (2010). Study of Pickering emulsions stabilized by mixed particles of silica and calcite. Particuology, 8, 390–393.
dc.relation.referencesWang, Y. J., y Wang, L. (2002). Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides. Starch/Stärke, 54, 25–30.
dc.relation.referencesWege, H. A., Kim, S., Paunov, V. N., Zhong, Q., y Velev, O. D. (2008). Long-term stabilization of foams and emulsions with in-situ formed microparticles from hydrophobic cellulose. Langmuir, 24, 9245–9253.
dc.relation.referencesWei, Z., Wang, C., Zou, S., Liu, H., y Tong, Z. (2012a). Chitosan nanoparticles as particular emulsifier for preparation of novel pH-responsive Pickering emulsions and PLGA microcapsules. Polymer, 53, 1229–1235.
dc.relation.referencesWei, Z., Yang, Y., Yang, R., y Wang, C. (2012b). Alkaline lignin extracted from furfural residues for pH-responsive Pickering emulsions and their recyclable polymerization. Green Chemistry, 14, 3230–3236.
dc.relation.referencesWeil, W., Weil, R. C., Keawsompong, S., Sriroth, K., Seib, P. A., y Shi, Y. C. (2020). Pyrodextrin from waxy and normal tapioca starches: Physicochemical properties. Food Hydrocolloids, 104, 105745.
dc.relation.referencesWhitby, C. P., Fornasiero, D., y Ralston, J. (2009). Effect of adding anionic surfactant on the stability of Pickering emulsions. Journal of Colloid and Interface Science, 329(1), 173–181.
dc.relation.referencesWilliams, P. A., y Phillips, G. O. (2009). Introduction to food hydrocolloids. En Handbook of Hydrocolloids (2nd ed.). Sawston: Woodhead Publishing Limited.
dc.relation.referencesWinuprasith, T., y Suphantharika, M. (2013). Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and evaluation as an emulsion stabilizer. Food Hydrocolloids, 32, 383–394.
dc.relation.referencesWinuprasith, T., y Suphantharika, M. (2015). Food hydrocolloids properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food hydrocolloids, 43, 690–699.
dc.relation.referencesXie, Y. L., Zhou, H.-M., Liang, X.-H., He, B. S., y Han, X.-X. (2010). Study on the morphology, particle size and thermal properties of Vitamin A microencapsulated by starch octenylsucciniate. Agricultural Sciences in China, 9(7), 1058–1064.
dc.relation.referencesXu, Y., Wang, C., Fu, X., Huang, Q., y Zhang, B. (2018). Effect of pH and ionic strength on the emulsifying properties of two Octenylsuccinate starches in comparison with gum Arabic. Food Hydrocolloids, 76, 96–102.
dc.relation.referencesYan, F., Zhang, C., Zheng, Y., Mei, L., Tang, L., Song, C., … Huang, L. (2010). The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine: Nanotechnology, Biology, and Medicine, 6(1), 170–178.
dc.relation.referencesYanai, R., y Kawaguchi, M. (2017). Effect of hydrophobic modification of hydroxypropyl methylcellulose on silicone oil emulsions. Journal of Dispersion Science and Technology, 38(1), 40–45.
dc.relation.referencesYe, F., Miao, M., Jiang, B., Hamaker, B. R., Jin, Z., y Zhang, T. (2017). Characterizations of oil-in-water emulsion stabilized by different hydrophobic maize starches. Carbohydrate Polymers, 166, 195–201.
dc.relation.referencesYoo, S. H., y Jane, J. L. (2002). Molecular weights and gyration radii of amylopectins determined by high-performance size-exclusion chromatography equipped with multi-angle laser-light scattering and refractive index detectors. Carbohydrate Polymers, 49, 307–314.
dc.relation.referencesYusoff, A., y Murray, B. S. (2011). Modified starch granules as particle-stabilizers of oil-in-water emulsions. Food Hydrocolloids, 25, 42–55.
dc.relation.referencesZhang, H., Schäfer, C., Wu, P., Deng, B., Yang, G., Li, E., … Li, C. (2018). Mechanistic understanding of the relationships between molecular structure and emulsification properties of octenyl succinic anhydride (OSA) modified starches. Food Hydrocolloids, 74, 168–175.
dc.relation.referencesZhang, J., Bing, L., y Reineccius, G. A. (2016). Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions. Food Chemistry, 192, 53–59.
dc.relation.referencesZhang, J., Peppard, T. L., y Reineccius, G. A. (2015). Preparation and characterization of nanoemulsions stabilized by food biopolymers using microfluidization. Flavour and Fragrance Journal, 30, 288–294.
dc.relation.referencesZhang, J., y Reineccius, G. A. (2016). Factors controlling the turbidity of submicron emulsions stabilized by food biopolymers and natural surfactant. LWT - Food Science and Technology, 71, 162–168.
dc.relation.referencesZhang, P., He, Z., Chen, D., Zhang, Y., Larroque, O. R., y Xia, X. (2007). Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. Journal of Cereal Science, 46(1), 1–10.
dc.relation.referencesZhang, Y., Dai, Y., Hou, H., Li, X., Dong, H., Wang, W., y Zhang, H. (2020). Ultrasound-assisted preparation of octenyl succinic anhydride modified starch and its influence mechanism on the quality. Food Chemistry, 5, 100077.
dc.relation.referencesZhao, Y., Khalid, N., Shu, G., Neves, M. A., Kobayashi, I., y Nakajima, M. (2017). Formulation and characterization of O/W emulsions stabilized using octenyl succinic anhydride modified kudzu starch. Carbohydrate Polymers, 176, 91–98.
dc.relation.referencesZhou, J., Tong, J., Su, X., y Ren, L. (2016). Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. International Journal of Biological Macromolecules, 91, 1186–1193.
dc.relation.referencesZhu, W., Zheng, F., Song, X., Ren, H., y Gong, H. (2020). Influence of formulation parameters on lipid oxidative stability of Pickering emulsion stabilized by hydrophobically modified starch particles. Carbohydrate Polymers, 246, 116649.
dc.relation.referencesZoppe, J. O., Venditti, R. A., y Rojas, O. J. (2012). Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. Journal of Colloid and Interface Science, 369(1), 202–209.
dc.relation.referencesZúñiga, R. N., Skurtys, O., Osorio, F., Aguilera, J. M., y Pedreschi, F. (2012). Physical properties of emulsion-based hydroxypropyl methylcellulose films: Effect of their microstructure. Carbohydrate Polymers, 90(2), 1147–1158.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocAlmidones modificados
dc.subject.proposalAlmidón modificado
dc.subject.proposalAnhídrido octenil succínico
dc.subject.proposalEmulsiones
dc.subject.proposalEstructura
dc.subject.proposalPropiedades fisicoquímicas
dc.subject.proposalComportamiento reológico
dc.subject.proposalCaracterización
dc.subject.proposalEstabilidad
dc.subject.proposalModified starch
dc.subject.proposalOctenyl succinic anhydride
dc.subject.proposalEmulsions
dc.subject.proposalStructure
dc.subject.proposalPhysicochemical properties
dc.subject.proposalRheological behavior
dc.subject.proposalCharacterization
dc.subject.proposalStability
dc.subject.spinesEmulsiones
dc.subject.spinesQuímica farmacéutica
dc.subject.spinesEstabilizantes (agentes)
dc.title.translatedInfluence of the modified starch nature on its performance as an emulsifier of caprylic/capric triglyceride–water systems
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleInvestigaciones sobre alternativas novedosas para el aprovechamiento de recursos naturales y el desarrollo de transportadores de activos de interés para el diseño de productos cosméticos y de medicamentos de aplicación tópica. Código Hermes 36019. Convocatoria del Programa Nacional de proyectos para el fortalecimiento de la investigación, la creación y la innovación de la Universidad Nacional de Colombia 2016 - 2018.
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 4.0 InternacionalThis work is licensed under a Creative Commons Reconocimiento-NoComercial 4.0.This document has been deposited by the author (s) under the following certificate of deposit